Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-20T03:36:03.539Z Has data issue: false hasContentIssue false

6 - Volatiles on Mars: scientific results from the Mars Odyssey Neutron Spectrometer

from Part II - Elemental Composition: Orbital and in situ Surface Measurements

Published online by Cambridge University Press:  10 December 2009

W. C. Feldman
Affiliation:
Los Alamos National Laboratory MS D466 Space & Atmospheric Science Los Alamos, NM 87545, USA
M. T. Mellon
Affiliation:
Laboratory for Atmospheric & Space Physics University of Colorado Boulder, CO 80309-0392, USA
O. Gasnault
Affiliation:
Laboratoire d'Astrophysique, 14 Avenue Belin Toulouse, 31400, France
S. Maurice
Affiliation:
Centre d'Etude Spatiale des Rayonnements, 9 Avenue du Colonel Roche BP 24346 Toulouse Cedex 4, France
T. H. Prettyman
Affiliation:
Los Alamos National Laboratory MS D466 Space and Atmospheric Science Los Alamos, NM 87545, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The Mars Odyssey Neutron Spectrometer (MONS) is described and its capabilities to detect and quantify deposits of H and CO2 ice within about 1 m of the surface are presented. After two Martian years in mapping orbit about Mars, two distinct domains of hydrogen deposits have been delimited. High-latitude domains in both hemispheres contain large, generally buried deposits of hydrogen and a near-equatorial domain contains more modest, yet significant, deposits. All observations are specified in units of water-equivalent hydrogen (WEH) and are compared with other observations of near-surface deposits of H2O and OH. They are also discussed in terms of theoretical models of volatile exchange between different water reservoirs through the atmosphere or through a system of aquifers. The CO2 ice cover of the residual cap near the South Pole is modeled and found not to be a significant part of the CO2 inventory of Mars.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 125 - 148
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvidson, R. E., Gooding, J. L., and Moore, H. J., The Martian surface as imaged, sampled, and analyzed by the Viking Landers, Rev. Geophys. 27, 39–60, 1989.CrossRefGoogle Scholar
Baker, V. R., Water and the Martian landscape, Nature 412, 228–36, 2001.CrossRefGoogle ScholarPubMed
Basilevsky, A. T., Litvak, M. L., Mitrofanov, I. G., et al., Search for traces of chemically bound water in the Martian surface layer based on HEND measurements onboard the 2001 Mars Odyssey spacecraft, Solar Syst. Res. 37, 387–96, 2003.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307, 1576–81, 2005.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Mustard, J. F., et al., Global mineralogical and aqueous Mars history drived from OMEGA/Mars Express data, Science 312, 400–4, 2006.CrossRefGoogle Scholar
Bish, D. L., Carey, J. W., Vaniman, D. T., and Chipera, S. J., Stability of hydrous minerals on the martian surface, Icarus 164, 96–103, 2003a.CrossRefGoogle Scholar
Bish, D. L., Vaniman, D. T., Fialips, C., Carey, J. W., and Feldman, W. C., Can hydrous minerals account for the observed mid-latitude water on Mars?, 6th Int. Conf. Mars, July 20–25, Pasadena, California, Houston, TX: Lunar and Planetary Institute, Abstract 3066, 2003b.Google Scholar
Black, R. F., Periglacial features indicative of permafrost: ice and soil wedges, Quaternary Res. 6, 3–26, 1976.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science 2907, 81–5, 2002.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Mitrofanov, I., et al., The Mars Odyssey gamma-ray spectrometer instrument suite, Space Sci. Rev. 110, 37–83, 2004.CrossRefGoogle Scholar
Byrne, S. and Ingersoll, A. P., Martian climate events on timescales of centuries: evidence from feature morphology in the residual south polar ice cap, Geophys. Res. Lett. 30, 1–4, 2003.CrossRefGoogle Scholar
Calvin, W. M., Variation of the 3-μm absorption feature on Mars: observations over eastern Valles Marineris by the Mariner 6 infrared spectrometer, J. Geophys. Res. 102, 9097–107, 1997.CrossRefGoogle Scholar
Cameron, A. G. W., Origin of the solar system, Annu. Rev. Astron. Astrophys. 26, 441–72, 1988.CrossRefGoogle Scholar
Carey, J. W. and Bish, D. L., Equilibrium in the clinoptilolite-H2O system. Am. Mineral. 81, 952–62, 1996.CrossRefGoogle Scholar
Carr, M. H., Mars: a water-rich planet?, Icarus, 68, 187–216, 1986.CrossRefGoogle Scholar
Carr, M. H., D/H on Mars: effects of floods, volcanism, impacts, and polar processes, Icarus 87, 210–27, 1990.CrossRefGoogle Scholar
Carr, M. H., Water on Mars, New York: Oxford University Press, 229pp., 1996.Google Scholar
Carr, M. H. and Head, J. W. III, Oceans on Mars: an assessment of the observational evidence and possible fate, J. Geophys. Res. 108(E5), 5042, doi:10.1029/2002JE001963, 2003.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover, Science 306, 1733–9, 2004.CrossRefGoogle ScholarPubMed
Ciesla, F. J. and Cuzzi, J. N., The evolution of the water distribution in a viscous protoplanetary disk, Icarus 181, 178–204, 2006.CrossRefGoogle Scholar
Clark, B. C., Implications of abundant hygroscopic minerals in the Martian regolith, Icarus 34, 645–65, 1978.CrossRefGoogle Scholar
Clark, B. C. and Hart, D. C., The salts of Mars, Icarus 45, 370–8, 1981.CrossRefGoogle Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Clifford, S. M., Polar basal melting on Mars, J. Geophys. Res. 92, 9135–52, 1987.CrossRefGoogle Scholar
Clifford, S. M., The role of thermal vapor diffusion in the subsurface hydrologic evolution of Mars, Geophys. Res. Lett. 18, 2055–68, 1991.CrossRefGoogle Scholar
Clifford, S. M., A model for the hydrological and climatic behavior of water on Mars, J. Geophys. Res. 98, 10973–11016, 1993.CrossRefGoogle Scholar
Clifford, S. M., Mars: the effect of stratigraphic variations in the regolith diffusive properties on the evolution and vertical distribution of equatorial ground ice, Lunar Planet. Sci. Conf. XXIX, Abstract #1922 (CD-ROM), 1998.
Clifford, S. M. and Hillel, D., The stability of ground ice in the equatorial region of Mars, J. Geophys. Res. 88, 2456–74, 1983.CrossRefGoogle Scholar
Clifford, S. M. and Parker, T. J., The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains, Icarus 154, 40–79, 2001.CrossRefGoogle Scholar
Fanale, F. P. and Cannon, W. A., Exchange of adsorbed H2O and CO2 between the regolith and the atmosphere of Mars caused by changes in surface insolation, J. Geophys. Res. 79, 3397–402, 1974.CrossRefGoogle Scholar
Fanale, F. P., Salvail, J. R., Zent, A. P., and Postawko, S. E., Global distribution and migration of subsurface ice on Mars, Icarus 67, 1–18, 1986.CrossRefGoogle Scholar
Farmer, C. B. and Doms, P. E., Global seasonal variation of water vapor on Mars and the implications of permafrost, J. Geophys. Res. 84, 2881–8, 1979.CrossRefGoogle Scholar
Feldman, W. C. and Drake, D. M., A Doppler filter technique to measure the hydrogen content of planetary surfaces, Nucl. Instr. Meth. A245, 182–90, 1986.CrossRefGoogle Scholar
Feldman, W. C., Drake, D. M., O'Dell, R. D., Brinkley, F. W. Jr., and Anderson, R. C., Gravitational effects on planetary neutron flux spectra, J. Geophys. Res. 94, 513–25, 1989.CrossRefGoogle Scholar
Feldman, W. C., Reedy, R. C., and McKay, D. S., Lunar neutron leakage fluxes as a function of composition and hydrogen content, Geophys. Res. Lett. 18, 2157–60, 1991.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Jakosky, B. M., and Mellon, M. T., Redistribution of subsurface neutrons caused by ground ice on Mars, J. Geophys. Res. 98, 20855–70, 1993a.CrossRefGoogle Scholar
Feldman, W. C., W. V. Boynton, D. M. Drake, Planetary neutron spectroscopy from Orbit. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. M. and Englert, P. J.), Cambridge University press, pp. 213–34, 1993b.Google Scholar
Feldman, W. C., Lawrence, D. J., Elphic, R. C., et al., The chemical information content of lunar thermal and epithermal neutrons, J. Geophys. Res. – Planets 105, 20347–63, 2000.CrossRefGoogle Scholar
Feldman, W. C., Prettyman, T. H., Tokar, R. L., et al., Fast neutron flux spectrum aboard Mars Odyssey during cruise, J. Geophys. Res. 107(A6), doi:10.1029/2001JA000295, 2002a.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al., Global distribution of neutrons from Mars: results from Mars Odyssey, Science 297, 75–8, 2002b.CrossRefGoogle Scholar
Feldman, W. C., Prettyman, T. H., Boynton, W. V., et al., CO2 frost cap thickness on Mars during northern winter and spring, J. Geophys. Res. 108(E9), 5103, doi:10.1029/2003JE002101, 2003.CrossRefGoogle Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al., The global distribution of near-surface hydrogen on Mars, J. Geophys. Res. 109, E09006, doi:10.1029/2003JE002160, 2004a.CrossRefGoogle Scholar
Feldman, W. C., Mellon, M. T., Maurice, S., et al., Hydrated states of MgSO4 at equatorial latitudes on Mars, Geophys. Res. Lett. 31, L16702, doi:10.1029/2004GL020181, 2004b.CrossRefGoogle Scholar
Feldman, W. C., Head, J. W., Maurice, S., et al., Recharge mechanism of near-equatorial hydrogen on Mars: atmospheric redistribution or sub-surface aquifer, Geophys. Res. Lett. 31, L18701, doi:10.1029/2004GL020661, 2004c.CrossRefGoogle Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al., Topographic control of hydrogen deposits at low to mid latitudes of Mars, J. Geophys. Res. 110, E11009, doi:10.1029/2005JE002452, 2005.CrossRefGoogle Scholar
Feldman, W. C., Elphic, R. C., Gasnault, O., et al., Stratigraphy of water-equivalent hydrogen at high northern latitudes on Mars, Lunar Planet. Sci. Conf. XXXVII, Houston, TX: Lunar and Planetary Institute, Abstract #2246, 2006.Google Scholar
Fermi, E., Nuclear Physics, Chicago, IL: University of Chicago Press, 248pp., 1950.Google Scholar
Fialips, C. I., Carey, J. W., Vaniman, D. T., Feldman, W. C., and Mellon, M. T., Hydration state of zeolites, clays, and hydrated salts under present-day Martian surface conditions: can hydrous minerals account for Mars Odyssey observations of near equatorial water-equivalent hydrogen?, Icarus 178, 74–83, 2005a.CrossRefGoogle Scholar
Fialips, C. I., Carey, J. W., and Bish, D. L., Hydration-dehydration behavior and thermodynamics of chabazite, Geochim. Cosmochim. Acta 69, 2293–308, 2005b.CrossRefGoogle Scholar
Forget, F., Hourdin, F., Fournier, R., et al., Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res. – Planets 104, 24155–76, 1999.CrossRefGoogle Scholar
Gasnault, O., Feldman, W. C., Maurice, S., et al., Composition from fast neutrons: application to the Moon, Geophys. Res. Lett. 28, 3797–800, 2001.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Brückner, J., et al., Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, E02S05, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in Martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–91, 2005.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., Arvidson, R. E., Bell, J. F. III, et al., Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, 2005.CrossRefGoogle Scholar
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al., General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res. 104, 8957–74, 1999.CrossRefGoogle Scholar
Head, J. W. III, Kreslavsky, M. A., and Pratt, S., Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period, J. Geophys. Res. 107(E1), doi:10.1029/2000JE001445, 2002.CrossRefGoogle Scholar
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R., Recent ice ages on Mars, Nature 426, 797–802, 2003.CrossRefGoogle ScholarPubMed
Hodges, R. R., Reanalysis of lunar prospector neutron spectrometer observations over the lunar poles, J. Geophys. Res. 107(E12), 5125, doi:10.1029/2000JE001483, 2002.CrossRefGoogle Scholar
Houck, J. R., Pollack, J. B., Sagan, C., Schaack, D., and Decker, J. A. Jr., High altitude infrared spectroscopic evidence for bound water on Mars, Icarus 18, 470–80, 1973.CrossRefGoogle Scholar
Jakosky, B. M., Mars volatile evolution: evidence from stable isotopes, Icarus 94, 14–31, 1991.CrossRefGoogle Scholar
Jakosky, B. M. and Carr, M. A., Possible precipitation of ice at low latitudes of Mars during periods of high obliquity, Nature 315, 559–61, 1985.CrossRefGoogle Scholar
Jakosky, B. M. and Farmer, C. B., The seasonal and global behavior of water vapor in the Mars atmosphere: complete global results of the Viking atmospheric water detector experiment, J. Geophys. Res. 87, 2999–3019, 1982.CrossRefGoogle Scholar
Jakosky, B. M. and Phillips, R. J., Mars' volatile and climate history, Nature 412, 237–44, 2001.CrossRefGoogle ScholarPubMed
Jakosky, B. M., Henderson, B. G., and Mellon, M. T., Chaotic obliquity and the nature of the Marian climate, J. Geophys. Res. 100, 1579–84, 1995.CrossRefGoogle Scholar
Jakosky, B. M., Mellon, M. T., Varnes, E. S., et al., Mars low-latitude neutron distribution: possible remnant near-surface water ice and a mechanism for its recent emplacement, Icarus 175, 58–67, 2005.CrossRefGoogle Scholar
Jänchen, J., Bish, D. L., Möhlmann, D. T. F., and Stach, H., Investigation of the water sorption properties of Mars-relevant micro- and mesoporous minerals, Icarus 180, 353–8, 2006.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Kreslavsky, M. A. and Head, J. W. III, Mars: nature and evolution of young latitude-dependent water ice-rich mantle, Geophys. Res. Lett. 29(15), 1719, doi:10.1029/2002GL015392, 2002.CrossRefGoogle Scholar
Kuzmin, R. O., Zabalueva, E. V., Mitrofanov, I. G., et al., Regions of potential existence of free water (ice) in the near surface Martian ground: results from the Mars Odyssey High-Energy Neutron Detector (HEND), Solar Syst. Res. 38, 1–11, 2004.CrossRefGoogle Scholar
Lachenbruch, A. H., Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost, Geol. Soc. Am. Spec. Paper 70, 69pp., 1962.Google Scholar
Lane, M. D., Dyar, M. D., and Bishop, J. L., Spectroscopic evidence for hydrous iron sulfate in the Martian soil, Geophys. Res. Lett. 31, L19702, doi:10.1029/2004GL0212321, 2004.CrossRefGoogle Scholar
Laskar, J. B., Secular evolution of the solar system over 10 million years, Astron. Astrophys. 198, 341–62, 1988.Google Scholar
Laskar, J., Levrard, B., and Mustard, J., Orbital forcing of the Martian polar layered deposits, Nature 41, 375–7, 2002.CrossRefGoogle Scholar
Lawrence, D. J., Feldman, W. C., Elphic, R. C., et al., Improved modeling of counting rates from the lunar prospector neutron spectrometer, J. Geophys. Res. – Planets 111, CiteID E08001, doi:10.1029/2005JE002637, 2006.CrossRefGoogle Scholar
Leighton, R. B. and Murray, B. C., Behavior of carbon dioxide and other volatiles on Mars, Science 153, 136–44, 1966.CrossRefGoogle ScholarPubMed
Leshin, L. A., Insights into Martian water reservoirs from analyses of Martian meteorite QUE94201, Geophys. Res. Lett. 27, 2017–20, 2000.CrossRefGoogle Scholar
Levrard, B., Forget, F., Montmessin, F., and Laskar, J., Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity, Nature 431, 1072–5, 2004.CrossRefGoogle ScholarPubMed
Lewis, J. S., Metal/silicate fractionation in the solar system, Earth Planet. Sci. Lett. 15, 286–90, 1972.CrossRefGoogle Scholar
Litvak, M. L., Mitrofanov, I. G., Kozyrev, A. S., et al., Comparison between polar regions of Mars from HEND/Odyssey data, Icarus 180, 23–37, 2006.CrossRefGoogle Scholar
Luhman, J. G., Johnson, R. E., and Zhang, M. H. G., Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions, Geophys. Res. Lett. 19, 2151–4, 1992.CrossRefGoogle Scholar
MacKay, J. R., The world of underground ice, Ann. Assoc. Am. Geogr. 62, 1–22, 1972.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, J. Geophys. Res. 106, 23429–570, 2001.CrossRefGoogle Scholar
Mangold, N., Maurice, S., Feldman, W. C., Costard, F., and Forget, F., Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars, J. Geophys. Res. – Planets 109, E08001, 2004.CrossRefGoogle Scholar
Maurice, S., Feldman, W. C., Lawrence, D. J., et al., High-energy neutrons from the Moon, J. Geophys. Res. 101(E8), 20365–76, doi:10.1029/1999JE001151, 2000.CrossRefGoogle Scholar
Maurice, S., Feldman, W. C., Prettyman, T. H., Diez, B., and Gasnault, O., Reduction of Mars Odyssey Data, Lunar Planet. Sci. XXXVIII, Houston, TX: Lunar and Planetary Institute, Abstract #2036, 2007.Google Scholar
McKay, C. P., Mellon, M. T., Friedman, E. I., Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica, Antarct. Sci. 10, 31–8, 1998.CrossRefGoogle ScholarPubMed
McLennan, S. M., Bell, J. F. III, Calvin, W. M., et al., Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, 2005.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M., Geographic variations in the thermal and diffusive stability of ground ice on Mars, J. Geophys. Res. 98, 3345–64, 1993.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M., The distribution and behavior of Martian ground ice during past and present epochs, J. Geophys. Res. 100, 11781–99, 1995.CrossRefGoogle Scholar
Mellon, M. T. and Feldman, W. C., The global distribution of Martian subsurface ice and regional ice stability, Lunar Planet. Sci. Conf. XXXVII, Abstract #2246, 2006.Google Scholar
Mellon, M. T., Jakosky, B. M., and Postawko, S. E., The persistence of equatorial ground ice on Mars, J. Geophys. Res. 102(E8), 19357–70, 1997.CrossRefGoogle Scholar
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R., High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus 148, 437–55, 2000.CrossRefGoogle Scholar
Mellon, M. T., Feldman, W. C., and Prettyman, T. H., The presence and stability of ground ice in the southern hemisphere of Mars, Icarus 169, 324–40, 2004.CrossRefGoogle Scholar
Miller, R. D., Freezing phenomena in soils. In Applications of Soil Physics (ed. Hillel, D.), New York, NY: Academic Press, 1980.Google Scholar
Milliken, R. E., Mustard, J. F., and Goldsby, D. L., Viscous flow features on the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC) images, J. Geophys. Res. 108(E6), 5057, doi:10.1029/2002JE002005, 2003.CrossRefGoogle Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, E02S12, doi:10.1029/2005JE002560, 2006.CrossRefGoogle Scholar
Mischna, M. A., McCleese, D. J., Richardson, M. I., Vasavada, A. R., and Wilson, R. J., Volatile cycling and layering on Mars: observations, theory, and modeling, 6th Int. Conf. Mars, July 20–25, Pasadena, California, Houston, TX: Lunar and Planetary Institute, Abstract #3145, 2003a.Google Scholar
Mischna, M. A., Richardson, M. I., Wilson, R. J., and McCleese, D. J., On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes, J. Geophys. Res. 108(E6), 5062, doi:10.1029/2003JE002051, 2003b.CrossRefGoogle Scholar
Mischna, M. A. and Richardson, M. I., A reanalysis of water abundances in the Martian atmosphere at high obliquity, Geophys. Res. Lett. 32, L03201, doi:10.1029/2004GL021865, 2005.CrossRefGoogle Scholar
Mitrofanov, I. G., Trombka, J. I., d'Uston, C., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science 297, 81–5, 2002.Google Scholar
Mitrofanov, I. G., Litvak, M. L., Kozyrev, A. S., et al., Search for water in Martian soil using global neutron mapping by the Russian HEND instrument onboard the US 2001 Mars Odyssey spacecraft, Solar Syst. Res. 37, 366–77, 2003.CrossRefGoogle Scholar
Mitrofanov, I. G., Litvak, M. L., Kozyrev, A. S., et al., Soil water content on Mars as estimated from neutron measurements by the HEND instrument onboard the 2001 Mars Odyssey spacecraft, Solar Syst. Res. 38, 253–65, 2004.CrossRefGoogle Scholar
Möhlmann, D. T. F., Water in the upper martian surface at mid- and low-latitudes: presence, state, and consequences, Icarus 168, 318–23, 2004.CrossRefGoogle Scholar
Möhlmann, D., Adsorption water-related potential chemical and biological processes in the upper Martian surface, Astrobiology 5, 770–7, 2005.CrossRefGoogle ScholarPubMed
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, M. K., Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice, Nature 412, 411–14, 2001.CrossRefGoogle ScholarPubMed
Navrotsky, A., Forray, F. L., and Drouet, C., Jarosite stability on Mars, Icarus 176, 250–3, 2005.CrossRefGoogle Scholar
Nelli, S. M., Murphy, J. R., Sprague, A. L., et al., Tracer transport in the NASA-Ames GCM, CNES/ESA 2006 Second Mars atmosphere modeling and observation workshop, Conf. Proc. Feb. 27–Mar. 3, Granada, Spain, 2006.Google Scholar
Paige, D. A., The thermal stability of near-surface ground ice on Mars, Nature 356, 43–5, 1992.CrossRefGoogle Scholar
Péwé, T. L., Geomorphic processes in polar deserts. In Polar Deserts and Modern Man (ed. Smiley, T. L. and Zumberge, J. H.), University of Arizona Press, 1974.Google Scholar
Pimental, G. C., Forney, P. B., and Herr, K. C., Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner infrared spectrometer, J. Geophys. Res. 79, 1623–34, 1974.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early Martian climate, Nature 438, 623–7, 2005.CrossRefGoogle ScholarPubMed
Prettyman, T. H., Feldman, W. C., Elphic, R. C., et al., Mid-latitude composition of Mars from thermal and epithermal neutrons, 6th Int. Conf. Mars, July 20–25, Pasadena, California, Houston, TX: Lunar and Planetary Institute, Abstract #3253, 2003.Google Scholar
Prettyman, T. H., Feldman, W. C., Mellon, M. T., et al., Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy, J. Geophys. Res. 109, E05001, doi:10.1029/2003JE002139, 2004.CrossRefGoogle Scholar
Richardson, M. I., McCleese, D. J., Mischna, M., and Vasavada, A. R., Obliquity, ice sheets, and layered sediments on Mars: what spacecraft observations and climate models are telling us, Lunar Planet. Sci. XXXIV, Abstract #1281 (CD-ROM), 2003.Google Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-Ray spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Ruff, S. W., Spectral evidence for zeolite in the dust on Mars, Icarus 168, 131–43, 2004.CrossRefGoogle Scholar
Schorghofer, N. and Aharonson, O., Stability and exchange of subsurface ice on Mars, J. Geophys. Res. – Planets 110, E05003, doi:10.1029/2004JE002350, 2005.CrossRefGoogle Scholar
Sizemore, H. G. and Mellon, M. T., Effects of soil heterogeneity on Martian ground-ice stability and orbital estimates of ice table depth, Icarus 185, 358–69, 2006.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C., et al., The global topography of Mars and implications for surface evolution, Science 284, 1495–507, 1999.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., and Neumann, G. A., Seasonal variations of snow depth on Mars, Science 294, 2141–6, 2001.CrossRefGoogle ScholarPubMed
Smith, M. D., The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer, J. Geophys. Res. 107(E11), 5115, doi:10.1029/2001JE001522, 2002.CrossRefGoogle Scholar
Smoluchowski, R., Mars: retention of ice, Science 159, 1348–50, 1968.CrossRefGoogle ScholarPubMed
Squyres, S. W., Water on Mars, Icarus 79, 229–88, 1989.CrossRefGoogle Scholar
Thomas, P., S. Squyres, K. Herkenhoff, A. Howard, and B. Murray, Polar deposits of Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 767–95, 1992.Google Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., et al., North-south geological differences between the residual polar caps on Mars, Nature 404, 161–4, 2000.CrossRefGoogle ScholarPubMed
Thomas, P. C., Malin, M. C., James, P. B., et al., South polar residual cap of Mars: features, stratigraphy, and changes, Icarus 174, 535–59, 2005.CrossRefGoogle Scholar
Titus, T. N., Prettyman, T. H., and Colaprete, A., Thermal characterization of the three proposed Phoenix landing sites, Lunar Planet. Sci. Conf. XXXVII, Abstract #2161, 2006.Google Scholar
Tokano, T., Spatial inhomogeneity of the martian subsurface water distribution: implication from a global water cycle model, Icarus 164, 50–78, 2003.CrossRefGoogle Scholar
Tokar, R. L., Feldman, W. C., Prettyman, T. H., et al., Ice concentration and distribution near the south pole of Mars: synthesis of Odyssey and Global Surveyor analyses, Geophys. Res. Lett. 29(19), 1904, doi:10.1029/2002GL015691, 2002.CrossRefGoogle Scholar
Tokar, R. L., Elphic, R. C., Feldman, W. C., et al., Mars Odyssey neutron sensing of the south residual polar cap, Geophys. Res. Lett. 30(13), 1677, doi:10.1029/2003GL017316, 2003.CrossRefGoogle Scholar
Toulmin, P. I., Baird, A. K., Clark, B. C., et al., Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82, 4625–34, 1977.CrossRefGoogle Scholar
Vaniman, D. T., Bish, D. L., Chipera, S. J., et al., Magnesium sulfate salts and the history of water on Mars, Nature 431, 663–5, 2004.CrossRefGoogle ScholarPubMed
Wang, A., Haskin, L. A., Squyres, S. W., et al., Sulfate deposition in subsurface regolith in Gusev crater, Mars, J. Geophys. Res. 111(E2), E02S17, doi:10.1029/2005JE002513, 2006a.Google Scholar
Wang, A., Korotev, R. L., Jolliff, B. L., et al., Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars, J. Geophys. Res. 111, E02S16, doi:10.1029/2005JE002516, 2006b.Google Scholar
Wänke, H., Bruckner, J., Dreibus, G., Rieder, R., and Ryabchikov, I., Chemical composition of rocks and soils at the Pathfinder site, Space Sci. Rev. 96, 317–30, 2001.CrossRefGoogle Scholar
Ward, W. R., Climate variations on Mars: 1. Astronomical theory of insolation, J. Geophys. Res. 79, 3375–86, 1974.CrossRefGoogle Scholar
Williams, P. J. and Smith, M. W., The Frozen Earth, Cambridge, UK: Cambridge University Press, 1989.CrossRefGoogle Scholar
Verbinski, V. V., Burrus, W. R., Love, T. A., Zobel, W., and Hill, N. W., Calibration of an organic scintillator for neutron spectrometry, Nucl. Instr. Meth. 65, 8–25, 1968.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, 49–54, 2005.CrossRefGoogle ScholarPubMed
Yung, Y. L., Wen, J.-S., Pinto, J. P., et al., HDO in the Martian atmosphere: implications for the abundance of crustal water, Icarus 76, 146–59, 1988.CrossRefGoogle ScholarPubMed
Zent, A. P. and Quinn, R. C., Measurement of H2O adsorption under Mars-like conditions: effects of adsorbent heterogeneity, J. Geophys. Res. 102, 9085–95, 1997.CrossRefGoogle Scholar
Zent, A. P., Fanale, F. P., Salvail, J. R., and Postawko, S. E., Distribution and state of H2O in the high-latitude shallow subsurface of Mars, Icarus 67, 19–36, 1986.CrossRefGoogle Scholar
Zolotov, M. Yu., Water-bearing minerals in the Martian soil (thermodynamic prediction of stability), Lunar Planet. Sci. Conf. XX, 1257–8, 1989.Google Scholar
Zuber, M. T., Smith, D. E., Solomon, S. C., et al., Observations of the north polar region of Mars from the Mars Orbiter Laser Altimeter, Science 282, 2053–60, 1998.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Volatiles on Mars: scientific results from the Mars Odyssey Neutron Spectrometer
    • By W. C. Feldman, Los Alamos National Laboratory MS D466 Space & Atmospheric Science Los Alamos, NM 87545, USA, M. T. Mellon, Laboratory for Atmospheric & Space Physics University of Colorado Boulder, CO 80309-0392, USA, O. Gasnault, Laboratoire d'Astrophysique, 14 Avenue Belin Toulouse, 31400, France, S. Maurice, Centre d'Etude Spatiale des Rayonnements, 9 Avenue du Colonel Roche BP 24346 Toulouse Cedex 4, France, T. H. Prettyman, Los Alamos National Laboratory MS D466 Space and Atmospheric Science Los Alamos, NM 87545, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Volatiles on Mars: scientific results from the Mars Odyssey Neutron Spectrometer
    • By W. C. Feldman, Los Alamos National Laboratory MS D466 Space & Atmospheric Science Los Alamos, NM 87545, USA, M. T. Mellon, Laboratory for Atmospheric & Space Physics University of Colorado Boulder, CO 80309-0392, USA, O. Gasnault, Laboratoire d'Astrophysique, 14 Avenue Belin Toulouse, 31400, France, S. Maurice, Centre d'Etude Spatiale des Rayonnements, 9 Avenue du Colonel Roche BP 24346 Toulouse Cedex 4, France, T. H. Prettyman, Los Alamos National Laboratory MS D466 Space and Atmospheric Science Los Alamos, NM 87545, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Volatiles on Mars: scientific results from the Mars Odyssey Neutron Spectrometer
    • By W. C. Feldman, Los Alamos National Laboratory MS D466 Space & Atmospheric Science Los Alamos, NM 87545, USA, M. T. Mellon, Laboratory for Atmospheric & Space Physics University of Colorado Boulder, CO 80309-0392, USA, O. Gasnault, Laboratoire d'Astrophysique, 14 Avenue Belin Toulouse, 31400, France, S. Maurice, Centre d'Etude Spatiale des Rayonnements, 9 Avenue du Colonel Roche BP 24346 Toulouse Cedex 4, France, T. H. Prettyman, Los Alamos National Laboratory MS D466 Space and Atmospheric Science Los Alamos, NM 87545, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.007
Available formats
×