Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T08:38:08.167Z Has data issue: false hasContentIssue false

2 - Historical context: the pre-MGS view of Mars' surface composition

from Part I - Introduction and historical perspective

Published online by Cambridge University Press:  10 December 2009

W. M. Calvin
Affiliation:
Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA
J. F. Bell III
Affiliation:
Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

This chapter summarizes the state of understanding of Mars surface composition in the decade before the arrival of Mars Global Surveyor and Mars Pathfinder (about 1987–1997), updating earlier historical reviews on this topic by Soderblom (1992) and Roush et al. (1993). Here we summarize analyses of telescopic and spacecraft spectroscopic data sets with reference to relevant terrestrial analog studies, laboratory measurements, and modeling work. The chapter is organized around a synthesis of surface mineralogy types that have been identified and searched for: unaltered mafic volcanic minerals; alteration products including oxidized iron, hydrated minerals, and phyllosilicates; the search for carbonates; early, if equivocal evidence of sulfates; and finally, polar deposits. We highlight the way that these precursor studies have influenced the design, selection, and implementation of the current generation of science investigations focused on unraveling the composition and mineralogy of the surface of Mars.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 20 - 30
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldridge, A. M., and Calvin, W. M., Hydration state of the Martian coarse-grained hematite exposures: implications for the origin and evolution, J. Geophys. Res., E, Planets 109 .4, 2004.CrossRefGoogle Scholar
Bandfield, J. L., Global mineral distributions on Mars, J. Geophys. Res. 107, 9–1, CiteID 5042, doi:10.1029/2001JE001510, 2002.
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonate minerals in the Martian dust, Science 301, 1084–7, 2003.CrossRefGoogle ScholarPubMed
Banin, A., B. C. Clark, and H. Wänke, Surface chemistry and mineralogy. In Mars (ed. Kieffer, H. H.et al.), Tucson: University of Arizona Press, pp. 594–625, 1992.Google Scholar
Bass, D. S. and Paige, D. A., Variability of Mars' north polar water ice cap – II. Analysis of Viking IRTM and MAWD data, Icarus 144, 397–409, 2000.CrossRefGoogle Scholar
Bass, D. S., Herkenhoff, K. E., and Paige, D. A., Variability of Mars' north polar water ice cap – I. Analysis of Mariner 9 and Viking Orbiter imaging data, Icarus 144, 382–96, 2000.CrossRefGoogle Scholar
Bell III, J. F., Iron, sulfate, carbonate, and hydrated minerals on Mars. In Mineral Spectroscopy: A Tribute to Roger G. Burns. (ed. Dyer, M. D., McCammon, C., and Schaefer, M. W.), Geochem. Soc. Spec. Pub. No. 5, Houston, 359–80, 1996.Google Scholar
Bell, J. F. III and Crisp, D., Groundbased imaging spectroscopy of Mars in the near-infrared – Preliminary-results, Icarus 104, 2–19, 1993.CrossRefGoogle Scholar
Bell, J. F. III, McCord, T. B., and Owensby, P. D., Observational evidence of crystalline iron-oxides on Mars, J. Geophys. Res. 95, 14447–61, 1990.CrossRefGoogle Scholar
Bell, J. F. III, Pollack, J. B., Geballe, T. R., Cruikshank, D. P., and Freedman, R., Spectroscopy of Mars from 2.04 to 2.44 µm during the 1993 opposition: absolute calibration and atmospheric vs. mineralogic origin of narrow absorption features, Icarus 111, 106–23, 1994.CrossRefGoogle Scholar
Bell, J. F. III, Roush, T. L., and Morris, R. V., Mid-infrared transmission spectra of crystalline and nanophase iron oxides/oxyhydroxides and implications for remote sensing of Mars, J. Geophys. Res. 100(E3), 5297–307, 1995.CrossRefGoogle Scholar
Bell, J. F. III, Wolff, M. J., James, P. B., et al., Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: observations, calibration, and initial results, J. Geophys. Res. 102, 9109–23, 1997.CrossRefGoogle Scholar
Bibring, J.-P., Combes, M., Langevin, Y., et al., ISM observations of Mars and Phobos: first results, Proc. Lunar Planet. Sci. Conf. 20th, 461–71, 1990.Google Scholar
Bibring, J.-P., Langevin, Y., Poulet, F., et al., Perennial water ice identified in the south polar cap of Mars, Nature 428, 627–30, 2004.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars express observations, Science 307, 1576–81, 2005.CrossRefGoogle ScholarPubMed
Bishop, J. L. and E. Murad, Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface materials on Mars. In Mineral Spectroscopy: A Tribute to Roger G. Burns (ed. Dyer, M. D., McCammon, C., and Schaefer, M. W.), Geochem. Soc. Spec. Pub. No. 5, Houston, 337–58, 1996.Google Scholar
Bishop, J. L., Pieters, C. M., and Burns, R. G., Reflectance and Mössbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials, Geochim. Cosmochim. Acta 57, 4583–95, 1993.CrossRefGoogle ScholarPubMed
Bishop, J. L., Pieters, C. M., Hiroi, T., and Mustard, J. F., Spectroscopic analysis of martian meteorite Allan Hills 84001 powder and applications for spectral identification of minerals and other soil components on Mars, Meteorit. Planet. Sci. 33(4), 699–707, 1998.CrossRefGoogle Scholar
Bishop, J. L., Dyar, M. D., Lane, M. D., and Banfield, J. F., Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth, Int. J. Astrobiol. 3(4), 275–85, 2004.CrossRefGoogle Scholar
Blaney, D. L. and McCord, T. B., Indications of sulfate minerals in the Martian soil from earthbased spectroscopy, J. Geophys. Res.-Planets 100, 14433–41, 1995.CrossRefGoogle Scholar
Burns, R. G., Ferric sulfates on Mars, J. Geophys. Res. 92(B4), E570–4, 1987.CrossRefGoogle Scholar
Burns, R. G., Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars, Geochim. Cosmochim. Acta 57, 4555–74, 1993.CrossRefGoogle Scholar
Calvin, W. M., Variation of the 3-µm absorption feature on Mars: observations over eastern Valles Marineris by the Mariner 6 infrared spectrometer, J. Geophys. Res. – Planets 102, 9097–107, 1997.CrossRefGoogle Scholar
Calvin, W. M., Could Mars be dark and altered?Geophys. Res. Lett. 25, 1597–600, 1998.CrossRefGoogle Scholar
Calvin, W. M. and Martin, T. Z., Spatial variability in the seasonal south polar-cap of Mars, J. Geophys. Res. – Planets 99, 21143–52, 1994.CrossRefGoogle Scholar
Calvin, W. M., King, T. V. V., and Clark, R. N., Hydrous carbonates on Mars: evidence from Mariner 6/7 infrared spectrometer and ground-based telescopic spectra, J. Geophys. Res. – Planets 99, 14659–75, 1994.CrossRefGoogle Scholar
Cantor, B. A., Wolff, M. J., James, P., and Higgs, E., Regression of Martian north polar cap: 1990–1997 Hubble Space Telescope observations, Icarus 136, 175–91, 1998.CrossRefGoogle Scholar
Christensen, P. R., Variations in Martian surface composition and cloud occurrence determined from thermal infrared spectroscopy: analysis of Viking and Mariner 9 data, J. Geophys. Res. – Planets 103, 1733–46, 1998.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N., Identification of a basaltic component on the Martian surface from thermal emission spectrometer data, J. Geophys. Res. 105, 9609–22, 2000.CrossRefGoogle Scholar
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. – Planets 106, 23873–85, 2001.CrossRefGoogle Scholar
Cimino, G. and Calvin, W. M., The Mariner 7 infrared spectra: calibration and a preview for TES (abstract), 28th LPSC, 231–2, 1997.Google Scholar
Clancy, R. T., Lee, S. W., Gladstone, G. R., McMillan, W. W., and Roush, T., A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner-9, Viking, and Phobos, J. Geophys. Res. – Planets 100, 5251–63, 1995.CrossRefGoogle Scholar
Clark, R. N. and McCord, T. B., Mars residual north polar cap: Earth-based spectroscopic confirmation of water ice as a major constituent and evidence for hydrated minerals, J. Geophys. Res. 87, 367–70, 1982.CrossRefGoogle Scholar
Clark, R. N., Swayze, G. A., Singer, R. B., and Pollack, J. B., High-resolution reflectance spectra of Mars in the 2.3-µm region: evidence for the mineral scapolite, J. Geophys. Res. 95, 14463–80, 1990.CrossRefGoogle Scholar
Crisp, D., Infrared radiative-transfer in the dust-free martian atmosphere, J. Geophys. Res. 95, 14577–88, 1990.CrossRefGoogle Scholar
Davis, D. W. and Wanio, L. A., Measurements of water vapor in Mars' Antarctic, Icarus 45, 216–30, 1981.CrossRefGoogle Scholar
Erard, S. and Calvin, W., New composite spectra of Mars, 0.4–5.7 µm, Icarus 130, 449–60, 1997.CrossRefGoogle Scholar
Erard, S., Mustard, J., Murchie, S., et al., Martian aerosols: near-infrared spectral properties and effects on the observation of the surface, Icarus 111, 317–37, 1994.CrossRefGoogle Scholar
Fanale, F. P., Salvail, J. R., Banerdt, W. B., and Saunders, R. S., Mars: the regolith-atmosphere-cap system and climate change, Icarus 50, 381, 1982.CrossRefGoogle Scholar
Fanale, F. P., S. E. Postawko, J. B. Pollack, M. H. Carr, and R. O. Pepin, Mars: epochal climate change and volatile history. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 1135–79, 1992.Google Scholar
Farmer, C. B., Davies, D. W., and Laporte, D. D., Mars: northern summer ice cap – water-vapor observations from Viking 2, Science 194, 1339–41, 1976.CrossRefGoogle ScholarPubMed
Fedorova, A. A., Lellouch, E., Titov, D. V., Graauw, T., and Feuchtgruber, H., Remote sounding of the Martian dust from ISO spectroscopy in the 2.7 µm CO2 bands, Planet. Space Sci. 50, 3–9, 2002.CrossRefGoogle Scholar
Fialips, C. I., Carey, J. W., Vaniman, D. T., et al., Hydration state of zeolites, clays, and hydrated salts under present-day Martian surface conditions: can hydrous minerals account for Mars Odyssey observations of near-equatorial water-equivalent hydrogen?, Icarus 178, 74–83, 2005.CrossRefGoogle Scholar
Fink, U. and G. T. Sill, The infrared spectral properties of frozen volatiles. In Comets (ed. Wilkening, L. L.), Tucson: University of Arizona Press, pp. 164–202, 1982.Google Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in Martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–91, 2005.CrossRefGoogle ScholarPubMed
Gooding, J. L., R. E. Arvidson, and M. Y. Zolotov, Physical and chemical weathering. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 626–51, 1992.Google Scholar
Geissler, P. E., Singer, R. B., Komatsu, G., Murchie, S., and Mustard, J., An unusual spectral unit in West Candor Chasma: evidence for aqueous or hydrothermal alteration in the Martian canyons, Icarus 106, 380–91, 1993.CrossRefGoogle Scholar
Grundy, W. M. and Schmitt, B., The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice, J. Geophys. Res. 103(E11), 25809–22, 1998.CrossRefGoogle Scholar
Hamilton, V. E. and Christensen, P. R., Evidence for extensive, olivine-rich bedrock on Mars, Geology 33, 433–6, 2005.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., and McSween, H. Y., Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy, J. Geophys. Res. – Planets 102, 25593–603, 1997.CrossRefGoogle Scholar
Hanel, R. A., Conrath, B. J., Jennings, D. E., and Samuelson, R. E., The measured radiation field, Chapter 6, Exploration of the Solar System by Infrared Remote Sensing. Cambridge: Cambridge University Press, 1992.Google Scholar
Hansen, G. B., The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 µm, J. Geophys. Res. – Planets 102, 21569–87, 1997.CrossRefGoogle Scholar
Hapke, B., Theory of Reflectance and Emittance Spectroscopy, New York, NY: Cambridge University Press, 455pp., 1993.CrossRefGoogle Scholar
Herr, K. C. and Pimentel, G. C., Infrared absorptions near 3 microns recorded over the polar cap of Mars, Science 166, 496–9, 1969.CrossRefGoogle ScholarPubMed
Hinrichs, J. L. and Lucey, P. G., Temperature-dependent near-infrared spectral properties of minerals, meteorites, and lunar soil, Icarus 155, 169–80, 2002.CrossRefGoogle Scholar
Hoefen, Todd M., Clark, R. N., Bandfield, J. L., et al., Discovery of olivine in the Nili Fossae region of Mars, Science 302(5645), 627–30, 2003.CrossRefGoogle ScholarPubMed
Houck, J. R., Pollack, J. B., Sagan, C., Schaack, D., and Decker, J., High altitude infrared spectroscopic evidence for bound water on Mars, Icarus 18, 470–80, 1973.CrossRefGoogle Scholar
Huguenin, R. L., The silicate component of martian dust, Icarus 70, 162–8, 1987.CrossRefGoogle Scholar
Hunt, G. R., Logan, L. M., and Salisbury, J. W., Mars: components of infrared spectra and composition of the dust cloud, Icarus 18, 459–69, 1973.CrossRefGoogle Scholar
Jakosky, B. M. and R. M. Haberle, The seasonal behavior of water on Mars. In Mars (ed. Kieffer, H. H., et al.), Tucson: University of Arizona Press, pp. 969–1016, 1992.Google Scholar
James, P. B., H. H. Kieffer, and D. A. Paige, The seasonal cycle of carbon dioxide on Mars. In Mars (ed. Kieffer, H. H.et al.), Tucson: University of Arizona Press, pp. 934–68, 1992.Google Scholar
James, P. B., Clancy, R. T., Lee, S. W., and Martin, L. J., Seasonal recession of Martian south polar cap: 1992 HST observations, Icarus 123, 87–100, 1996.CrossRefGoogle Scholar
Kieffer, H. H., Mars south polar spring and summer temperatures: residual CO2 frost, J. Geophys. Res. 84, 8263–88, 1979.CrossRefGoogle Scholar
Kieffer, H. H., H2O grain-size and the amount of dust in Mars residual north polar-cap, J. Geophys. Res. – Solid Earth and Planets 95, 1481–93, 1990.CrossRefGoogle Scholar
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D., Martian north pole summer temperatures: dirty water ice, Science 194, 1341–4, 1976.CrossRefGoogle ScholarPubMed
Kirkland, L. E. and Herr, K. C., Spectral anomalies in the 11 and 12 µm region from the Mariner Mars 7 infrared spectrometer, J. Geophys. Res. 105(9), 22507–15, 2000.CrossRefGoogle Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., and Gondet, B., Sulfates in the north polar region of Mars detected by OMEGA/Mars Express, Science 307, 1584–6, 2005.CrossRefGoogle ScholarPubMed
Larson, H. P. and Fink, U., Identification of carbon dioxide on the Martian polar caps, Astrophys. J. 171, L91–5, 1972.CrossRefGoogle Scholar
Lellouch, E., Encrenaz, T., Graauw, T., et al., The 2.4–45 µm spectrum of Mars observed with the infrared space observatory, Planet. Space Sci. 48, 1393–405, 2000.CrossRefGoogle Scholar
Maguire, W. C., Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data, Icarus 32, 85–97, 1977.CrossRefGoogle Scholar
Markiewicz, W. J., Sablotny, R. M., Keller, H. U., et al., Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data, J. Geophys. Res. – Planets 104, 9009–17, 1999.CrossRefGoogle Scholar
McCord, T. B., Clark, R. N., and Huguenin, R. L., Mars: near-infrared spectral reflectance and compositional implications, J. Geophys. Res. 83(B11), 5433–41, 1978.CrossRefGoogle Scholar
McCord, T. B., Clark, R. N., and Singer, R. B., Mars: near-infrared spectral reflectance of surface regions and compositional implications, J. Geophys. Res. 87(B4), 3021–32, 1982.CrossRefGoogle Scholar
McFadden, L. A. and Cline, T. P., Spectral reflectance of Martian meteorites: spectral signatures as a template for locating source region on Mars, Meteorit. Planet. Sci. 40, 151–72, 2005.CrossRefGoogle Scholar
McKay, C. P. and Nedell, S. S., Are there carbonate deposits in the Valles Marineris, Mars?, Icarus 73, 142–8, 1988.CrossRefGoogle ScholarPubMed
Mellon, M. T., Limits on the CO2 content of the Martian polar deposits, Icarus 124, 268–79, 1996.CrossRefGoogle Scholar
Milliken, R. E. and Mustard, J. F., Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy, J. Geophys. Res. – Planets 110, 2005.CrossRefGoogle Scholar
Morris, R. V., Agresti, D. G., Lauer, H. V. Jr., et al., Evidence for pigmentary hematite on Mars based on optical, magnetic, and Mössbauer studies of superparamagnetic (nanocrystalline) hematite, J. Geophys. Res. 94, 2760–78, 1989.CrossRefGoogle Scholar
Morris, R. V., Gooding, J. L., Lauer, H. V. Jr., and Singer, R. B., Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil, J. Geophys. Res. 95, 14427–34, 1990.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, Lauer, H. V. Jr., and Adams, J. B., Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9, Geochim. Cosmochim. Acta 57, 4597–609, 1993.CrossRefGoogle ScholarPubMed
Morris, R. V., D. W. Ming, D. C. Golden, and J. F. Bell III, An occurrence of jarositic tephra on Mauna Kea, Hawaii: implications for the ferric mineralogy of the Martian surface. In Mineral Spectroscopy: A Tribute to Roger G. Burns (ed. Dyer, M. D., McCammon, C., and Schaefer, M. W.), Geochem. Soc. Spec. Pub. No. 5, Houston, 327–36, 1996.Google Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer spectrometer on the spirit rover, Science 305, 833–6, 2004.CrossRefGoogle ScholarPubMed
Murchie, S., Kirkland, L., Erard, S., Mustard, J., and Robinson, M., Near-infrared spectral variations of Martian surface materials from ISM imaging spectrometer data, Icarus 147, 444–71, 2000.CrossRefGoogle Scholar
Murchie, S., Mustard, J., Bishop, J., et al., Spatial variations in the spectral properties of bright regions on Mars, Icarus 105, 454–68, 1993.CrossRefGoogle Scholar
Mustard, J. F. and Bell, J. F. III, New composite reflectance spectra of Mars from 0.4 to 3.14 µm, Geophys. Res. Lett. 21, 353–6, 1994.CrossRefGoogle Scholar
Mustard, J. F. and Sunshine, J. M., Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites, Science 267(5204), 1623–6, 1995.CrossRefGoogle ScholarPubMed
Mustard, J. F., Murchie, S., Erard, S., and Sunshine, J. M., In situ compositions of Martian volcanics: implications for the mantle, J. Geophys. Res. 102, 25605–15, 1997.CrossRefGoogle Scholar
Noe Dobrea, E. Z., Bell, J. F. III, McConnochie, T. H., and Malin, M., Analysis of a spectrally unique deposit in the dissected Noachian terrain of Mars, J. Geophys. Res. 111, E6, 2006.CrossRefGoogle Scholar
Nye, J. F., Durham, W. B., Schenk, P. M., and Moore, J. M., The instability of a south polar cap on Mars composed of carbon dioxide, Icarus 144, 449–55, 2000.CrossRefGoogle Scholar
Paige, D. A., and Keegan, K. D., Thermal and albedo mapping of the polar-regions of Mars using Viking thermal mapper observations: 2. South polar-region, J. Geophys. Res. – Planets 99, 25993–26013, 1994.CrossRefGoogle Scholar
Paige, D. A., Bachman, J. E., and Keegan, K. D., Thermal and albedo mapping of the polar-regions of Mars using Viking thermal mapper observations: 1. North polar-region, J. Geophys. Res. – Planets 99, 25959–91, 1994.CrossRefGoogle Scholar
Pimentel, G. C., Forney, P. B., and Herr, K. C., Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner infrared spectrometer, J. Geophys. Res. 79, 1623–34, 1974.CrossRefGoogle Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K., The case for a wet, warm climate on Mars, Icarus 71, 203–24, 1987.CrossRefGoogle Scholar
Pollack, J. B., Roush, T., Witteborn, F., et al., Thermal emission-spectra of Mars (5.4–10.5-µm): evidence for sulfates, carbonates, and hydrates, J. Geophys. Res. – Solid Earth and Planets 95, 14595–627, 1990.CrossRefGoogle Scholar
Poulet, F., Bibring, J. P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early martian climate, Nature 438, 623–7, 2005.CrossRefGoogle ScholarPubMed
Roush, T. L. and Bell, J. F. III, Thermal emission measurements 2000–400 cm− 1 (5–25 µm) of Hawaiian palagonitic soils and their implications for Mars, J. Geophys. Res. 100(E3), 5309–17, 1995.CrossRefGoogle Scholar
Roush, T. L., D. L. Blaney, and R. B. Singer, The surface composition of Mars as inferred from spectroscopic observations. In Remote Geochemical Analysis: Elemental and Mineralogical Composition (ed. Pieters, C. and Englert, P.), Cambridge University Press, pp. 367–93, 1993.Google Scholar
Schade, U. and Wäsch, R., Near-infrared reflectance spectra from bulk samples of the two Martian meteorites Zagami and Nakhla, Meteorit. Planet. Sci. 34, 417–24, 1999.CrossRefGoogle Scholar
Singer, R. B., Spectral evidence for the mineralogy of high-albedo soils and dust on Mars, J. Geophys. Res. 87(B12), 10159–68, 1982.CrossRefGoogle Scholar
Singer, R. B., McCord, T. B., Clark, R. N., Adams, J. B., and Huguenin, R. L., Mars surface composition from reflectance spectroscopy: a summary, J. Geophys. Res. 84, 8415–26, 1979.CrossRefGoogle Scholar
Sinton, W. M., On the composition of Martian surface materials, Icarus 6, 222–8, 1967.CrossRefGoogle Scholar
Soderblom, L. A., The composition and mineralogy of the Martian surface from spectroscopic observations: 0.3 µm to 50 µm. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 557–97, 1992.Google Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The opportunity rover's Athena science investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004.CrossRefGoogle ScholarPubMed
Sunshine, J. M., McFadden, L. A., and Pieters, C. M., Reflectance spectra of the Elephant Moraine-A79001 meteorite: implications for remote-sensing of planetary bodies, Icarus 105, 79–91, 1993.CrossRefGoogle Scholar
Thomas, P., S. Squyres, K. Herkenhoff, A. Howard, and B. Murray, Polar deposits of Mars. In Mars (ed. Kieffer, H. H.et al.), Tucson: University of Arizona Press, pp. 767–95, 1992.Google Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., et al., North-south geological differences between the residual polar caps on Mars, Nature 404, 161–4, 2000.CrossRefGoogle ScholarPubMed
Thomas, P. C., Malin, M. C., James, P. B., et al., South polar residual cap of Mars: features, stratigraphy, and changes, Icarus 174, 535–59, 2005.CrossRefGoogle Scholar
Titus, T. N., Thermal infrared and visual observations of a water ice lag in the Mars southern summer, Geophys. Res. Lett. 32, 2005.CrossRefGoogle Scholar
Toon, O. B., Pollack, J. B., and Sagan, C., Physical properties of the particles composing the martian dust storm of 1971–1972, Icarus 30, 663–96, 1977.CrossRefGoogle Scholar
Warren, S. G., Optical constants of ice from the ultraviolet to the microwave, Appl. Opt. 23, 1206–25, 1984.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×