Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T08:27:12.655Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 December 2009

Nadine Barlow
Affiliation:
Northern Arizona University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, Y. (1997). Thermal and chemical evolution of the terrestrial magma ocean. Physics of the Earth and Planetary Interiors, 100, 27–39.CrossRefGoogle Scholar
Abramov, O. and Kring, D. A. (2005). Impact-induced hydrothermal activity on early Mars. Journal of Geophysical Research, 110, E12S09, doi: 10.1029/2005JE002453.CrossRefGoogle Scholar
Abyzov, S. S., Duxbury, N. S., Bobin, N. E., et al. (2006). Super-long anabiosis of ancient microorganisms in ice and terrestrial models for development of methods to search for life on Mars, Europa, and other planetary bodies. Advances in Space Research, 38, 1191–1197.CrossRefGoogle Scholar
Acuña, M. H., Connerney, J. E. P., Wasilewski, P., et al. (1998). Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor Mission. Science, 279, 1676–1680.Google ScholarPubMed
Acuña, M. H., Connerney, J. E. P., Ness, N. F., et al. (1999). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER Experiment. Science, 284, 790–793.Google ScholarPubMed
Acuña, M. H., Connerney, J. E. P., Wasilewski, P., et al. (2001). Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. Journal of Geophysical Research, 106, 23403–23417.CrossRefGoogle Scholar
Agee, C. B. and Draper, D. S. (2004). Experimental constraints on the origin of martian meteorites and the composition of the martian mantle. Earth and Planetary Science Letters, 224, 415–429.CrossRefGoogle Scholar
Agnor, C. B., Canup, R. M., and Levison, H. (1999). On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus, 142, 219–237.CrossRefGoogle Scholar
Albee, A. L., Arvidson, R. E., and Palluconi, F. D. (1992). Mars Observer Mission. Journal of Geophysical Research, 97, 7665–7680.CrossRefGoogle Scholar
Albee, A. L., Arvidson, R. E., Palluconi, F., and Thorpe, T. (2001). Overview of the Mars Global Surveyor mission. Journal of Geophysical Research, 106, 23 291–23 316.Google Scholar
Alves, E. I. and Baptista, A. R. (2004). Rock magnetic fields shield the surface of Mars from harmful radiation. In Lunar and Planetary Science XXXV, Abstract #1540. Houston, TX: Lunar and Planetary Institute.Google Scholar
Anderson, D. L., Miller, W. F., Latham, G. V., et al. (1977). Seismology on Mars. Journal of Geophysical Research, 82, 4524–4546.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Golombek, M. P., et al. (2001). Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. Journal of Geophysical Research, 106, 20 563–20 586.CrossRefGoogle Scholar
Anderson, R. C., Dohm, J. M., Haldemann, A. F. C., Pounders, E., and Golombek, M. P. (2006). Tectonic evolution of Mars. In Lunar and Planetary Science XXXVII, Abstract #1883. Houston, TX: Lunar and Planetary Institute.Google Scholar
Anguita, F., Anguita, J., Castilla, G., et al. (1998). Arabia Terra, Mars: tectonic and paleoclimatic evolution of a remarkable sector of martian lithosphere. Earth, Moon and Planets, 77, 55–72.CrossRefGoogle Scholar
Anguita, F., Babin, R., Benito, G., et al. (2000). Chasma Australe, Mars: structural framework for a catastrophic outflow origin. Icarus, 144, 302–312.CrossRefGoogle Scholar
Arfstrom, J. and Hartmann, W. K. (2005). Martian flow features, moraine-like ridges, and gullies: terrestrial analogs and interrelationships. Icarus, 174, 321–335.CrossRefGoogle Scholar
Arkani-Hamed, J. (2001). Paleomagnetic pole positions and pole reversals of Mars. Geophysical Research Letters, 28, 3409–3412.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al. (2004a). Localization and physical properties experiments conducted by Spirit at Gusev Crater. Science, 305, 821–824.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P.et al. (2004b). Localization and physical properties experiments conducted by Opportunity at Meridiani Planum. Science, 306, 1730–1733.CrossRefGoogle Scholar
Badhwar, G. D. (2004). Martian Radiation Environment Experiment (MARIE). Space Science Reviews, 110, 131–142.CrossRefGoogle Scholar
Baker, V. R. (1978). The Spokane flood controversy and the martian outflow channels. Science, 202, 1249–1256.CrossRefGoogle ScholarPubMed
Baker, V. R. (1982). The Channels of Mars. Austin, TX: University of Texas Press.Google Scholar
Baker, V. R. (2001). Water and the martian landscape. Nature, 412, 228–236.CrossRefGoogle ScholarPubMed
Baker, V. R., Strom, R. G., Gulick, V. C., et al. (1991). Ancient oceans, ice sheets, and the hydrological cycle on Mars. Nature, 352, 589–594.CrossRefGoogle Scholar
Balsiger, H., Altwegg, K., and Geiss, J. (1995). D/H and 18O/16O ratio in the hydronium ion and in neutral water from in situ ion measurements in Comet P/Halley. Journal of Geophysical Research, 100, 5827–5834.CrossRefGoogle Scholar
Bandfield, J. L. (2002). Global mineral distributions on Mars. Journal of Geophysical Research, 107, 5042, doi: 10.1029/2001JE001510.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R. (2000). A global view of martian volcanic compositions. Science, 287, 1626–1630.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., Christensen, P. R., and McSween, H. Y. (2004). Identification of quartzofeldspathic materials on Mars. Journal of Geophysical Research, 109, E10009, doi: 10.1029/2004JE002290.CrossRefGoogle Scholar
Banerdt, W. B., Golombek, M. P., and Tanaka, K. L. (1992). Stress and tectonics on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 249–297.Google Scholar
Banfield, D., Conrath, B., Pearl, J. C., Smith, M. D., and Christensen, P. (2000). Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor Thermal Emission Spectrometer. Journal of Geophysical Research, 105, 9521–9537.CrossRefGoogle Scholar
Banfield, D., Conrath, B. J., Smith, M. D., Christensen, P. R., and Wilson, R. J. (2003). Forced waves in the martian atmosphere from MGS TES nadir data. Icarus, 161, 319–345.CrossRefGoogle Scholar
Banfield, D., Conrath, B. J., Gierasch, P. J., Wilson, R. J., and Smith, M. D. (2004). Traveling waves in the martian atmosphere from MGS TES nadir data. Icarus, 170, 365–403.CrossRefGoogle Scholar
Barlow, N. G. (1988). Crater size–frequency distributions and a revised martian relative chronology. Icarus, 75, 285–305.CrossRefGoogle Scholar
Barlow, N. G. (1990). Constraints on early events in Martian history as derived from the cratering record. Journal of Geophysical Research, 95, 14 191–14 201.CrossRefGoogle Scholar
Barlow, N. G. (1997). Identification of possible source craters for Martian meteorite ALH84001. In Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, ed. Hoover, R. B.. Bellingham, WA: SPIE Proceedings vol. 3111, pp. 26–35.Google Scholar
Barlow, N. G. (2004). Martian subsurface volatile concentrations as a function of time: clues from layered ejecta craters. Geophysical Research Letters, 31, L05703, doi: 10.1029/2003GL019075.CrossRefGoogle Scholar
Barlow, N. G. (2005). A review of martian impact crater ejecta structures and their implications for target properties. In Large Meteorite Impacts III, ed. Kenkmann, T., Hörz, F., and Deutsch, A.. Boulder, CO: Geological Society of America Special Paper 384, pp. 433–442.Google Scholar
Barlow, N. G. (2006). Impact craters in the northern hemisphere of Mars: layered ejecta and central pit characteristics. Meteoritics and Planetary Science, 41, 1425–1436.CrossRefGoogle Scholar
Barlow, N. G. and Perez, C. B. (2003). Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. Journal of Geophysical Research, 108, 5085, doi: 10.1029/2002JE002036.CrossRefGoogle Scholar
Barlow, N. G., Boyce, J. M., Costard, F. M., et al. (2000). Standardizing the nomenclature of martian impact crater ejecta morphologies. Journal of Geophysical Research, 105, 26 733–26 738.CrossRefGoogle Scholar
Barnes, J. R., Pollack, J. B., Haberle, R. M., et al. (1993). Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model. 2. Transient baroclinic eddies. Journal of Geophysical Research, 98, 3125–3148.CrossRefGoogle Scholar
Barnes, J. R., Haberle, R. M., Pollack, J. B., Lee, H., and Schaeffer, J. (1996). Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model. 3. Winter quasistationary eddies. Journal of Geophysical Research, 101, 12 753–12 776.CrossRefGoogle Scholar
Barnouin-Jha, O. S., Schultz, P. H., and Lever, J. H. (1999a). Investigating the interactions between an atmosphere and an ejecta curtain. 1. Wind tunnel tests. Journal of Geophysical Research, 104, 27 105–27 115.Google Scholar
Barnouin-Jha, O. S., Schultz, P. H., and Lever, J. H. (1999b). Investigating the interactions between an atmosphere and an ejecta curtain. 2. Numerical experiments. Journal of Geophysical Research, 104, 27 117–27 131.Google Scholar
Bar-Nun, A. and Dimitrov, V. (2006). Methane on Mars: a product of H2O photolysis in the presence of CO. Icarus, 181, 320–322.CrossRefGoogle Scholar
Basu, S., Richardson, M. I., and Wilson, R. J. (2004). Simulation of the martian dust cycle with the DFDL Mars GCM. Journal of Geophysical Research, 109, E11006, doi: 10.1029/2004JE002243.CrossRefGoogle Scholar
Batson, R. M., Edwards, K., and Duxbury, T. C. (1992). Geodesy and cartography of the Martian satellites. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 1249–1256.Google Scholar
Beaty, D., Buxbaum, K., Meyer, M., et al. (2006). Findings of the Mars Special Regions Science Analysis Group. Astrobiology, 6, 677–732.Google Scholar
Bell, J. F., Pollack, J. B., Geballe, T. R., Cruikshank, D. P., and Freedman, R. (1994). Spectroscopy of Mars from 2.04 to 2.44 μm during the 1993 opposition: absolute calibration and atmospheric vs. mineralogic origin of narrow absorption features. Icarus, 111, 106–123.CrossRefGoogle Scholar
Bell, J. F., Wolff, M. J., James, P. B., et al. (1997). Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: observations, calibration, and initial results. Journal of Geophysical Research, 102, 9109–9123.CrossRefGoogle Scholar
Bell, J. F., McSween, H. Y., Crisp, J. A., et al. (2000). Mineralogic and compositional properties of martian soil and dust: results from Mars Pathfinder. Journal of Geophysical Research, 105, 1721–1755.CrossRefGoogle Scholar
Belleguic, V., Lognonné, P., and Wieczorek, M. (2005). Constraints on the martian lithosphere from gravity and topography data. Journal of Geophysical Research, 110, E11005, doi: 10.1029/2005JE002437.CrossRefGoogle Scholar
Benson, J. L. and James, P. B. (2005). Yearly comparisons of the martian polar caps: 1999–2003 Mars Orbiter Camera observations. Icarus, 174, 513–523.CrossRefGoogle Scholar
Benz, W. and Cameron, A. G. W. (1990). Terrestrial effects of the giant impact. In Origin of the Earth, ed. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 61–67.Google Scholar
Benz, W., Cameron, A. G. W., and Melosh, H. J. (1989). The origin of the Moon and the single-impact hypothesis III. Icarus, 81, 113–131.CrossRefGoogle ScholarPubMed
Berman, D. C. and Hartmann, W. K. (2002). Recent fluvial, volcanic, and tectonic activity on the Cerberus Plains of Mars. Icarus, 159, 1–17.CrossRefGoogle Scholar
Berman, D. C., Crown, D. A., and Hartmann, W. K. (2005). Tyrrhena Patera, Mars: insights into volcanic and erosional history from high-resolution images and impact crater populations. American Geophysical Union Fall Meeting, Abstract #P23A-0177.Google Scholar
Bertelsen, P., Goetz, W., Madsen, M. B., et al. (2004). Magnetic properties experiments on the Mars Exploration Rover Spirit at Gusev Crater. Science, 305, 827–829.CrossRefGoogle ScholarPubMed
Bertka, C. M. and Fei, Y. J. (1997). Mineralogy of the martian interior up to core–mantle boundary pressures. Journal of Geophysical Research, 102, 5251–5264.CrossRefGoogle Scholar
Beyer, R. A. and McEwen, A. S. (2005). Layering stratigraphy of eastern Coprates and northern Capri Chasmata, Mars. Icarus, 179, 1–23.CrossRefGoogle Scholar
Bhattacharya, J. P., Payenberg, T. H. D., Lang, S. C., and Bourke, M. (2005). Dynamic river channels suggest a long-lived Noachian crater lake on Mars. Geophysical Research Letters, 32, L10201, doi: 10.1029/2005GL022747.CrossRefGoogle Scholar
Bibring, J. -P., Langevin, Y., Poulet, F., et al. (2004). Perennial water ice identified in the south polar cap of Mars. Nature, 428, 627–630.CrossRefGoogle ScholarPubMed
Bibring, J. -P., Langevin, Y., Gendrin, A., et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science, 307, 1576–1581.CrossRefGoogle ScholarPubMed
Bibring, J. -P., Langevin, Y., Mustard, J. F., et al. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400–404.CrossRefGoogle ScholarPubMed
Biemann, K., Oro, J., Toulmin, P., et al. (1977). The search for organic substances and inorganic volatile compounds in the surface of Mars. Journal of Geophysical Research, 82, 4641–4658.CrossRefGoogle Scholar
Bierhaus, E. B., Chapman, C. R., and Merline, W. J. (2005). Secondary craters on Europa and implications for cratered surfaces. Nature, 437, 1125–1127.CrossRefGoogle ScholarPubMed
Birck, J. L. and Allègre, C. J. (1978). Chronology and chemical history of the parent body of basaltic achondrites studied by the 87Rb–87Sr method. Earth and Planetary Science Letters, 39, 37–51.CrossRefGoogle Scholar
Bishop, J. L., Murad, E., Lane, M. D., and Mancinelli, R. L. (2004). Multiple techniques for mineral identification on Mars: a study of hydrothermal rocks as potential analogs for astrobiology sites on Mars. Icarus, 169, 311–323.CrossRefGoogle Scholar
Blamont, J. E. and Chassefière, E. (1993). First detection of ozone in the middle atmosphere of Mars from solar occultation measurements. Icarus, 104, 324–336.CrossRefGoogle Scholar
Blichert-Toft, J., Gleason, J. D., Télouk, P., and Albarède, F. (1999). The Lu–Hf isotope geochemistry of shergottites and the evolution of the martian mantle–crust system. Earth and Planetary Science Letters, 173, 25–39.CrossRefGoogle Scholar
Bockelée-Moravan, D., Gautier, D., Lis, D. C., et al. (1998). Deuterated water in Comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus, 133, 147–162.CrossRefGoogle Scholar
Bogard, D. D. and Johnson, P. (1983). Martian gases in an Antarctic meteorite?Science, 221, 651–654.CrossRefGoogle Scholar
Borg, L. E. and Draper, D. S. (2003). A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites. Meteoritics and Planetary Science, 38, 1713–1731.CrossRefGoogle Scholar
Borg, L. E., Nyquist, L. E., Taylor, L. A., Wiesmann, H., and Shih, C. -Y. (1997). Constraints on martian differentiation process from Rb–Sr and Sm–Nd isotopic analyses of the basaltic shergottite QUE94201. Geochimica et Cosmochimica Acta, 61, 4915–4931.CrossRefGoogle Scholar
Borg, L. E., Connelly, J. N., Nyquist, L. E.et al. (1999). The age of the carbonates in martian meteorite ALH84001. Science, 268, 90–94.CrossRefGoogle Scholar
Boss, A. P. (1990). 3D solar nebula models: implications for Earth origin. In Origin of the Earth, ed. Newsom, H. E. and Jones, J. H.. Oxford, UK: Oxford University Press, pp. 3–15.Google Scholar
Bottke, W. F., Love, S. G., Tytell, D., and Glotch, T. (2000). Interpreting the elliptical crater populations on Mars, Venus, and the Moon. Icarus, 145, 108–121.CrossRefGoogle Scholar
Bottke, W. F., Morbidelli, A., Jedicke, R., et al. (2002). Debiased orbital and absolute magnitude distribution of the Near-Earth Objects. Icarus, 156, 399–433.CrossRefGoogle Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. (2005). The fossilized size distribution of the main asteroid belt. Icarus, 175, 111–140.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al. (2002). Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science, 297, 81–85.CrossRefGoogle ScholarPubMed
Boynton, W. V., Feldman, W. C., Mitrofanov, I. G., et al. (2004). The Mars Odyssey Gamma-Ray Spectrometer instrument suite. Space Science Reviews, 110, 37–83.CrossRefGoogle Scholar
Bradley, B. A., Sakimoto, S. E. H., Frey, H., and Zimbelman, J. R. (2002). Medusae Fossae Formation: new perspectives from Mars Global Surveyor. Journal of Geophysical Research, 107, 5058, doi: 10.1029/2001JE001537.CrossRefGoogle Scholar
Brain, D. A. and Jakosky, B. M. (1998). Atmospheric loss since the onset of the martian geologic record: combined role of impact erosion and sputtering. Journal of Geophysical Research, 103, 22 689–22 694.CrossRefGoogle Scholar
Brandon, A. D., Walker, R. J., Morgan, J. W., and Goles, G. G. (2000). Re–Os isotopic evidence for early differentiation of the martian mantle. Geochimica et Cosmochimica Acta, 64, 4083–4095.CrossRefGoogle Scholar
Breuer, D. and Spohn, T. (2003). Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. Journal of Geophysical Research, 108, E75072, doi: 10.1029/2002JE001999.CrossRefGoogle Scholar
Breuer, D., Spohn, T., and Wüllner, U. (1993). Mantle differentiation and the crustal dichotomy of Mars. Planetary and Space Science, 41, 269–283.CrossRefGoogle Scholar
Breuer, D., Yuen, D. A., and Spohn, T. (1997). Phase transitions in the martian mantle: implications for partially layered convection. Earth and Planetary Science Letters, 148, 457–469.CrossRefGoogle Scholar
Bridges, J. C. and Grady, M. M. (2000). Evaporite mineral assemblages in the nakhlite (martian) meteorites. Earth and Planetary Science Letters, 176, 267–279.CrossRefGoogle Scholar
Bridges, N. T., Phoreman, J., White, B. R., et al. (2005). Trajectories and energy transfer of saltating particles onto rock surfaces: application to abrasion and ventifact formation on Earth and Mars. Journal of Geophysical Research, 110, E12004, doi: 10.1029/2004JE002388.CrossRefGoogle Scholar
Buczkowski, D. L. and McGill, G. E. (2002). Topography within circular grabens: implications for polygon origin, Utopia Planitia, Mars. Geophysical Research Letters, 29, 1155, doi: 10.1029/2001GL014100.CrossRefGoogle Scholar
Burns, J. A. (1977). Orbital evolution. In Planetary Satellites, ed. Burns, J. A.. Tucson, AZ: University of Arizona Press, pp. 113–156.Google Scholar
Burr, D. M., Grier, J. A., McEwen, A. S., and Keszthelyi, L. P. (2002). Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus, 159, 53–73.CrossRefGoogle Scholar
Byrne, S. and Ingersoll, A. P. (2003). A sublimation model for martian south polar ice features. Science, 299, 1051–1053.CrossRefGoogle ScholarPubMed
Byrne, S. and Murray, B. C. (2002). North polar stratigraphy and the paleo-erg of Mars. Journal of Geophysical Research, 107, 5044, doi: 10.1029/2001JE001615.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (1999). Distribution, classification, and ages of martian impact crater lakes. Icarus, 142, 160–172.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (2001). The evolution of lacustrine environments on early Mars: is Mars only hydrologically dormant?Icarus, 149, 291–328.CrossRefGoogle Scholar
Cahoy, K. L., Hinson, D. P., and Tyler, G. L. (2006). Radio science measurements of atmospheric refractivity with Mars Global Surveyor. Journal of Geophysical Research, 111, E05003, doi: 10.1029/2005JE002634.CrossRefGoogle Scholar
Cameron, A. G. W. (1997). The origin of the Moon and the single impact hypothesis V. Icarus, 126, 126–137.CrossRefGoogle Scholar
Cameron, A. G. W. (2000). Higher-resolution simulations of the giant impact. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 133–143.Google Scholar
Cantor, B. A., James, P. B., Caplinger, M., and Wolff, M. J. (2001). Martian dust storms: 1999 Mars Orbiter Camera observations. Journal of Geophysical Research, 106, 23 653–23 687.CrossRefGoogle Scholar
Canup, R. M. and Agnor, C. B. (2000). Accretion of the terrestrial planets and the Earth–Moon system. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 113–129.Google Scholar
Carr, M. H. (1981). The Surface of Mars. New Haven, CT: Yale University Press.Google Scholar
Carr, M. H. (1995). The martian drainage system and the origin of valley networks and fretted channels. Journal of Geophysical Research, 100, 7479–7507.CrossRefGoogle Scholar
Carr, M. H. (1996). Water on Mars. New York: Oxford University Press.Google Scholar
Carr, M. H. and Wänke, H. (1992). Earth and Mars: water inventories as clues to accretional histories. Icarus, 98, 61–71.CrossRefGoogle Scholar
Carr, M. H., Crumpler, L. S., Cutts, J. A., et al. (1977). Martian impact craters and emplacement of ejecta by surface flow. Journal of Geophysical Research, 82, 4055–4065.CrossRefGoogle Scholar
Carruthers, M. W. and McGill, G. E. (1998). Evidence for igneous activity and implications for the origin of a fretted channel in southern Ismenius Lacus, Mars. Journal of Geophysical Research, 103, 31 433–31 443.CrossRefGoogle Scholar
Cassen, P. (1994). Utilitarian models of the solar nebula. Icarus, 112, 405–429.CrossRefGoogle Scholar
Chambers, J. E. (2001). Making more terrestrial planets. Icarus, 152, 205–224.CrossRefGoogle Scholar
Chambers, J. E. (2004). Planetary accretion in the inner solar system. Earth and Planetary Science Letters, 223, 241–252.CrossRefGoogle Scholar
Chambers, J. E. and Wetherill, G. W. (1998). Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304–327.CrossRefGoogle Scholar
Chan, M. A., Beitler, B., Parry, W. T., Ormö, J., and Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature, 429, 731–734.CrossRefGoogle ScholarPubMed
Chen, J. H. and Wasserburg, G. J. (1986). Formation ages and evolution of Shergotty and its parent planet from U–Th–Pb systematics. Geochimica et Cosmochimica Acta, 50, 955–967.CrossRefGoogle Scholar
Chicarro, A. (2002). Mars Express mission and astrobiology. Solar System Research, 36, 487–491.CrossRefGoogle Scholar
Christensen, P. R. (1986). The spatial distribution of rocks on Mars. Icarus, 68, 217–238.CrossRefGoogle Scholar
Christensen, P. R. (2003). Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature, 422, 45–47.CrossRefGoogle ScholarPubMed
Christensen, P. R. and Moore, H. J. (1992). The martian surface layer. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 686–729.Google Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N. (2000a). Identification of a basaltic component on the martian surface from Thermal Emission Spectrometer data. Journal of Geophysical Research, 105, 9609–9621.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al. (2000b). A thermal emission spectral library of rock-forming minerals. Journal of Geophysical Research, 105, 9735–9739.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al. (2001a). Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. Journal of Geophysical Research, 106, 23 823–23 871.CrossRefGoogle Scholar
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C. (2001b). Global mapping of martian hematite mineral deposits: remnants of water-driven processes on early Mars. Journal of Geophysical Research, 106, 23 873–23 885.CrossRefGoogle Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al. (2004a). The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110, 85–130.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al. (2004b). Initial results from the Mini-TES experiment in Gusev Crater from the Spirit rover. Science, 305, 837–842.CrossRefGoogle Scholar
Christensen, P. R., McSween, H. Y., Bandfield, J. L., et al. (2005). Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436, 504–509.CrossRefGoogle ScholarPubMed
Clark, B. C. (1998). Surviving the limits to life at the surface of Mars. Journal of Geophysical Research, 103, 28 545–28 555.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Rose, H. J., et al. (1977). The Viking X-ray Fluorescence experiment: analytical methods and early results. Journal of Geophysical Research, 82, 4577–4594.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al. (1982). Chemical composition of martian fines. Journal of Geophysical Research, 87, 10 059–10 067.CrossRefGoogle Scholar
Clark, R. N. and Roush, T. L. (1984). Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340.CrossRefGoogle Scholar
Clayton, R. N. (1993). Oxygen isotopes in meteorites. Annual Reviews of Earth and Planetary Science, 21, 115–149.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. (1996). Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta, 60, 1999–2017.CrossRefGoogle Scholar
Cleghorn, T. F., Saganti, P. B., Zeitlin, C., and Cucinotta, F. A. (2004). Charged particle dose measurements by the Odyssey/MARIE instrument in Mars orbit and model calculations. In Lunar and Planetary Science XXXV, Abstract #1321. Houston, TX: Lunar and Planetary Institute.Google Scholar
Clifford, S. M. (1987). Polar basal melting on Mars. Journal of Geophysical Research, 92, 9135–9152.CrossRefGoogle Scholar
Clifford, S. M. (1993). A model for the hydrologic and climatic behavior of water on Mars. Journal of Geophysical Research, 98, 10 973–11 016.CrossRefGoogle Scholar
Clifford, S. M. and Hillel, D. (1983). The stability of ground ice in the equatorial region of Mars. Journal of Geophysical Research, 88, 2456–2474.CrossRefGoogle Scholar
Clifford, S. M. and Parker, T. J. (2001). The evolution of the martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus, 154, 40–79.CrossRefGoogle Scholar
Clifford, S. M., Crisp, D., Fisher, D. A., et al. (2000). The state and future of Mars polar science and exploration. Icarus, 144, 210–242.CrossRefGoogle ScholarPubMed
Cockell, C. S. and Barlow, N. G. (2002). Impact excavation and the search for subsurface life on Mars. Icarus, 155, 340–349.CrossRefGoogle Scholar
Cockell, C. S., Catling, D. C., Davis, W. L., et al. (2000). The ultraviolet environment of Mars: biological implications past, present, and future. Icarus, 146, 343–359.CrossRefGoogle ScholarPubMed
Cohen, B. A., Swindle, T. D., and Kring, D. A. (2000). Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science, 290, 1754–1756.CrossRefGoogle ScholarPubMed
Colaprete, A., Barnes, J. R., Haberle, R. M., et al. (2005). Albedo of the south pole of Mars determined by topographic forcing of atmospheric dynamics. Nature, 435, 184–188.CrossRefGoogle Scholar
Coleman, N. M. (2005). Martian megaflood triggered chaos formation, revealing groundwater depth, cryosphere thickness, and crustal heat flux. Journal of Geophysical Research, 110, E12S20, doi: 10.1029/2005JE002419.Google Scholar
Collins, M., Lewis, S. R., Read, P. L., and Hourdin, F. (1996). Baroclinic wave transitions in the martian atmosphere. Icarus, 120, 344–357.CrossRefGoogle Scholar
Comer, R. P., Solomon, S. C., and Head, J. W. (1985). Thickness of the lithosphere from the tectonic response to volcanic loads. Reviews of Geophysics, 34, 143–151.Google Scholar
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., et al. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284, 794–798.CrossRefGoogle ScholarPubMed
Connerney, J. E. P., Acuña, M. H., Ness, N. F., Spohn, T., and Schubert, G. (2004). Mars crustal magnetism. Space Science Reviews, 111, 1–32.CrossRefGoogle Scholar
Connerney, J. E. P., Acuña, M. H., Ness, N. F., et al. (2005). Tectonic implications of Mars crustal magnetism. Proceedings of the National Academy of Sciences of the USA, 102, 14 970–14 975.CrossRefGoogle ScholarPubMed
Conrath, B. J. (1981). Planetary-scale wave structure in the martian atmosphere. Icarus, 48, 246–255.CrossRefGoogle Scholar
COSPAR (2005). COSPAR Planetary Protection Policy. Available online at www.cosparhq.org/Scistr/PPPolicy.htm
Costard, F. M. and Kargel, J. S. (1995). Outwash plains and thermokarst on Mars. Icarus, 114, 93–112.CrossRefGoogle Scholar
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research, 107, 5111, doi: 10.1029/2001JE001505.CrossRefGoogle Scholar
Crater Analysis Techniques Working Group (1979). Standard techniques for presentation and analysis of crater size–frequency data. Icarus, 37, 467–474.CrossRef
Crown, D. A. and Greeley, R. (1993). Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. Journal of Geophysical Research, 98, 3431–3451.CrossRefGoogle Scholar
Culler, T. S., Becker, T. A., Muller, R. A., and Renne, P. R. (2000). Lunar impact history from 40Ar/39Ar dating of glass spherules. Science, 287, 1785–1788.CrossRefGoogle Scholar
Dalrymple, G. B. and Ryder, G. (1993). 40Ar/39Ar age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. Journal of Geophysical Research, 98, 13 085–13 095.CrossRefGoogle Scholar
Dalrymple, G. B. and Ryder, G. (1996). Argon-40/argon-39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. Journal of Geophysical Research, 101, 26 069–26 084.CrossRefGoogle Scholar
Davis, P. M. (1993). Meteoroid impacts as seismic sources on Mars. Icarus, 105, 469–478.CrossRefGoogle Scholar
deVaucouleurs, G., Davies, M. E., and Sturms, F. M. (1973). Mariner 9 aerographic coordinate system. Journal of Geophysical Research, 78, 4395–4404.CrossRefGoogle Scholar
DeVincenzi, D. L., Stabekis, P., and Barengoltz, J. (1996). Refinement of planetary protection policy for Mars missions. Advances in Space Research, 18, 311–316.CrossRefGoogle ScholarPubMed
Diaz, B. and Schulze-Makuch, D. (2006). Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-irradiation conditions, and their relevance to possible martian life. Astrobiology, 6, 332–347.CrossRefGoogle ScholarPubMed
Dohm, J. M. and Tanaka, K. L. (1999). Geology of the Thaumasia region, Mars: plateau development, valley origins, and magmatic evolution. Planetary and Space Science, 47, 411–431.CrossRefGoogle Scholar
Dollfus, A., Ebisawa, S., and Crussaire, D. (1996). Hoods, mists, frosts, and ice caps at the poles of Mars. Journal of Geophysical Research, 101, 9207–9225.CrossRefGoogle Scholar
Donahue, T. M. (1995). Evolution of water reservoirs on Mars from D/H ratios in the atmosphere and crust. Nature, 374, 432–434.CrossRefGoogle Scholar
Doran, P. T., Wharton, R. A., Des Marais, D. J., and McKay, C. P. (1998). Antarctic paleolake sediments and the search for extinct life on Mars. Journal of Geophysical Research, 103, 28 481–28 493.CrossRefGoogle Scholar
Drake, M. J. and Righter, K. (2002). Determining the composition of the Earth. Nature, 416, 39–44.CrossRefGoogle Scholar
Dreibus, G. and Wänke, H. (1985). Mars: a volatile-rich planet. Meteoritics, 20, 367–382.Google Scholar
Dreibus, G. and Wänke, H. (1987). Volatiles on Earth and Mars: a comparison. Icarus, 71, 225–240.CrossRefGoogle Scholar
Drouart, A., Dubrulle, B., Gautier, D., and Robert, F. (1999). Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation. Icarus, 140, 129–155.CrossRefGoogle Scholar
Edgett, K. S. and Malin, M. C. (2000). New views of Mars eolian activity, materials, and surface properties: three vignettes from the Mars Global Surveyor Mars Orbiter Camera. Journal of Geophysical Research, 105, 1623–1650.CrossRefGoogle Scholar
Edgett, K. S., Butler, B. J., Zimbelman, J. R., and Hamilton, V. E. (1997). Geologic context of the Mars radar “Stealth” region in southwestern Tharsis. Journal of Geophysical Research, 102, 21 545–21 567.CrossRefGoogle Scholar
Elkins-Tanton, L. T. and Parmentier, E. M. (2006). Water and carbon dioxide in the martian magma ocean: early atmospheric growth, subsequent mantle compositions, and planetary cooling rates. Lunar and Planetary Science XXXVII, Abstract #2007 (CD-ROM). Houston, TX: Lunar and Planetary Institute.Google Scholar
Elkins-Tanton, L. T., Zaranek, S. E., Parmentier, E. M., and Hess, P. C. (2003). Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth and Planetary Science Letters, 236, 1–12.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Hess, P. C., and Parmentier, E. M. (2005). Possible formation of ancient crust on Mars through magma ocean processes. Journal of Geophysical Research, 110, E12S01, doi: 10.1029/2005JE002480.CrossRef
Eluszkiewicz, J., Moncet, J. -L., Titus, T. N., and Hansen, G. B. (2005). A microphysically-based approach to modeling emissivity and albedo of the martian seasonal caps. Icarus, 174, 524–534.CrossRefGoogle Scholar
Erard, S. (2000). The 1994–1995 apparition of Mars observed from Pic-du-Midi. Planetary and Space Science, 48, 1271–1287.CrossRefGoogle Scholar
Fairén, A. G., Ruiz, J., and Anguita, F. (2002). An origin for the linear magnetic anomalies on Mars through accretion of terranes: implications for dynamo timing. Icarus, 160, 220–223.CrossRefGoogle Scholar
Farmer, J. (1998). Thermophiles, early biosphere evolution, and the origin of life on Earth: implications for the exobiological exploration of Mars. Journal of Geophysical Research, 103, 28 457–28 461.CrossRefGoogle Scholar
Farmer, J. D. and Des Marais, D. J. (1999). Exploring for a record of ancient martian life. Journal of Geophysical Research, 104, 26 977–26 995.CrossRefGoogle ScholarPubMed
Fasset, C. I. and Head, J. W. (2005). Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophysical Research Letters, 32, L14201, doi: 10.1029/2005GL023456.Google Scholar
Fasset, C. I. and Head, J. W. (2006). Valleys on Hecates Tholus, Mars: origin by basal melting of summit snowpack. Planetary and Space Science, 54, 370–378.CrossRefGoogle Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002). Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297, 75–78.CrossRefGoogle ScholarPubMed
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004a). Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research, 109, E09006, doi: 10.1029/2003JE002160.CrossRefGoogle Scholar
Feldman, W. C., Mellon, M. T., Maurice, S., et al. (2004b). Hydrated states of MgSO4 at equatorial latitudes on Mars. Geophysical Research Letters, 31, L16702, doi: 10.1029/2004GL020181.CrossRefGoogle Scholar
Ferguson, D. C., Kolecki, J. C., Siebert, M. W., Wilt, D. M., and Matijevic, J. R. (1999). Evidence for martian electrostatic charging and abrasive wheel wear from the Wheel Abrasion Experiment on the Pathfinder Sojourner rover. Journal of Geophysical Research, 104, 8747–8789.CrossRefGoogle Scholar
Fernández-Remolar, D. C., Morris, R. V., Gruener, J. E., Amils, R., and Knoll, A. H. (2005). The Rio Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 149–167.CrossRefGoogle Scholar
Fialips, C. I., Carey, J. W., Vaniman, D. T., et al. (2005). Hydration states of zeolites, clays, and hydrated salts under present-day martian surface conditions: can hydrous minerals account for Mars Odyssey observations of near-equatorial water-equivalent hydrogen?Icarus, 178, 74–83.CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2000). North polar region of Mars: topography of circumpolar deposits from Mars Orbiter Laser Altimeter (MOLA) data and evidence for asymmetric retreat of the polar cap. Journal of Geophysical Research, 105, 22 433–22 486.CrossRefGoogle Scholar
Fishbaugh, K. E. and Head, J. W. (2002). Chasma Boreale, Mars: topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation. Journal of Geophysical Research, 107, 5013, doi: 10.1029/2000JE001351.CrossRefGoogle Scholar
Fisher, D. A. (1993). If martian ice caps flow: ablation mechanisms and appearance. Icarus, 105, 501–511.CrossRefGoogle Scholar
Fisher, D. A. (2000). Internal layers in an “accublation” ice cap: a test for flow. Icarus, 144, 289–294.CrossRefGoogle Scholar
Fisher, J. A., Richardson, M. I., Newman, C. E., et al. (2005). A survey of martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. Journal of Geophysical Research, 110, E03004, doi: 10.1029/2003JE002165.CrossRefGoogle Scholar
Folkner, W. M., Yoder, C. F., Yuan, D. N., Standish, E. M., and Preston, R. A. (1997). Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science, 278, 1749–1752.CrossRefGoogle ScholarPubMed
Forget, F. and Pierrehumbert, R. T. (1997). Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science, 278, 1273–1276.CrossRefGoogle ScholarPubMed
Forget, F., Hourdin, F., Fournier, R., et al. (1999). Improved general circulation models of the martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104, 24 155–24 176.CrossRefGoogle Scholar
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., and Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science, 306, 1758–1761.CrossRefGoogle ScholarPubMed
Forsberg-Taylor, N. K., Howard, A. D., and Craddock, R. A. (2004). Crater degradation in the martian highlands: morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. Journal of Geophysical Research, 109, E05002, doi: 10.1029/2004JE002242.CrossRefGoogle Scholar
Frahm, R. A., Winningham, J. D., Sharber, J. R., et al. (2006). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182, 371–382.CrossRefGoogle Scholar
French, B. M. (1998). Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures, Contribution No. 954. Houston, TX: Lunar and Planetary Institute.Google Scholar
Frey, H. and Schultz, R. A. (1988). Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophysical Research Letters, 15, 229–232.CrossRefGoogle Scholar
Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L., and Sakimoto, S. E. H. (2002). Ancient lowlands on Mars. Geophysical Research Letters, 29, 1384, doi: 10.1029/2001GL013832.CrossRefGoogle Scholar
Fukuhara, T. and Imamura, T. (2005). Waves encircling the summer southern pole of Mars observed by MGS TES. Geophysical Research Letters, 32, L18811, doi: 10.1029/2005GL023819.CrossRefGoogle Scholar
Garvin, J. B. and Frawley, J. J. (1998). Geometric properties of martian impact craters: preliminary results from the Mars Orbiter Laser Altimeter. Geophysical Research Letters, 25, 4405–4408.CrossRefGoogle Scholar
Garvin, J. B., Sakimoto, S. E. H., Frawley, J. J., and Schnetzler, C. (2000a). North polar region craterforms on Mars: geometric characteristics from the Mars Orbiter Laser Altimeter. Icarus, 144, 329–352.CrossRefGoogle Scholar
Garvin, J. B., Sakimoto, S. E. H., Frawley, J. J., Schnetzler, C. C., and Wright, H. M. (2002b). Topographic evidence for geologically recent near-polar volcanism on Mars. Icarus, 145, 648–652.CrossRefGoogle Scholar
Garvin, J. B., Sakimoto, S. E. H., and Frawley, J. J. (2003). Craters on Mars: global geometric properties from gridded MOLA topography. In 6th International Conference on Mars, Abstract #3277. Houston, TX: Lunar and Planetary Institute.Google Scholar
Gault, D. E., Quaide, W. L., and Oberbeck, V. R. (1968). Impact cratering mechanics and structures. In Shock Metamorphism of Natural Materials, ed. French, B. M. and Short, N. M.. Baltimore, MD: Mono Book Corporation, pp. 87–99.Google Scholar
Geiss, J. and Gloeckler, G. (1998). Abundances of deuterium and helium-3 in the protosolar cloud. Space Science Reviews, 84, 239–250.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al. (2004). Chemistry of rocks and soils in Gusev Crater from the alpha particle X-ray spectrometer. Science, 305, 829–836.CrossRefGoogle ScholarPubMed
Gellert, R., Rieder, R., Brückner, J., et al. (2006). Alpha Particle X-Ray Spectrometer (APSX): results from Gusev Crater and calibration report. Journal of Geophysical Research, 111, E02S05, doi: 10.1029/2005JE002555.CrossRefGoogle Scholar
Gendrin, A., Mangold, N., Bibring, J. -P., et al. (2005). Sulfates in martian layered terrains: the OMEGA/Mars Express view. Science, 307, 1587–1591.CrossRefGoogle ScholarPubMed
Ghatan, G. J. and Head, J. W. (2002). Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. Journal of Geophysical Research, 107, 5048, doi: 10.1029/2001JE001519.CrossRefGoogle Scholar
Glaze, L. S., Baloga, S. M., and Stofan, E. R. (2003). A methodology for constraining lava flow rheologies with MOLA. Icarus, 165, 26–33.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Morris, R. V., and Mertzman, S. A. (2005). Laboratory-simulated acid-sulfate weathering of basaltic materials: implications for formation of sulfates at Meridiani Planum and Gusev Crater, Mars. Journal of Geophysical Research, 110, E12S07, doi: 10.1029/2005JE002451.CrossRefGoogle Scholar
Golombek, M. P. and Rapp, D. (1997). Size–frequency distributions of rocks on Mars and Earth analog sites: implications for future landed missions. Journal of Geophysical Research, 102, 4117–4129.CrossRefGoogle Scholar
Golombek, M. P., Banerdt, W. B., Tanaka, K. L., and Tralli, D. M. (1992). A prediction of Mars seismicity from surface faulting. Science, 258, 979–981.CrossRefGoogle ScholarPubMed
Golombek, M. P., Anderson, R. C., Barnes, J. R., et al. (1999a). Overview of the Mars Pathfinder Mission: launch through landing, surface operations, data sets, and science results. Journal of Geophysical Research, 104, 8523–8553.CrossRefGoogle Scholar
Golombek, M. P., Moore, H. J., Haldemann, A. F. C., Parker, T. J., and Schofield, J. T. (1999b). Assessment of Mars Pathfinder landing site predictions. Journal of Geophysical Research, 104, 8585–8594.CrossRefGoogle Scholar
Golombek, M. P., Anderson, F. S., and Zuber, M. T. (2001). Martian wrinkle ridge topography: evidence for subsurface faults from MOLA. Journal of Geophysical Research, 106, 23 811–23 821.CrossRefGoogle Scholar
Golombek, M. P., Grant, J. A., Parker, T. J., et al. (2003). Selection of the Mars Exploration Rover landing sites. Journal of Geophysical Research, 108, 8072, doi: 10.1029/2003JE002074.CrossRefGoogle Scholar
Golombek, M. P., Arvidson, R. E., Bell, J. F., et al. (2005). Assessment of Mars Exploration Rover landing site predictions. Nature, 436, 44–48.CrossRefGoogle ScholarPubMed
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al. (2006). Geology of the Gusev cratered plains from the Spirit rover traverse. Journal of Geophysical Research, 111, E02S07, doi: 10.1029/2005JE002503.CrossRefGoogle Scholar
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. (2005). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–469.CrossRefGoogle ScholarPubMed
Goudy, C. L., Schultz, R. A., and Gregg, T. K. P. (2005). Coulomb stress changes in Hesperia Planum, Mars, reveal regional thrust fault reactivation. Journal of Geophysical Research, 110, E10005, doi: 10.1029/2004JE02293.CrossRefGoogle Scholar
Grant, J. A. and Parker, T. J. (2002). Drainage evolution in the Margaritifer Sinus region, Mars. Journal of Geophysical Research, 107, 5066, doi: 10.1029/2001JE001678.CrossRefGoogle Scholar
Greeley, R. and Fagents, S. A. (2001). Icelandic pseudocraters as analogs to some volcanic cones on Mars. Journal of Geophysical Research, 106, 20 527–20 546.CrossRefGoogle Scholar
Greeley, R. and Iverson, J. D. (1985). Wind as a Geological Process on Earth, Mars, Venus, and Titan.Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Greeley, R., Kraft, M., Sullivan, R., et al. (1999). Aeolian features and processes at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, 8573–8584.CrossRefGoogle Scholar
Greeley, R., Arvidson, R. E., Barlett, P. W., et al. (2006). Gusev Crater: wind-related features and processes observed by the Mars Exploration Rover Spirit. Journal of Geophysical Research, 111, E02S09, doi: 10.1029/2005JE002491.CrossRefGoogle Scholar
Gregg, T. K. P. and Williams, S. N. (1996). Explosive mafic volcanoes on Mars and Earth: deep magma sources and rapid rise rate. Icarus, 122, 397–405.CrossRefGoogle Scholar
Grossman, L. (1972). Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597–619.CrossRefGoogle Scholar
Grott, M., Hauber, E., Werner, S. C., Kronberg, P., and Neukum, G. (2005). High heat flux on ancient Mars: evidence from rift flank uplift at Coracis Fossae. Geophysical Research Letters, 32, L21201, doi: 10.1029/2005GL023894.CrossRefGoogle Scholar
Gulick, V. C. (1998). Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. Journal of Geophysical Research, 103, 19 365–19 388.CrossRefGoogle Scholar
Gulick, V. C. and Baker, V. R. (1990). Origin and evolution of valleys on martian volcanoes. Journal of Geophysical Research, 95, 14 325–14 344.CrossRefGoogle Scholar
Gulick, V. C., Tyler, D., McKay, C. P., and Haberle, R. M. (1997). Episodic ocean-induced CO2 greenhouse on Mars: implications for fluvial valley formation. Icarus, 130, 68–86.CrossRefGoogle ScholarPubMed
Haberle, R. M. (1998). Early Mars climate models. Journal of Geophysical Research, 103, 28 467–28 479.CrossRefGoogle Scholar
Haberle, R. M., Pollack, J. B., Barnes, J. R., et al. (1993). Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model. 1. The zonal-mean circulation. Journal of Geophysical Research, 98, 3093–3123.CrossRefGoogle Scholar
Haberle, R. M., McKay, C. P., Schaeffer, J., et al. (2001). On the possibility of liquid water on present-day Mars. Journal of Geophysical Research, 106, 23 317–23 326.CrossRefGoogle Scholar
Haberle, R. M., Murphy, J. R., and Schaeffer, J. (2003). Orbital change experiments with a Mars general circulation model. Icarus, 161, 66–89.CrossRefGoogle Scholar
Halliday, A. N., Wänke, H., Birck, J. -L., and Clayton, R. N. (2001). The accretion, composition, and early differentiation of Mars. Space Science Reviews, 96, 197–230.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., McSween, H. Y., and Bandfield, J. L. (2003). Searching for the source regions of martian meteorites using MGS TES: integrating martian meteorites into the global distribution of igneous materials on Mars. Meteoritics and Planetary Science, 38, 871–885.CrossRefGoogle Scholar
Hanel, R. A., Conrath, B. J., Jennings, D. E., and Samuelson, R. E. (2003). Exploration of the Solar System by Infrared Remote Sensing, 2nd edn. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Spitzer, C. R. (1977). The Viking magnetic properties experiment: primary mission results. Journal of Geophysical Research, 82, 4547–4558.CrossRefGoogle Scholar
Hargraves, R. B., Collinson, D. W., Arvidson, R. E., and Cates, P. M. (1979). The Viking magnetic properties experiment: extended mission results. Journal of Geophysical Research, 84, 8379–8384.CrossRefGoogle Scholar
Harmon, J. K., Arvidson, R. E., Guinness, E. A., Campbell, B. A., and Slade, M. A. (1999). Mars mapping with delay-Doppler radar. Journal of Geophysical Research, 104, 14 065–14 089.CrossRefGoogle Scholar
Harper, C. L., Nyquist, L. E., Bansal, B., Weismann, H., and Shih, C. -Y. (1995). Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science, 267, 213–217.CrossRefGoogle ScholarPubMed
Harrison, K. P. and Grimm, R. E. (2003). Rheological constraints on martian landslides. Icarus, 163, 347–362.CrossRefGoogle Scholar
Hartmann, W. K. (1984). Does crater “saturation equilibrium” occur in the solar system?Icarus, 60, 56–74.CrossRefGoogle Scholar
Hartmann, W. K. (1990). Additional evidence about an early intense flux of asteroids and the origin of Phobos. Icarus, 87, 236–240.CrossRefGoogle Scholar
Hartmann, W. K. (1997). Planetary cratering. 2. Studies of saturation equilibrium. Meteoritics, 32, 109–121.CrossRefGoogle Scholar
Hartmann, W. K. (2003). Megaregolith evolution and cratering cataclysm models: lunar cataclysm as a misconception (28 years later). Meteoritics and Planetary Science, 38, 579–593.CrossRefGoogle Scholar
Hartmann, W. K. (2005). Martian cratering. 8. Isochron refinement and the chronology of Mars. Icarus, 174, 294–320.CrossRefGoogle Scholar
Hartmann, W. K. and Barlow, N. G. (2006). Nature of the martian uplands: effects on martian meteorite age distribution and secondary cratering. Meteoritics and Planetary Science, 41, 1453–1467.CrossRefGoogle Scholar
Hartmann, W. K. and Berman, D. C. (2000). Elysium Planitia lava flows: crater count chronology and geological implications. Journal of Geophysical Research, 105, 15 011–15 025.CrossRefGoogle Scholar
Hartmann, W. K. and Davis, D. R. (1975). Satellite-sized planetesimals and lunar origin. Icarus, 24, 504–515.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G. (2001). Cratering chronology and the evolution of Mars. Space Science Reviews, 96, 165–194.CrossRefGoogle Scholar
Hartmann, W. K., Malin, M., McEwen, A., et al. (1999). Evidence for recent volcanism on Mars from crater counts. Nature, 397, 586–589.CrossRefGoogle Scholar
Harvey, R. P. and Hamilton, V. E. (2005). Syrtis Major as the source region of the Nakhlite/Chassigny group of martian meteorites: implications for the geological history of Mars. Lunar and Planetary Science XXXVI, Abstract #1019 (CD-ROM). Houston, TX: Lunar and Planetary Institute.
Hauber, E., Gasselt, S., Ivanov, B., et al. (2005). Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature, 434, 356–361.CrossRefGoogle ScholarPubMed
Head, J. N., Melosh, H. J., and Ivanov, B. A. (2002). Martian meteorite launch: high-speed ejecta from small craters. Science, 298, 1752–1756.CrossRefGoogle ScholarPubMed
Head, J. W. and Marchant, D. R. (2003). Cold-based mountain glaciers on Mars: western Arsia Mons. Geology, 31, 641–644.2.0.CO;2>CrossRefGoogle Scholar
Head, J. W. and Pratt, S. (2001). Extensive Hesperian-aged south polar ice cap on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. Journal of Geophysical Research, 106, 12 275–12 299.CrossRefGoogle Scholar
Head, J. W., Kreslavsky, M., Hiesinger, H., et al. (1998). Oceans in the past history of Mars: tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data. Geophysical Research Letters, 25, 4401–4404.CrossRefGoogle Scholar
Head, J. W., Hiesinger, H., Ivanov, M. A., et al. (1999). Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science, 286, 2134–2137.CrossRefGoogle ScholarPubMed
Head, J. W., Kreslavsky, M. A., and Pratt, S. (2002). Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. Journal of Geophysical Research, 107, 5003, doi: 10.1029/2000JE001445.CrossRefGoogle Scholar
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R. (2003a). Recent ice ages on Mars. Nature, 426, 797–802.CrossRefGoogle Scholar
Head, J. W., Wilson, L., and Mitchell, K. L. (2003b). Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophysical Research Letters, 30, 1577, doi: 10.1029/2003GL017135.CrossRefGoogle Scholar
Head, J. W., Neukum, G., Jaumann, R., et al. (2005). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346–351.CrossRefGoogle ScholarPubMed
Head, J. W., Marchant, D. R., Agnew, M. C., Fassett, C. I., and Kreslavsky, M. A. (2006a). Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters, 241, 663–671.CrossRefGoogle Scholar
Head, J. W., Nahm, A. L., Marchant, D. R., and Neukum, G. (2006b). Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophysical Research Letters, 33, L08S03, doi: 10.1029/2005GL024360.CrossRefGoogle Scholar
Hecht, M. H. (2002). Metastability of liquid water on Mars. Icarus, 156, 373–386.CrossRefGoogle Scholar
Heiken, G. H., Vaniman, D. T., and French, B. M. (1991). Lunar Sourcebook: A User's Guide to the Moon.Cambridge, UK: Cambridge University Press.Google Scholar
Heldmann, J. L., Toon, O. B., Pollard, W. H., et al. (2005). Formation of martian gullies by the actions of liquid water flowing under current martian environmental conditions. Journal of Geophysical Research, 110, E05004, doi: 10.1029/2004JE002261.CrossRefGoogle Scholar
Herkenhoff, K. E. and Plaut, J. J. (2000). Surface ages and resurfacing rates of the polar layered deposits, Mars. Icarus, 144, 243–253.CrossRefGoogle Scholar
Herkenhoff, K. E. and Vasavada, A. R. (1999). Dark material in the polar layered deposits and dunes on Mars. Journal of Geophysical Research, 104, 16 487–16 500.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al. (2004). Evidence from Opportunity's Microscopic Imager for water on Meridiani Planum. Science, 306, 1727–1730.CrossRefGoogle ScholarPubMed
Hiesinger, H. and Head, J. W. (2000). Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. Journal of Geophysical Research, 105, 11 999–12 022.CrossRefGoogle Scholar
Hiesinger, H. and Head, J. W. (2002). Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history. Planetary and Space Science, 50, 939–981.CrossRefGoogle Scholar
Hiesinger, H. and Head, J. W. (2004). The Syrtis Major volcanic province, Mars: synthesis from Mars Global Surveyor data. Journal of Geophysical Research, 109, E01004, doi: 10.1029/2003JE002143.CrossRefGoogle Scholar
Hinson, D. P. and Wilson, R. J. (2002). Transient eddies in the southern hemisphere of Mars. Geophysical Research Letters, 29, 1154, doi: 10.1029/2001GL014103.CrossRefGoogle Scholar
Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. (1999). Initial results from radio occultation measurements with Mars Global Surveyor. Journal of Geophysical Research, 104, 26 997–27 012.CrossRefGoogle Scholar
Hinson, D. P., Tyler, G. L., Hollingsworth, J. L., and Wilson, R. J. (2001). Radio occultation measurements of forced atmospheric waves on Mars. Journal of Geophysical Research, 106, 1463–1480.CrossRefGoogle Scholar
Hinson, D. P., Wilson, R. J., Smith, M. D., and Conrath, B. J. (2003). Stationary planetary waves in the atmosphere of Mars during southern winter. Journal of Geophysical Research, 108, 5004, doi: 10.1029/2002JE001949.CrossRefGoogle Scholar
Hodges, C. A. and Moore, H. J. (1994). Atlas of Volcanic Landforms on Mars, Professional Paper No. 1534. Washington, DC: US Geological Survey.Google Scholar
Hoefen, T. M., Clark, R. N., Bandfield, J. L., et al. (2003). Discovery of olivine in the Nili Fossae region of Mars. Science, 302, 627–630.CrossRefGoogle ScholarPubMed
Hoffman, N. (2000). White Mars: a new model for Mars' surface and atmosphere based on CO2. Icarus, 146, 326–342.CrossRefGoogle Scholar
Hollingsworth, J. L., Haberle, R. M., Bridger, A. F. C., et al. (1996). Winter storm zones on Mars. Nature, 380, 413–416.CrossRefGoogle Scholar
Hood, L. L. and Zakharian, A. (2001). Mapping and modeling of magnetic anomalies in the northern polar region of Mars. Journal of Geophysical Research, 106, 14 601–14 619.CrossRefGoogle Scholar
Hood, L. L., Richmond, N. C., Pierazzo, E., and Rochette, P. (2003). Distribution of crustal magnetic fields on Mars: shock effects of basin-forming impacts. Geophysical Research Letters, 30, 1281, doi: 10.1029/2002GL016657.CrossRefGoogle Scholar
Horowitz, N. H., Hobby, G. L., and Hubbard, J. S. (1977). Viking on Mars: the carbon assimilation experiments. Journal of Geophysical Research, 82, 4659–4662.CrossRefGoogle Scholar
Houben, H., Haberle, R. M., Young, R. E., and Zent, A. P. (1997). Modeling the martian seasonal water cycle. Journal of Geophysical Research, 102, 9069–9083.CrossRefGoogle Scholar
Hourdin, F., Forget, F., and Talagrand, O. (1995). The sensitivity of the martian surface pressure to various parameters: a comparison between numerical simulations and Viking observations. Journal of Geophysical Research, 100, 5501–5523.CrossRefGoogle Scholar
Howard, A. D. (2000). The role of eolian processes in forming surface features of the martian polar layered deposits. Icarus, 144, 267–288.CrossRefGoogle Scholar
Howard, A. D., Cutts, J. A., and Blasius, K. R. (1982). Stratigraphic relationships within martian polar cap deposits. Icarus, 50, 161–215.CrossRefGoogle Scholar
Howard, A. D., Moore, J. M., and Irwin, R. P. (2005). An intense terminal epoch of widespread fluvial activity on early Mars. 1. Valley network incision and associated deposits. Journal of Geophysical Research, 110, E12S14, doi: 10.1029/2005JE002459.CrossRefGoogle Scholar
Hubbard, W. B. (1984). Planetary Interiors. New York: Van Nostrand Reinhold.Google Scholar
Hunten, D. M., Pepin, R. O., and Walker, J. G. C. (1987). Mass fractionation in hydrodynamic escape. Icarus, 69, 532–549.CrossRefGoogle Scholar
Hviid, S. F., Madsen, M. B., Gunnlaugsson, H. P., et al. (1997). Magnetic properties experiments on the Mars Pathfinder Lander: preliminary results. Science, 278, 1997.CrossRefGoogle ScholarPubMed
Hynek, B. M., Phillips, R. J., and Arvidson, R. E. (2003). Explosive volcanism in the Tharsis region: global evidence in the martian geologic record. Journal of Geophysical Research, 108, 5111, doi: 10.1029/2003JE002062.CrossRefGoogle Scholar
Irwin, R. P. and Howard, A. D. (2002). Drainage basin evolution in Noachian Terra Cimmeria, Mars. Journal of Geophysical Research, 107, 5056, doi: 10.1029/2001JE001818.CrossRefGoogle Scholar
Irwin, R. P., Watters, T. R., Howard, A. D., and Zimbelman, J. R. (2004). Sedimentary, resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. Journal of Geophysical Research, 109, E09011, doi: 10.1029/2004JE002248.CrossRefGoogle Scholar
Irwin, R. P., Craddock, R. A., and Howard, A. D. (2005). Interior channels in martian valley networks: discharge and runoff production. Geology, 33, 489–492.CrossRefGoogle Scholar
Ivanov, B. A. (2001). Mars/Moon cratering rate ratio estimates. Space Science Reviews, 96, 87–104.CrossRefGoogle Scholar
Ivanov, B. A. (2006). Cratering rate comparisons between terrestrial planets. In Workshop on Surface Ages and Histories: Issues in Planetary Chronology, Contribution No. 1320. Houston, TX: Lunar and Planetary Institute, pp. 26–27.Google Scholar
Ives, H. E. (1919). Some large-scale experiments imitating the craters of the Moon. Astrophysical Journal, 50, 245.CrossRefGoogle Scholar
Jagoutz, E., Sorowka, A., Vogel, J. D., and Wänke, H. (1994). ALH84001: alien or progenitor of the SNC family?Meteoritics, 28, 478–479.Google Scholar
Jakosky, B. M. and Haberle, R. M. (1992). The seasonal behavior of water on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 969–1016.Google Scholar
Jakosky, B. M. and Jones, J. H. (1997). The history of martian volatiles. Reviews of Geophysics, 35, 1–16.CrossRefGoogle Scholar
Jakosky, B. M. and Phillips, R. J. (2001). Mars' volatile and climate history. Nature, 412, 237–244.CrossRefGoogle ScholarPubMed
Jakosky, B. M., Henderson, B. G., and Mellon, M. T. (1993). The Mars water cycle at other epochs: recent history of the polar caps and layered terrain. Icarus, 102, 286–297.CrossRefGoogle Scholar
Jakosky, B. M., Pepin, R. O., Johnson, R. E., and Fox, J. L. (1994). Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus, 111, 271–288.CrossRefGoogle Scholar
Jakosky, B. M., Mellon, M. T., Kieffer, H. H., et al. (2000). The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer. Journal of Geophysical Research, 105, 9643–9652.CrossRefGoogle Scholar
Jakosky, B. M., Nealson, K. H., Bakermans, C., et al. (2003). Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions. Astrobiology, 3, 343–350.CrossRefGoogle ScholarPubMed
Jakosky, B. M., Mellon, M. T., Varnes, E. S., et al. (2005). Mars low-latitude neutron distribution: possible remnant near-surface water ice and a mechanism for its recent emplacement. Icarus, 175, 58–67.CrossRefGoogle Scholar
James, P. B. and Cantor, B. A. (2002). Atmospheric monitoring of Mars by the Mars Orbiter Camera on Mars Global Surveyor. Advances in Space Research, 29, 121–129.CrossRefGoogle Scholar
James, P. B., Kieffer, H. H., and Paige, D. A. (1992). The seasonal cycle of carbon dioxide on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 934–968.Google Scholar
James, P. B., Bell, J. F., Clancy, R. T., et al. (1996). Global imaging of Mars by Hubble Space Telescope during the 1995 opposition. Journal of Geophysical Research, 101, 18 883–18 890.CrossRefGoogle Scholar
James, P. B., Hansen, G. B., and Titus, T. N. (2005). The carbon dioxide cycle. Advances in Space Research, 35, 14–20.CrossRefGoogle Scholar
Johnston, D. H., McGetchin, T. R., and Toksöz, M. N. (1974). The thermal state and internal structure of Mars. Journal of Geophysical Research, 79, 3959–3971.CrossRefGoogle Scholar
Joshi, M. M., Lewis, S. R., Read, P. L., and Catling, D. C. (1995). Western boundary currents in the martian atmosphere: numerical simulations and observational evidence. Journal of Geophysical Research, 100, 5485–5500.CrossRefGoogle Scholar
Joshi, M. M., Haberle, R. M., Barnes, J. R., Murphy, J. R., and Schaeffer, J. (1997). Low-level jets in the NASA Ames Mars general circulation model. Journal of Geophysical Research, 102, 6511–6523.CrossRefGoogle Scholar
Kahn, R. A., Martin, T. Z., Zurek, R. W., and Lee, S. W. (1992). The martian dust cycle. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 1017–1053.Google Scholar
Kahre, M. A., Murphy, J. R., and Haberle, R. M. (2006). Modeling the martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. Journal of Geophysical Research, 111, E06008, doi: 10.1029/2005JE002588.CrossRefGoogle Scholar
Kargel, J. S. and Strom, R. G. (1992). Ancient glaciation on Mars. Geology, 20, 3–7.2.3.CO;2>CrossRefGoogle Scholar
Kargel, J. S., Baker, V. R., Begét, J. E., et al. (1995). Evidence of continental glaciation in the martian northern plains. Journal of Geophysical Research, 100, 5351–5368.CrossRefGoogle Scholar
Karlsson, H. R., Clayton, R. N., Gibson, E. K., and Mayeda, T. K. (1992). Water in SNC meteorites: evidence for a martian hydrosphere. Science, 255, 1409–1411.CrossRefGoogle ScholarPubMed
Kass, D. M., Schofield, J. T., Michaels, T. I., et al. (2003). Analysis of atmospheric mesoscale models for entry, descent, and landing. Journal of Geophysical Research, 108, 8090, doi: 10.1029/2003JE002065.CrossRefGoogle Scholar
Kasting, J. F. (1991). CO2 condensation and the climate of early Mars. Icarus, 94, 1–13.CrossRefGoogle ScholarPubMed
Keszthelyi, L., McEwen, A. S., and Thordarson, T. (2000). Terrestrial analogs and thermal models for martian flood lavas. Journal of Geophysical Research, 105, 15 027–15 049.CrossRefGoogle Scholar
Kiefer, W. S. (2003). Melting in the martian mantle: shergottite formation and implications for present-day mantle convection on Mars. Meteoritics and Planetary Science, 39, 1815–1832.CrossRefGoogle Scholar
Kieffer, H. H. and Titus, T. N. (2001). TES mapping of Mars' north seasonal cap. Icarus, 154, 162–180.CrossRefGoogle Scholar
Kieffer, H. H., Jakosky, B. M., and Snyder, C. W. (1992). The planet Mars: from antiquity to the present. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 1–33.Google Scholar
Kieffer, H. H., Titus, T. N., Mullins, K. F., and Christensen, P. R. (2000). Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain. Journal of Geophysical Research, 105, 9653–9699.CrossRefGoogle Scholar
Kieffer, H. H., Christensen, P. R., and Titus, T. N. (2006). CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap. Nature, 442, 793–796.CrossRefGoogle ScholarPubMed
Klein, H. P. (1977). The Viking biological investigation: general aspects. Journal of Geophysical Research, 82, 4677–4680.CrossRefGoogle Scholar
Klein, H. P. (1998). The search for life on Mars: what we learned from Viking. Journal of Geophysical Research, 103, 28 463–28 466.CrossRefGoogle Scholar
Kleine, T., Münker, C., Mezger, K., and Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952–955.CrossRefGoogle ScholarPubMed
Kletetschka, G., Connerney, J. E. P., Ness, N. F., and Acuña, M. H. (2004). Pressure effects on martian crustal magnetization near large impact basins. Meteoritics and Planetary Science, 39, 1839–1848.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al. (2003). Athena MIMOS II Mössbauer spectrometer investigation. Journal of Geophysical Research, 108, 8067, doi: 10.1029/2003JE002138.CrossRef
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al. (2004). Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer. Science, 306, 1740–1745.CrossRefGoogle ScholarPubMed
Knoll, A. H., Carr, M., Clark, B., et al. (2005). An astrobiological perspective on Meridiani Planum. Earth and Planetary Science Letters, 240, 179–189.CrossRefGoogle Scholar
Kokubo, E. and Ida, S. (1998). Oligarchic growth of protoplanets. Icarus, 131, 171–178.CrossRefGoogle Scholar
Kokubo, E., Canup, R. M., and Ida, S. (2000). Lunar accretion from an impact-generated disk. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 145–163.Google Scholar
Kolb, E. J. and Tanaka, K. L. (2001). Geologic history of the polar regions of Mars based on Mars Global Surveyor data. 2. Amazonian Period. Icarus, 153, 22–39.CrossRefGoogle Scholar
Kortenkamp, S. J., Kokubo, E., and Weidenschilling, S. J. (2000). Formation of planetary embryos. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 85–100.Google Scholar
Kossacki, K. J., Markiewicz, W. J., and Smith, M. D. (2003). Surface temperature of martian regolith with polygonal features: influence of the subsurface water ice. Planetary and Space Science, 51, 569–580.CrossRefGoogle Scholar
Krasnopolsky, V. (2000). On the deuterium abundance on Mars and some related problems. Icarus, 148, 597–602.CrossRefGoogle Scholar
Krasnopolsky, V. A. (2006). Some problems related to the origin of methane on Mars. Icarus, 180, 359–367.CrossRefGoogle Scholar
Krasnopolsky, V. A., Maillard, J. P., and Owen, T. C. (2004). Detection of methane in the martian atmosphere: evidence for life?Icarus, 172, 537–547.CrossRefGoogle Scholar
Krauss, C. E., Horányi, M., and Robertson, S. (2006). Modeling the formation of electrostatic discharges on Mars. Journal of Geophysical Research, 111, E02001, doi: 10.1029/2004JE002313.CrossRefGoogle Scholar
Kreslavsky, M. A. and Head, J. W. (2000). Kilometer-scale roughness of Mars' surface: results from MOLA data analysis. Journal of Geophysical Research, 105, 26 695–26 712.CrossRefGoogle Scholar
Kress, M. E. and McKay, C. P. (2004). Formation of methane in comet impacts: implications for Earth, Mars, and Titan. Icarus, 168, 475–483.CrossRefGoogle Scholar
Kring, D. A. and Cohen, B. A. (2002). Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. Journal of Geophysical Research, 107, 5009, doi: 10.1029/2001JE001529.CrossRefGoogle Scholar
Kuiper, G. P., Whitaker, E. A., Strom, R. G., Fountain, J. W., and Larson, S. M. (1967). Consolidated Lunar Atlas. Tucson, AZ: Lunar and Planetary Laboratory, University of Arizona.Google Scholar
Kuzmin, R. O., Zabalueva, E. V., Mitrofanov, I. G., et al. (2004). Regions of potential existence of free water (ice) in the near-surface martian ground: results from the Mars Odyssey High-Energy Neutron Detector (HEND). Solar System Research, 38, 1–11.CrossRefGoogle Scholar
Lamb, M. P., Howard, A. D., Johnson, J., et al. (2006). Can springs cut canyons into rock?Journal of Geophysical Research, 111, E07002, doi: 10.1029/2005JE002663.CrossRefGoogle Scholar
Lanagan, P. D., McEwen, A. S., Keszthelyi, L. P., and Thordarson, T. (2001). Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophysical Research Letters, 28, 2365–2368.CrossRefGoogle Scholar
Langevin, Y., Poulet, F., Bibring, J. -P., and Gondet, B. (2005a). Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science, 307, 1584–1586.CrossRefGoogle Scholar
Langevin, Y., Poulet, F., Bibring, J. -P., et al. (2005b). Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express. Science, 307, 1581–1584.CrossRefGoogle Scholar
Langlais, B., Purucker, M. E., and Mandea, M. (2004). Crustal magnetic field of Mars. Journal of Geophysical Research, 109, E02008, doi: 10.1029/2003JE002048.CrossRefGoogle Scholar
Laskar, J. and Robutel, P. (1993). The chaotic obliquity of the planets. Nature, 361, 608–612.CrossRefGoogle Scholar
Laskar, J., Levrard, B., and Mustard, J. F. (2002). Orbital forcing of the martian polar layered deposits. Nature, 419, 375–377.CrossRefGoogle ScholarPubMed
Laskar, J., Correia, A. C. M., Gastineau, M., et al. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 170, 343–364.CrossRefGoogle Scholar
Lebonnois, S., Quémerais, E., Montmessin, F., et al. (2006). Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations. Journal of Geophysical Research, 111, E09S05, doi: 10.1029/2005JE002643.CrossRefGoogle Scholar
Lee, D. -C. and Halliday, A. N. (1997). Core formation on Mars and differentiated asteroids. Nature, 388, 854–857.CrossRefGoogle Scholar
Lemoine, F. G., Smith, D. E., Rowlands, D. D.et al. (2001). An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. Journal of Geophysical Research, 106, 23 359–23 376.CrossRefGoogle Scholar
Lenardic, A., Nimmo, F. and Moresi, L. (2004). Growth of the hemispheric dichotomy and the cessation of plate tectonics on Mars. Journal of Geophysical Research, 109, E02003, doi: 10.1029/2003JE002172.CrossRefGoogle Scholar
Leovy, C. (2001). Weather and climate on Mars. Nature, 412, 245–249.CrossRefGoogle ScholarPubMed
Leshin, L. A. (2000). Insights into martian water reservoirs from analyses of martian meteorite QUE94201. Geophysical Research Letters, 27, 2017–2020.CrossRefGoogle Scholar
Lewis, K. W. and Aharonson, O. (2006). Stratigraphic analysis of the distributary fan in Eberswalde crater using stereo imagery. Journal of Geophysical Research, 111, E06001, doi: 10.1029/2005JE002558.CrossRefGoogle Scholar
Lewis, S. R., Collins, M., and Read, P. L. (1997). Data assimilation with a martian atmospheric GCM: an example using thermal data. Advances in Space Research, 19, 1267–1270.CrossRefGoogle Scholar
Lillis, R. J., Mitchell, D. L., Lin, R. P., Connerney, J. E. P., and Acuña, M. H. (2004). Mapping crustal magnetic fields at Mars using electron reflectometry. Geophysical Research Letters, 31, L15702, doi: 10.1029/2004GL020189.CrossRefGoogle Scholar
Lissauer, J. J., Dones, L., and Ohtsuki, K. (2000). Origin and evolution of terrestrial planet rotation. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 101–112.Google Scholar
Lodders, K. (1998). A survey of shergottite, nakhlite, and Chassigny meteorites whole-rock compositions. Meteoritics and Planetary Science, Suppl., 33, A183–A190.CrossRefGoogle Scholar
Lognonné, P. (2005). Planetary seismology. Annual Reviews of Earth and Planetary Science, 33, 571–604.CrossRef
Longhi, J. and Pan, V. (1989). The parent magmas of the SNC meteorites. In Proceedings of the 19th Lunar and Planetary Science Conference. Cambridge, UK: Cambridge University Press, pp. 451–464.Google Scholar
Longhi, J., Knittle, E., Holloway, J. R., and Wänke, H. (1992). The bulk composition, mineralogy, and internal structure of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 184–208.Google Scholar
Lucchitta, B. K. (1984). Ice and debris in the fretted terrain, Mars. Journal of Geophysical Research, 89, B409–B418.CrossRefGoogle Scholar
Lucchitta, B. K. (2001). Antarctic ice streams and outflow channels on Mars. Geophysical Research Letters, 28, 403–406.CrossRefGoogle Scholar
Lucchitta, B. K., McEwen, A. S., Clow, G. D., et al. (1992). The canyon system of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 453–492.Google Scholar
Lunine, J. I., Chambers, J., Morbidelli, A., and Leshin, L. A. (2003). The origin of water on Mars. Icarus, 165, 1–8.CrossRefGoogle Scholar
Lyons, J. R., Manning, C., and Nimmo, F. (2005). Formation of methane on Mars by fluid–rock interaction in the crust. Geophysical Research Letters, 32, L13201, doi: 10.1029/2004GL022161.CrossRefGoogle Scholar
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al. (1999). The magnetic properties experiments on Mars Pathfinder. Journal of Geophysical Research, 104, 8761–8779.CrossRefGoogle Scholar
Malin, M. C. and Carr, M. H. (1999). Groundwater formation of martian valleys. Nature, 397, 589–591.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S. (1999). Oceans or seas in the martian northern lowlands: high resolution imaging tests of proposed coastlines. Geophysical Research Letters, 26, 3049–3052.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000a). Sedimentary rocks of early Mars. Science, 290, 1927–1937.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000b). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–2335.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. Journal of Geophysical Research, 106, 23 429–23 570.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science, 302, 1931–1934.CrossRefGoogle ScholarPubMed
Malin, M. C., Edgett, K. S., Poslolova, L. V., McColley, S. M., and Dobrea, Noe E. Z. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573–1577.CrossRefGoogle ScholarPubMed
Mancinelli, R. L., Fahlen, T. F., Landheim, R., and Klovstad, M. R. (2004). Brines and evaporates: analogs for martian life. Advances in Space Research, 33, 1244–1246.CrossRefGoogle Scholar
Mangold, N. (2005). High latitude patterned grounds on Mars: classification, distribution and climatic control. Icarus, 174, 336–359.CrossRefGoogle Scholar
Mangold, N., Quantin, C., Ansan, V., Delacourt, C., and Allemand, P. (2004a). Evidence for precipitation on Mars from dendritic valleys on the Valles Marineris area. Science, 305, 78–81.CrossRefGoogle Scholar
Mangold, N., Maurice, S., Feldman, W. C., Costard, F., and Forget, F. (2004b). Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars. Journal of Geophysical Research, 109, E08001, doi: 10.1029/2004JE002235.CrossRefGoogle Scholar
Mangus, S. and Larsen, W. (2004). Lunar Receiving Laboratory Project History, NASA/CR-2004-208938. Washington, DC: NASA.Google Scholar
Mantas, G. P. and Hanson, W. B. (1979). Photoelectron fluxes in the martian ionosphere. Journal of Geophysical Research, 84, 369–385.CrossRefGoogle Scholar
Mathew, K. J. and Marti, K. (2001). Early evolution of martian volatiles: nitrogen and noble gas components in ALH84001 and Chassigny. Journal of Geophysical Research, 106, 1401–1422.CrossRefGoogle Scholar
Max, M. D. and Clifford, S. M. (2000). The state, potential distribution, and biological implications of methane in the martian crust. Journal of Geophysical Research, 105, 4165–4171.CrossRefGoogle Scholar
Max, M. D. and Clifford, S. M. (2001). Initiation of martian outflow channels: related to the dissociation of gas hydrate?Geophysical Research Letters, 28, 1787–1790.CrossRefGoogle Scholar
McEwen, A. S. and Bierhaus, E. B. (2006). The importance of secondary cratering to age constraints on planetary surfaces. Annual Reviews of Earth and Planetary Science, 34, 535–567.CrossRefGoogle Scholar
McEwen, A. S., Malin, M. C., Carr, M. H., and Hartmann, W. K. (1999). Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397, 584–586.CrossRefGoogle Scholar
McEwen, A. S., Preblich, B. S., Turtle, E. P., et al. (2005). The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus, 176, 351–381.CrossRefGoogle Scholar
McGill, G. E. (2000). Crustal history of north central Arabia Terra, Mars. Journal of Geophysical Research, 105, 6945–6959.CrossRefGoogle Scholar
McGill, G. E. and Hills, L. S. (1992). Origin of giant martian polygons. Journal of Geophysical Research, 97, 2633–2647.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Head, J. W., et al. (2001). Extension and uplift at Alba Patera, Mars: insights from MOLA observations and loading models. Journal of Geophysical Research, 106, 23 769–23 809.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Smith, D. E., et al. (2002). Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution. Journal of Geophysical Research, 107, 5136, doi: 10.1029/2002JE001854.CrossRefGoogle Scholar
McGovern, P. J., Solomon, S. C., Smith, D. E., et al. (2004a). Correction to “Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution.” Journal of Geophysical Research, 109, E07007, doi: 10.1029/2004JE00286.CrossRefGoogle Scholar
McGovern, P. J., Smith, J. R., Morgan, J. K., and Bulmer, M. H. (2004b). Olympus Mons aureole deposits: new evidence for a flank failure origin. Journal of Geophysical Research, 109, E08008, doi: 10.1029/2004JE002258.CrossRefGoogle Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996). Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924–930.CrossRefGoogle ScholarPubMed
McSween, H. Y. (2002). The rocks of Mars, from far and near. Meteoritics and Planetary Science, 37, 7–25.CrossRefGoogle Scholar
McSween, H. Y. and Harvey, R. P. (1993). Outgassed water on Mars: constraints from melt inclusions in SNC meteorites. Science, 259, 1890–1892.CrossRefGoogle ScholarPubMed
McSween, H. Y., Murchie, S. L., Crisp, J. A., et al. (1999). Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. Journal of Geophysical Research, 104, 8679–8715.CrossRefGoogle Scholar
McSween, H. Y., Grove, T. L., Lentz, R. C. F., et al. (2001). Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature, 409, 487–490.CrossRefGoogle ScholarPubMed
McSween, H. Y., Grove, T. L., and Wyatt, M. B. (2003). Constraints on the composition and petrogenesis of the martian crust. Journal of Geophysical Research, 108, 5135, doi: 10.1029/2003JE002175.CrossRefGoogle Scholar
McSween, H. Y., Arvidson, R. E., Bell, J. F., et al. (2004). Basaltic rocks analyzed by the Spirit rover in Gusev Crater. Science, 305, 842–845.CrossRefGoogle ScholarPubMed
McSween, H. Y., Wyatt, M. B., Gellert, R., et al. (2006). Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. Journal of Geophysical Research, 111, E02S10, doi: 10.1029/2005JE002477.CrossRefGoogle Scholar
Mège, D. and Masson, P. (1996). Amounts of crustal stretching in Valles Marineris, Mars. Planetary and Space Science, 44, 749–782.CrossRefGoogle Scholar
Meier, R., Owen, T. C., Matthews, H. E., et al. (1998). A determination of the HDO/H2O ratio in Comet C/1995 O1 (Hale-Bopp). Science, 279, 842–844.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M. (1993). Geographic variations in the thermal and diffusive stability of ground ice on Mars. Journal of Geophysical Research, 98, 3345–3364.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M. (1995). The distribution and behavior of martian ground ice during past and present epochs. Journal of Geophysical Research, 100, 11 781–11 799.Google Scholar
Mellon, M. T., Jakosky, B. M., and Postawko, S. E. (1997). The persistence of equatorial ground ice on Mars. Journal of Geophysical Research, 102, 19 357–19 369.CrossRefGoogle Scholar
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R. (2000). High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus, 148, 437–455.CrossRefGoogle Scholar
Mellon, M. T., Feldman, W. C., and Prettyman, T. H. (2004). The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169, 324–340.CrossRefGoogle Scholar
Melosh, H. J. (1984). Impact ejection, spallation, and the origin of meteorites. Icarus, 59, 234–260.CrossRefGoogle Scholar
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. New York: Oxford University Press.Google Scholar
Melosh, H. J. and Vickery, A. M. (1989). Impact erosion of the primordial atmosphere of Mars. Nature, 338, 487–489.CrossRefGoogle ScholarPubMed
Milkovich, S. M., Head, J. W., and Pratt, S. (2002). Meltback of Hesperian-aged ice-rich deposits near the south pole of Mars: evidence for drainage channels and lakes. Journal of Geophysical Research, 107, 5043, doi: 10.1029/2001JE001802.CrossRefGoogle Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al. (2006). Geochemical and mineralogical indicators for aqueous processes in Columbia Hills of Gusev crater, Mars. Journal of Geophysical Research, 111, E02S12, doi: 10.1029/2005JE002560.CrossRefGoogle Scholar
Mischna, M. A., Richardson, M. I., Wilson, R. J., and McCleese, D. J. (2003). On the orbital forcing of martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. Journal of Geophysical Research, 108, 5062, doi: 10.1029/2003JE002051.CrossRefGoogle Scholar
Mitrofanov, I., Anfimov, D., Kozyrev, A., et al. (2002). Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science, 297, 78–81.CrossRefGoogle ScholarPubMed
Mittlefehldt, D. W. (1994). ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteoritics, 29, 214–221.CrossRefGoogle Scholar
Montési, L. G. J. and Zuber, M. T. (2003). Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability. Journal of Geophysical Research, 108, 5048, doi: 10.1029/2002JE001974.CrossRefGoogle Scholar
Moore, H. J. and Jakosky, B. M. (1989). Viking landing sites, remote-sensing observations, and physical properties of martian surface materials. Icarus, 81, 164–184.CrossRefGoogle Scholar
Moore, H. J., Bickler, D. B., Crisp, J. A., et al. (1999). Soil-like deposits observed by Sojourner, the Pathfinder rover. Journal of Geophysical Research, 104, 8729–8746.CrossRefGoogle Scholar
Moore, J. M. and Howard, A. D. (2005). Large alluvial fans on Mars. Journal of Geophysical Research, 110, E04005, doi: 10.1029/2004JE002352.CrossRefGoogle Scholar
Morbidelli, A., Chambers, J., Lunine, J. L., et al. (2000). Source regions and time scales for the delivery of water to Earth. Meteoritics, 35, 1309–1320.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F., et al. (2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research, 105, 1757–1817.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al. (2004). Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit rover. Science, 305, 833–836.CrossRefGoogle ScholarPubMed
Morris, R. V., Ming, D. W., Graff, T. G., et al. (2005). Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 168–178.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al. (2006). Mössbauer mineralogy of rock, soil, and dust at Gusev Crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. Journal of Geophysical Research, 111, E02S13, doi: 10.1029/2005JE002584.CrossRefGoogle Scholar
Mouginis-Mark, P. J. and Christensen, P. R. (2005). New observations of volcanic features on Mars from the THEMIS instrument. Journal of Geophysical Research, 110, E08007, doi: 10.1029/2005JE002421.CrossRefGoogle Scholar
Mouginis-Mark, P. and Yoshioka, M. T. (1998). The long lava flows of Elysium Planitia, Mars. Journal of Geophysical Research, 103, 19 389–19 400.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L., and Head, J. W. (1982). Explosive volcanism on Hecates Tholus, Mars: investigation of eruption conditions. Journal of Geophysical Research, 87, 9890–9904.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L., and Zimbelman, J. R. (1988). Polygenic eruptions on Alba Patera, Mars: evidence of channel erosion on pyroclastic flows. Bulletin of Volcanology, 50, 361–379.CrossRefGoogle Scholar
Mouginis-Mark, P. J., McCoy, T. J., Taylor, G. J., and Keil, K. (1992a). Martian parent craters for the SNC meteorites. Journal of Geophysical Research, 97, 10 213–10 225.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L., and Zuber, M. T. (1992b). The physical volcanology of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 424–452.Google Scholar
Muhleman, D. O., Grossman, A. W., and Butler, B. J. (1995). Radar investigation of Mars, Mercury, and Titan. Annual Reviews of Earth and Planetary Science, 23, 337–374.CrossRefGoogle Scholar
Murchie, S. and Erard, S. (1996). Spectral properties and heterogeneity of Phobos from measurements by Phobos 2. Icarus, 123, 63–86.CrossRefGoogle Scholar
Murphy, J. R., Leovy, C. B., and Tillman, J. E. (1990). Observations of martian surface winds at the Viking Lander 1 site. Journal of Geophysical Research, 95, 14 555–14 576.CrossRefGoogle Scholar
Murphy, J. R., Pollack, J. B., Haberle, R. M., et al., (1995). 3-dimensional numerical simulations of martian global dust storms. Journal of Geophysical Research, 100, 26 357–26 376.CrossRefGoogle Scholar
Murray, B., Koutnik, M., Byrne, S., et al. (2001). Preliminary geological assessment of the northern edge of Ultimi Lobe, Mars south polar layered deposits. Icarus, 154, 80–97.CrossRefGoogle Scholar
Murray, J. B., Muller, J. -P., Neukum, G., et al. (2005). Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator. Nature, 434, 352–356.CrossRefGoogle ScholarPubMed
Musselwhite, D. S., Swindle, T. D., and Lunine, J. I. (2001). Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophysical Research Letters, 28, 1283–1285.CrossRefGoogle Scholar
Mustard, J. F. and Cooper, C. D. (2005). Joint analysis of ISM and TES spectra: the utility of multiple wavelength regimes for martian surface studies. Journal of Geophysical Research, 110, E05012, doi: 10.1029/2004JE002355.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, M. K. (2001). Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature, 412, 411–414.CrossRefGoogle ScholarPubMed
Mustard, J. F., Poulet, F., Gendrin, A., et al. (2005). Olivine and pyroxene diversity in the crust of Mars. Science, 307, 1594–1597.CrossRefGoogle ScholarPubMed
Mutch, T. A., Arvidson, R. E., Head, J. W., Jones, K. L., and Saunders, R. S. (1976). The Geology of Mars. Princeton, NJ: Princeton University Press.Google Scholar
Neukum, G., Jaumann, R., Hoffmann, H., et al. (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 432, 971–979.CrossRefGoogle ScholarPubMed
Neumann, G. A., Zuber, M. T., Wieczorek, M. A.et al. (2004). Crustal structure of Mars from gravity and topography. Journal of Geophysical Research, 109, E08002, doi: 10.1029/2004JE002262.CrossRefGoogle Scholar
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. (2002a). Modeling the martian dust cycle. 1. Representations of dust transport processes. Journal of Geophysical Research, 107, 5123, doi: 10.1029/2002JE001910.CrossRefGoogle Scholar
Newman, C. E., Lewis, S. R., Read, P. L., and Forget, F. (2002b). Modeling the martian dust cycle. 2. Multiannual radiatively active dust transport simulations. Journal of Geophysical Research, 107, 5124, doi: 10.1029/2002JE001920.CrossRefGoogle Scholar
Newman, M. J. and Rood, R. T. (1977). Implications of solar evolution for the Earth's early atmosphere. Science, 198, 1035–1037.CrossRefGoogle ScholarPubMed
Newsom, H. E., Hagerty, J. J., and Thorsos, I. E. (2001). Location and sampling of aqueous and hydrothermal deposits in martian impact craters. Astrobiology, 1, 71–88.CrossRefGoogle ScholarPubMed
Nimmo, F. (2000). Dike intrusion as a possible cause of linear martian magnetic anomalies. Geology, 28, 391–394.2.0.CO;2>CrossRefGoogle Scholar
Nimmo, F. and Stevenson, D. J. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. Journal of Geophysical Research, 105, 11 969–11 980.CrossRefGoogle Scholar
Dobrea, Noe E. Z., Bell, J. F., Wolff, M. J., and Gordon, K. D. (2003). H2O- and OH-bearing minerals in the martian regolith: analysis of 1997 observations from HST/NICMOS. Icarus, 166, 1–20.Google Scholar
Norman, M. D. (1999). The composition and thickness of the crust of Mars estimated from REE and Nd isotopic compositions of martian meteorites. Meteoritics and Planetary Science, 34, 439–449.CrossRefGoogle Scholar
Norman, M. D. (2002). Thickness and composition of the martian crust revisited: implications of an ultradepleted mantle with a Nd isotopic composition like that of QUE94201. Lunar and Planetary Science XXXIII, Abstract #1157 (CD-ROM). Houston, TX: Lunar and Planetary Institute.Google Scholar
Novak, R. E., Mumma, M. J., DiSanti, M. A., Russo, Dello N., and Magee-Sauer, K. (2002). Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion. Icarus, 158, 14–23.CrossRefGoogle Scholar
Nye, J. F., Durham, W. B., Schenk, P. M., and Moore, J. M. (2000). The instability of a south polar cap on Mars composed of carbon dioxide. Icarus, 144, 449–455.CrossRefGoogle Scholar
Nyquist, L. E., Bogard, D. D., Shih, C. -Y., et al. (2001). Ages and geologic histories of martian meteorites. Space Science Reviews, 96, 105–164.CrossRefGoogle Scholar
Owen, T. and Bar-Nun, A. (1995). Comets, impacts, and atmospheres. Icarus, 116, 215–226.CrossRefGoogle ScholarPubMed
Owen, T., Maillard, J. P., deBergh, C., and Lutz, B. L. (1988). Deuterium on Mars: the abundance of HDO and the value of D/H. Science, 240, 1767–1770.CrossRefGoogle ScholarPubMed
Paige, D. A. (1992). The thermal stability of near-surface ground ice on Mars. Nature, 356, 43–45.CrossRefGoogle Scholar
Paige, D. A. and Keegan, K. D. (1994). Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations. 2. South polar region. Journal of Geophysical Research, 99, 25 993–26 013.Google Scholar
Paige, D. A., Bachman, J. E., and Keegan, K. D. (1994). Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations. 1. North polar region. Journal of Geophysical Research, 99, 25 959–25 991.Google Scholar
Parker, T. J., Saunders, R. S., and Schneeberger, D. M. (1989). Transitional morphology in west Deuteronilus Mensae, Mars: implications for modification of the lowland/upland boundary. Icarus, 82, 111–145.CrossRefGoogle Scholar
Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C., and Schneeberger, D. M. (1993). Coastal geomorphology of the martian northern plains. Journal of Geophysical Research, 98, 11 061–11 078.CrossRefGoogle Scholar
Pathare, A. V., Paige, D. A., and Turtle, E. (2005). Viscous relaxation of craters within the martian south polar layered deposits. Icarus, 174, 396–418.CrossRefGoogle Scholar
Pelkey, S. M., Jakosky, B. M., and Mellon, M. T. (2001). Thermal inertia of crater-related wind streaks on Mars. Journal of Geophysical Research, 106, 23 909–23 920.CrossRefGoogle Scholar
Pepin, R. O. (1991). On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus, 92, 2–79.CrossRefGoogle Scholar
Perrier, S., Bertaux, J. L., Lefèvre, F., et al. (2006). Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. Journal of Geophysical Research, 111, E09S06, doi: 10.1029/2006JE002681.CrossRefGoogle Scholar
Perron, J. T., Dietrich, W. E., Howard, A. D., McKean, J. A., and Pettinga, J. R. (2003). Ice-driven creep on martian debris slopes. Geophysical Research Letters, 30, 1747, doi: 10.1029/2003GL017603.CrossRefGoogle Scholar
Petit, J. -M., Morbidelli, A., and Chambers, J. (2001). The primordial excitation and clearing of the asteroid belt. Icarus, 153, 338–347.CrossRefGoogle Scholar
Phillips, R. J. (1991). Expected rate of Marsquakes. In Scientific Rationale and Requirements for a Global Seismic Network on Mars, Technical Report 91–02. Houston, TX: Lunar and Planetary Institute, pp. 35–38.Google Scholar
Phillips, R. J., Zuber, M. T., Solomon, S. C., et al. (2001). Ancient geodynamics and global-scale hydrology on Mars. Science, 291, 2587–2591.CrossRefGoogle ScholarPubMed
Picardi, G., Plaut, J. J., Biccari, D., et al. (2005). Radar soundings of the subsurface of Mars. Science, 310, 1925–1928.CrossRefGoogle ScholarPubMed
Pierazzo, E., Artemieva, N. A., and Ivanov, B. A. (2005). Starting conditions for hydrothermal systems underneath martian craters: Hydrocode modeling. In Large Meteorite Impacts III, Special Paper No. 384, ed. Kenkmann, T., Hörz, F., and Deutsch, A.. Boulder, CO: Geological Society of America, pp. 443–457.Google Scholar
Plescia, J. B. (1990). Recent flood lavas in the Elysium region of Mars. Icarus, 88, 465–490.CrossRefGoogle Scholar
Plescia, J. B. (1994). Geology of the small Tharsis volcanoes: Jovis Tholus, Ulysses Patera, Biblis Patera, Mars. Icarus, 111, 246–269.CrossRefGoogle Scholar
Plescia, J. B. (2000). Geology of the Uranius group volcanic constructs: Uranius Patera, Ceranunius Tholus, and Uranius Tholus. Icarus, 143, 378–396.CrossRefGoogle Scholar
Plescia, J. B. (2003). Cerberus Fossae, Elysium, Mars: a source for lava and water. Icarus, 164, 79–95.CrossRefGoogle Scholar
Pollack, J. B., Burns, J. A., and Tauber, M. E. (1979). Gas drag in primordial circumplanetary envelopes: a mechanism for satellite capture. Icarus, 37, 587–611.CrossRefGoogle Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M. and Poliakoff, K. (1987). The case for a warm wet climate on early Mars. Icarus, 71, 203–224.CrossRefGoogle ScholarPubMed
Pollack, J. B., Haberle, R. M., Schaeffer, J., and Lee, H. (1990). Simulations of the general circulation of the martian atmosphere. 1. Polar processes. Journal of Geophysical Research, 95, 1447–1473.CrossRefGoogle Scholar
Pollack, J. B., Haberle, R. M., Murphy, J. R., Schaeffer, H., and Lee, H. (1993). Simulations of the general circulation of the martian atmosphere. 2. Seasonal pressure variations. Journal of Geophysical Research, 98, 3149–3181.CrossRefGoogle Scholar
Poulet, F., Bibring, J. -P., Mustard, J. F., et al. (2005). Phyllosilicates on Mars and implications for early martian climate. Nature, 438, 623–627.CrossRefGoogle ScholarPubMed
Pruis, M. J. and Tanaka, K. L. (1995). The martian northern plains did not result from plate tectonics. In Lunar and Planetary Science XXVI. Houston, TX: Lunar and Planetary Institute, pp. 1147–1148.Google Scholar
Putzig, N. E., Mellon, M. T., Kretke, K. A., and Arvidson, R. E. (2005). Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173, 325–341.CrossRefGoogle Scholar
Quantin, C., Allemand, P., Mangold, N., and Delacourt, C. (2004). Ages of Valles Marineris (Mars) landslides and implications for canyon history. Icarus, 172, 555–572.CrossRefGoogle Scholar
Race, M. S. (1996). Planetary protection, legal ambiguity and the decision making process for Mars sample return. Advances in Space Research, 18, 345–350.CrossRefGoogle ScholarPubMed
Rafkin, S. C. R., Haberle, R. M. and Michaels, T. I. (2001). The Mars Regional Atmospheric Modeling System: model description and selected simulations. Icarus, 151, 228–256.CrossRefGoogle Scholar
Read, P. L. and Lewis, S. R. (2004). The Martian Climate Revisited. Chichester, UK: Praxis Publishing.Google Scholar
Reid, I. N., Sparks, W. B., Lubow, S., et al. (2006). Terrestrial models for extraterrestrial life: methanogens and halophiles at martian temperatures. International Journal of Astrobiology, 5, 89–97.CrossRefGoogle Scholar
Richardson, M. I. and Mischna, M. A. (2005). Long-term evolution of transient liquid water on Mars. Journal of Geophysical Research, 110, E03003, doi: 10.1029/2004JE002367.CrossRefGoogle Scholar
Richardson, M. I. and Wilson, R. J. (2002). Investigation of the nature and stability of the martian seasonal water cycle with a general circulation model. Journal of Geophysical Research, 107, 5031, doi: 10.1029/2001JE001536.Google Scholar
Richardson, M. I., Wilson, R. J., and Rodin, V. (2002). Water ice clouds in the martian atmosphere: general circulation model experiments with a simple cloud scheme. Journal of Geophysical Research, 107, 5064, doi: 10.1029/2001JE001804.Google Scholar
Rieder, R., Wänke, H., Economou, T., and Turkevich, A. (1997a). Determination of the chemical composition of martian soil and rocks: the alpha proton X-ray spectrometer. Journal of Geophysical Research, 102, 4027–4044.CrossRefGoogle Scholar
Rieder, R., Economou, T., Wänke, H., et al. (1997b). The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science, 278, 1771–1774.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Brückner, J., et al. (2003). The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. Journal of Geophysical Research, 108, 8066, doi: 10.1029/2003JE002150.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al. (2004). Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science, 306, 1746–1749.CrossRefGoogle ScholarPubMed
Righter, K., Hervig, R. J., and Kring, D. A. (1998). Accretion and core formation on Mars: molybdenum contents of melt inclusion glasses in three SNC meteorites. Geochimica et Cosmochimica Acta, 62, 2167–2177.CrossRefGoogle Scholar
Rivkin, A. S., Binzel, R. P., Howell, E. S., Bus, S. J., and Grier, J. A. (2003). Spectroscopy and photometry of Mars Trojans. Icarus, 165, 349–354.CrossRefGoogle Scholar
Robert, F. (2001). The origin of water on Earth. Science, 293, 1056–1058.CrossRefGoogle ScholarPubMed
Robert, F., Gautier, D., and Dubrulle, B. (2000). The solar system D/H ratio: observations and theories. Space Science Reviews, 92, 201–224.CrossRefGoogle Scholar
Robinson, M. S., Mouginis-Mark, P. J., Zimbelman, J. R., et al. (1993). Chronology, eruption duration, and atmospheric contribution of the martian volcano Apollinaris Patera. Icarus, 104, 301–323.CrossRefGoogle Scholar
Rochette, P., Fillion, G., Ballou, R., et al. (2003). High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars. Geophysical Research Letters, 30, 1683, doi: 10.1029/2003GL017359.CrossRefGoogle Scholar
Roddy, D. J., Pepin, R. O., and Merrill, R. B. (1977). Impact and Explosion Cratering: Planetary and Terrestrial Implications. New York: Pergamon Press.Google Scholar
Romanek, C. S., Grady, M. M., Wright, I. P., et al. (1994). Record of fluid–rock interactions on Mars from the meteorite ALH84001. Nature, 37, 655–657.CrossRefGoogle Scholar
Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C., and Righter, K. (2003). Mechanisms of metal–silicate equilibrium in the terrestrial magma ocean. Earth and Planetary Science Letters, 205, 239–255.CrossRefGoogle Scholar
Rummel, J. D. and Meyer, M. A. (1996). A consensus approach to planetary protection requirements: recommendations for Mars Lander Missions. Advances in Space Research, 18, 317–321.CrossRefGoogle ScholarPubMed
Rummel, J. D., Stabekis, P. D., DeVincenzi, D. L., and Barengoltz, J. B. (2002). COSPAR's planetary protection policy: a consolidated draft. Advances in Space Research, 30, 1567–1571.CrossRefGoogle Scholar
Ryan, S., Dlugokencky, E. J., Tans, P. P., and Trudeau, M. E. (2006). Mauna Loa volcano is not a methane source: implications for Mars. Geophysical Research Letters, 33, L12301, doi: 10.1029/2006GL026223.CrossRefGoogle Scholar
Sagan, C. and Chyba, C. (1997). The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science, 276, 1217–1221.CrossRefGoogle ScholarPubMed
Schaber, G. G. (1982). Syrtis Major: a low-relief volcanic shield. Journal of Geophysical Research, 87, 9852–9866.CrossRefGoogle Scholar
Schneeberget, D. M. and Pieri, D. C. (1991). Geomorphology and stratigraphy of Alba Patera, Mars. Journal of Geophysical Research, 98, 1907–1930.CrossRefGoogle Scholar
Schofield, J. T., Barnes, J. R., Crisp, D.et al. (1997). The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment. Science, 278, 1752–1758.CrossRefGoogle ScholarPubMed
Scholl, H., Marzari, F., and Tricarico, P. (2005). Dynamics of Mars Trojans. Icarus, 175, 397–408.CrossRefGoogle Scholar
Schorghofer, N. and Aharonson, O. (2005). Stability and exchange of subsurface ice on Mars. Journal of Geophysical Research, 110, E05003, doi: 10.1029/2004JE002350.CrossRefGoogle Scholar
Schubert, G., Russell, C. T., and Moore, W. B. (2000). Timing of the martian dynamo. Nature, 408, 666–667.CrossRefGoogle ScholarPubMed
Schuerger, A. C., Richards, J. T., Newcombe, D. A., and Venkateswaran, K. (2006). Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation. Icarus, 181, 52–62.CrossRefGoogle Scholar
Schultz, P. H. (1992). Atmospheric effects on ejecta emplacement. Journal of Geophysical Research, 97, 11 623–11 662.Google Scholar
Schultz, P. H. and Lutz-Garihan, A. B. (1982). Grazing impacts on Mars: a record on lost satellites. Journal of Geophysical Research, 87, A84–A96.CrossRefGoogle Scholar
Schultz, R. A. (1998). Multiple-process origin of Valles Marineris basins and troughs, Mars. Planetary and Space Science, 46, 827–834.CrossRefGoogle Scholar
Schultz, R. A. (2000). Localization of bedding plane slip and backthrust faults above blind thrust faults: keys to wrinkle ridge structure. Journal of Geophysical Research, 105, 12 035–12 052.CrossRefGoogle Scholar
Scott, D. H. and Tanaka, K. L. (1982). Ignimbrites of Amazonis Planitia region of Mars. Journal of Geophysical Research, 87, 1179–1190.CrossRefGoogle Scholar
Scott, E. R. D. (1999). Origin of carbonate–magnetite–sulfide assemblages in martian meteorite ALH84001. Journal of Geophysical Research, 104, 3803–3813.CrossRefGoogle ScholarPubMed
Scott, E. R. D. and Fuller, M. (2004). A possible source for the martian crustal magnetic field. Earth and Planetary Science Letters, 220, 83–90.CrossRefGoogle Scholar
Sears, D. W. G. and Kral, T. A. (1998). Martian “microfossils” in lunar meteorites?Meteoritics and Planetary Science, 33, 791–794.CrossRefGoogle Scholar
Segura, T. L., Toon, O. B., Colaprete, A., and Zahnle, K. (2002). Environmental effects of large impacts on Mars. Science, 298, 1977–1980.CrossRefGoogle ScholarPubMed
Seu, R., Biccari, D., Orosei, R., et al. (2004). SHARAD: the MRO 2005 shallow radar. Planetary and Space Science, 52, 157–166.CrossRefGoogle Scholar
Shih, C.-Y., Nyquist, L. E., Bogard, D. D., et al. (1982). Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALH77005: late magmatism on a geologically active planet. Geochimica et Cosmochimica Acta, 46, 2323–2344.CrossRefGoogle Scholar
Shih, C.-Y., Nyquist, L. E., and Wiesmann, H. (1999). Samarium–neodymium and rubidium–strontium systematics of nakhlite Governador Valadares. Meteoritics, 34, 647–655.CrossRefGoogle Scholar
Shoemaker, E. M. (1963). Impact mechanics at Meteor Crater, Arizona. In The Moon, Meteorites, and Comets, ed. Middlehurst, B. M. and Kuiper, G. P.. Chicago, IL: University of Chicago Press, pp. 301–336.Google Scholar
Shoemaker, E. M. and Chao, E. C. T. (1962). New evidence for the impact origin of the Ries Basin, Bavaria, Germany. Journal of Geophysical Research, 66, 3371–3378CrossRefGoogle Scholar
Siebert, N. M. and Kargel, J. S. (2001). Small-scale martian polygonal terrain: implications for liquid surface water. Geophysical Research Letters, 28, 899–902.CrossRefGoogle Scholar
Simonelli, D. P., Wisz, M., Switala, A., et al. (1998). Photometric properties of Phobos surface materials from Viking images. Icarus, 131, 52–77.CrossRefGoogle Scholar
Simpson, R. A., Harmon, J. K., Zisk, S. H., Thompson, T. W., and Muhleman, D. O. (1992). Radar determinations of Mars surface properties. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 652–685.Google Scholar
Singer, R. B. (1985). Spectroscopic observation of Mars. Advances in Space Research, 5, 59–68.CrossRefGoogle Scholar
Sizemore, H. G. and Mellon, M. T. (2006). Effects of soil heterogeneity on martian ground-ice stability and orbital estimates of ice table depth. Icarus, 185, 358–369.CrossRefGoogle Scholar
Sleep, N. H. (1994). Martian plate tectonics. Journal of Geophysical Research, 99, 5639–5655.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C., et al. (1999). The global topography of Mars and implications for surface evolution. Science, 284, 1495–1503.CrossRefGoogle ScholarPubMed
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001a). Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research, 106, 23 689–23 722.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., and Neumann, G. A. (2001b). Seasonal variations of snow depth on Mars. Science, 294, 2141–2146.CrossRefGoogle Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R. (2000). Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing. Journal of Geophysical Research, 105, 9539–9552.CrossRefGoogle Scholar
Smith, P. H. and the Phoenix Science Team (2004). The Phoenix mission to Mars. In Lunar and Planetary Science XXXV, Abstract #2050. Houston, TX: Lunar and Planetary Institute.Google Scholar
Smith, P. H., Bell, J. F., Bridges, N. T., et al. (1997). Results from the Mars Pathfinder Camera. Science, 278, 1758–1765.CrossRefGoogle ScholarPubMed
Hale, Snyder A., Bass, D. S., and Tamppari, L. K. (2005). Monitoring the perennial martian northern polar cap with MGS MOC. Icarus, 174, 502–512.CrossRefGoogle Scholar
Soare, R. J., Burr, D. M., and Tseung, J. M. W. B. (2005). Possible pingos and a periglacial landscape in northwest Utopia Planitia. Icarus, 174, 373–382.CrossRefGoogle Scholar
Soderblom, L. A. (1992). The composition and mineralogy of the martian surface from spectroscopic observations: 0.3 μm to 50 μm. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 557–593.Google Scholar
Soderblom, L. A., Anderson, R. C., Arvidson, R. E., et al. (2004). Soils of Eagle Crater and Meridiani Planum at the Opportunity rover landing site. Science, 306, 1723–1726.CrossRefGoogle ScholarPubMed
Soffen, G. A. (1977). The Viking Project. Journal of Geophysical Research, 82, 3959–3970.CrossRefGoogle Scholar
Sohl, F. and Spohn, T. (1997). The structure of Mars: implications from SNC meteorites. Journal of Geophysical Research, 102, 1613–1635.CrossRefGoogle Scholar
Solomatov, V. S. (2000). Fluid dynamics of a terrestrial magma ocean. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 323–338.Google Scholar
Solomon, S. C. (1979). Formation, history, and energetics of cores in the terrestrial planets. Earth and Planetary Science Letters, 19, 168–182.CrossRefGoogle Scholar
Solomon, S. C. and Head, J. W. (1981). The importance of heterogenous lithospheric thickness and volcanic construction. Journal of Geophysical Research, 82, 9755–9774.Google Scholar
Solomon, S. C., Aharonson, O., Aurnou, J. M., et al. (2005). New perspectives on ancient Mars. Science, 307, 1214–1220.CrossRefGoogle ScholarPubMed
Soukhovitskaya, V. and Manga, M. (2006). Martian landslides in Valles Marineris: wet or dry?Icarus, 180, 348–352.CrossRefGoogle Scholar
Space Studies Board (1977). Post-Viking Biological Investigations of Mars. Washington, DC: National Academy of Sciences.
Sprenke, K. F. and Baker, L. L. (2000). Magnetization, paleomagnetic poles, and polar wander on Mars. Icarus, 147, 26–34.CrossRefGoogle Scholar
Squyres, S. W. and Carr, M. H. (1986). Geomorphic evidence for the distribution of ground ice on Mars. Science, 231, 249–252.CrossRefGoogle ScholarPubMed
Squyres, S. W. and Kasting, J. F. (1994). Early Mars: how warm and how wet?Science, 265, 744–749.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, R. E., Bell, J. F., et al. (2004a). The Spirit rover's Athena science investigation at Gusev Crater, Mars. Science, 305, 794–799.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F., et al. (2004b). The Opportunity rover's Athena science investigation at Meridiani Planum, Mars. Science, 306, 1698–1703.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al. (2004c). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–1714.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al. (2006). Rocks of the Columbia Hills. Journal of Geophysical Research, 111, E02S11, doi: 10.1029/2005JE002562.CrossRefGoogle Scholar
Stevenson, D. J. (2001). Mars' core and magnetism. Nature, 412, 214–219.CrossRefGoogle ScholarPubMed
Stevenson, D. J. (2003). Planetary magnetic fields. Earth and Planetary Science Letters, 208, 1–11.CrossRefGoogle Scholar
Stewart, S. T. and Nimmo, F. (2002). Surface runoff features on Mars: testing the carbon dioxide formation hypothesis. Journal of Geophysical Research, 107, 5069, doi: 10.1029/2000JE001465.CrossRefGoogle Scholar
Stewart, S. T., O'Keefe, J. D., and Ahrens, T. J. (2001). The relationship between rampart crater morphologies and the amount of subsurface ice. In Lunar and Planetary Science XXXII, Abstract #2092. Houston, TX: Lunar and Planetary Institute.Google Scholar
Stöffler, D. and Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Science Reviews, 96, 9–54.CrossRefGoogle Scholar
Strom, R. G., Croft, S. K., and Barlow, N. G. (1992). The martian impact cratering record. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 383–423.Google Scholar
Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., and Kring, D. A. (2005). The origin of planetary impactors in the inner solar system. Science, 309, 1847–1850.CrossRefGoogle ScholarPubMed
Sullivan, R., Thomas, P., Veverka, J., Malin, M., and Edgett, K. S. (2001). Mass movement slope streaks imaged by the Mars Orbiter Camera. Journal of Geophysical Research, 106, 23 607–23 633.CrossRefGoogle Scholar
Sullivan, R., Bandfield, D., Bell, J. F., et al. (2005). Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site. Nature, 436, 58–61.CrossRefGoogle ScholarPubMed
Swindle, T. D. and Jones, J. H. (1997). The xenon isotopic composition of the primordial martian atmosphere: contributions from solar and fission components. Journal of Geophysical Research, 102, 1671–1678.CrossRefGoogle Scholar
Tabuchnik, K. S. and Evans, N. W. (1999). Cartography for martian Trojans. Astrophysical Journal, 517, L63–L66.CrossRefGoogle Scholar
Tanaka, K. L. and Kolb, E. J. (2001). Geologic history of the polar regions of Mars based on Mars Global Surveyor Data. 1. Noachian and Hesperian periods. Icarus, 154, 3–21.CrossRefGoogle Scholar
Tanaka, K. L., Scott, D. H., and Greeley, R. (1992). Global stratigraphy. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 345–382.Google Scholar
Taylor, G. J., Martel, L. M. V., and Boynton, W. V. (2006). Mapping Mars geochemically. In Lunar and Planetary Science XXXVII, Abstract #1981. Houston, TX: Lunar and Planetary Institute.Google Scholar
Tera, F., Papanastassiou, D. A., and Wasserburg, G. J. (1974). Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters, 22, 1–21.CrossRefGoogle Scholar
Terasaki, H., Frost, D. J., Rubie, D. C., and Langenhorst, F. (2005). The effect of oxygen and sulphur on the dihedral angle between Fe-O-S melt and silicate minerals at high pressure: implications for martian core formation. Earth and Planetary Science Letters, 232, 379–392.CrossRefGoogle Scholar
Thomas, P., Veverka, J., Bell, J., Lunine, J., and Cruikshank, D. (1992a). Satellites of Mars: geologic history. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 1257–1282.Google Scholar
Thomas, P., Squyres, S., Herkenhoff, K., Howard, A., and Murray, B. (1992b). Polar deposits of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 767–795.Google Scholar
Thomas, P. C., Veverka, J., Sullivan, R., et al. (2000a). Phobos: regolith and ejecta blocks investigated with Mars Orbiter Camera images. Journal of Geophysical Research, 105, 15 091–15 106.CrossRefGoogle Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., et al. (2000b). North–south geological differences between the residual polar caps on Mars. Nature, 404, 161–164.CrossRefGoogle Scholar
Thomas, P. C., Gierasch, P., Sullivan, R., et al. (2003). Mesoscale linear streaks on Mars: environments of dust entrainment. Icarus, 162, 242–258.CrossRefGoogle Scholar
Thomas, P. C., Malin, M. C., James, P. B., et al. (2005). South polar residual cap of Mars: features, stratigraphy, and changes. Icarus, 174, 535–559.CrossRefGoogle Scholar
Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., et al. (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential martian magnetofossils. Geochimica et Cosmochimica Acta, 64, 4049–4081.CrossRefGoogle ScholarPubMed
Thomson, B. J. and Head, J. W. (2001). Utopia basin, Mars: characterization of topography and morphology and assessment of the origin and evolution of basin internal structures. Journal of Geophysical Research, 106, 23 209–23 230.CrossRefGoogle Scholar
Titus, T. N., Kieffer, H. H., Mullins, K. F., and Christensen, P. R. (2001). TES premapping data: slab ice and snow flurries in the martian north polar night. Journal of Geophysical Research, 106, 23 181–23 196.CrossRefGoogle Scholar
Titus, T. N., Kieffer, H. H., and Christensen, P. R. (2003). Exposed water ice discovered near the south pole of Mars. Science, 299, 1048–1050.CrossRefGoogle ScholarPubMed
Toigo, A. D. and Richardson, M. I. (2002). A mesoscale model for the martian atmosphere. Journal of Geophysical Research, 107, 5049, doi: 10.1029/2001JE001489.CrossRefGoogle Scholar
Toigo, A. D. and Richardson, M. I. (2003). Meteorology of proposed Mars Exploration Rover landing sites. Journal of Geophysical Research, 108, 8092, doi: 10.1029/2003JE002064.CrossRefGoogle Scholar
Toigo, A. D., Richardson, M. I., Ewald, S. P., and Gierasch, P. J. (2003). Numerical simulations of martian dust devils. Journal of Geophysical Research, 108, 5047, doi: 10.1029/2002JE002002.CrossRefGoogle Scholar
Toksöz, M. N. and Hsui, A. T. (1978). Thermal history and evolution of Mars. Icarus, 34, 537–547.CrossRefGoogle Scholar
Tonks, W. B. and Melosh, H. J. (1990). The physics of crystal settling and suspension in a turbulent magma ocean. In Origin of the Earth, ed. Newsom, H. E. and Jones, J. H.. New York: Oxford University Press, pp. 151–174.Google Scholar
Tornabene, L. L., Moersch, J. E., McSween, H. Y., et al. (2006). Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: implications for possible martian meteorite source regions. Journal of Geophysical Research, 111, E10006, doi: 10.1029/2005JE002600.CrossRefGoogle Scholar
Touma, J. and Wisdom, J. (1993). The chaotic obliquity of Mars. Science, 259, 1294–1296.CrossRefGoogle ScholarPubMed
Treiman, A. H. (1995). S ≠ NC: multiple source areas for martian meteorites. Journal of Geophysical Research, 100, 5329–5340.CrossRefGoogle Scholar
Treiman, A. H., Barrett, R. A., and Gooding, J. L. (1993). Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite. Meteoritics, 28, 86–97.CrossRefGoogle Scholar
Treiman, A. H., Fuks, K. H., and Murchie, S. (1995). Diagenetic layers in the upper walls of Valles Marineris, Mars: evidence for drastic climate change since the mid-Hesperian. Journal of Geophysical Research, 100, 26 339–26 344.CrossRefGoogle Scholar
Trofimov, V. I., Victorov, A., and Ivanov, M. (1996). Selection of sterilization methods for planetary return missions. Advances in Space Research, 18, 333–337.CrossRefGoogle ScholarPubMed
Turcotte, D. L. and Schubert, G. (2002). Geodynamics, 2nd edn. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Turtle, E. P. and Melosh, H. J. (1997). Stress and flexural modeling of the martian lithospheric response to Alba Patera. Icarus, 126, 197–211.CrossRefGoogle Scholar
Tyler, D., Barnes, J. R., and Haberle, R. M. (2002). Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model. Journal of Geophysical Research, 107, 5018, doi: 10.1029/2001JE001618.CrossRefGoogle Scholar
Vago, J. L., Gardini, B., Baglioni, P., et al. (2006). ExoMars: ESA's mission to search for signs of life on the Red Planet. In Lunar and Planetary Science XXXVII, Abstract #1871. Houston, TX: Lunar and Planetary Institute.Google Scholar
Gasselt, S., Reiss, D., Thorpe, A. K., and Neukum, G. (2005). Seasonal variations of polygonal thermal contraction crack patterns in a south polar trough, Mars. Journal of Geophysical Research, 110, E08002, doi: 10.1029/2004JE002385.Google Scholar
Thienen, P., Vlaar, N. J., and Berg, A. P. (2004). Plate tectonics on the terrestrial planets. Physics of the Earth and Planetary Interiors, 142, 61–74.CrossRefGoogle Scholar
Varnes, E. S., Jakosky, B. M., and McCollom, T. M. (2003). Biological potential of martian hydrothermal systems. Astrobiology, 3, 407–414.CrossRefGoogle ScholarPubMed
Vasavada, A. R. and the MSL Science Team (2006). NASA's 2009 Mars Science Laboratory: an update. In Lunar and Planetary Science XXXVII, Abstract #1940. Houston, TX: Lunar and Planetary Institute.Google Scholar
Vasavada, A. R., Williams, J. -P., Paige, D. A., et al. (2000). Surface properties of Mars' polar layered deposits and polar landing sites. Journal of Geophysical Research, 105, 6961–6969.CrossRefGoogle Scholar
Wallace, P. and Carmichael, I. S. E. (1992). Sulfur in basaltic magmas. Geochimica et Cosmochimica Acta, 56, 1863–1874.CrossRefGoogle Scholar
Wang, H. and Ingersoll, A. P. (2002). Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera. Journal of Geophysical Research, 107, 5078, doi: 10.1029/2001JE001815.CrossRefGoogle Scholar
Wang, H., Zurek, R. W., and Richardson, M. I. (2005). Relationship between frontal dust storms and transient eddy activity in the northern hemisphere of Mars as observed by Mars Global Surveyor. Journal of Geophysical Research, 110, E07005, doi: 10.1029/2005JE002423.CrossRefGoogle Scholar
Wänke, H. (1981). Constitution of terrestrial planets. Philosophical Transactions of the Royal Society of London A, 303, 287–302.CrossRefGoogle Scholar
Ward, A. W. (1979). Yardangs on Mars: evidence of recent wind erosion. Journal of Geophysical Research, 84, 8147–8166.CrossRefGoogle Scholar
Ward, W. R. (1992). Long-term orbital and spin dynamics of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 298–320.Google Scholar
Ward, W. R. (2000). On planetesimal formation: the role of collective particle behavior. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, pp. 75–84.Google Scholar
Warren, P. H. (1998). Petrologic evidence for low-temperature, possibly flood-evaporitic origin of carbonates in the ALH 84001 meteorite. Journal of Geophysical Research, 103, 16 759–16 773.CrossRefGoogle Scholar
Watson, L. L., Hutcheon, I. D., Epstein, S., and Stolper, E. M. (1994). Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science, 265, 86–90.CrossRefGoogle ScholarPubMed
Watters, T. R. (2003). Thrust faults along the dichotomy boundary in the eastern hemisphere of Mars. Journal of Geophysical Research, 108, 5054, doi: 10.1029/2002JE001934.CrossRefGoogle Scholar
Watters, T. R. (2004). Elastic dislocation modeling of wrinkle ridges on Mars. Icarus, 171, 284–294.CrossRefGoogle Scholar
Watters, T. R., Leuschen, C. J., Plaut, J. J.et al. (2006). MARSIS radar sounder evidence of buried basins in the northern lowlands of Mars. Nature, 444, 905–908.CrossRefGoogle ScholarPubMed
Weidenschilling, S. J. and Cuzzi, J. N. (1993). Formation of planetesimals in the solar nebula. In Protostars and Planets III, ed. Levy, E. H. and Lunine, J. I.. Tucson, AZ: University of Arizona Press, pp. 1031–1060.Google Scholar
Wentworth, S. J., Gibson, E. K., Velbel, M. A., and McKay, D. S. (2005). Antarctic dry valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus, 174, 383–395.CrossRefGoogle Scholar
Werner, S. C., Gasselt, S., and Neukum, G. (2003). Continual geological activity in Athabasca Valles, Mars. Journal of Geophysical Research, 108, 8081, doi: 10.1029/2002JE002020.CrossRefGoogle Scholar
Werner, S. C., Ivanov, B. A., and Neukum, G. (2006). Mars: secondary cratering – implications for age determination. In Workshop on Surface Ages and Histories: Issues in Planetary Chronology, Contribution No. 1320. Houston, TX: Lunar and Planetary Institute, pp. 55–56.Google Scholar
Wetherill, G. W. (1990). Formation of the Earth. Annual Reviews of Earth and Planetary Science, 18, 205–256.CrossRefGoogle Scholar
Wetherill, G. W. and Inaba, S. (2000). Planetary accumulation with a continuous supply of planetesimals. Space Science Reviews, 92, 311–320.CrossRefGoogle Scholar
Whelley, P. L. and Greeley, R. (2006). Latitudinal dependency in dust devil activity on Mars. Journal of Geophysical Research, 111, E10003, doi: 10.1029/2006JE002677.CrossRefGoogle Scholar
Whitmire, D. P., Doyle, L. R., Reynolds, R. T., and Matese, J. J. (1995). A slightly more massive young Sun as an explanation for warm temperatures on early Mars. Journal of Geophysical Research, 100, 5457–5464.CrossRefGoogle Scholar
Wieczorek, M. A. and Zuber, M. T. (2004). Thickness of the martian crust: improved constraints from geoid-to-topography ratios. Journal of Geophysical Research, 109, E01009, doi: 10.1029/2003JE002153.CrossRefGoogle Scholar
Wilhelms, D. E. and Squyres, S. W. (1984). The martian hemispheric dichotomy may be due to a giant impact. Nature, 309, 138–140.CrossRefGoogle Scholar
Williams, J. -P. and Nimmo, F. (2004). Thermal evolution of the martian core: implications for an early dynamo. Geology, 32, 97–100.CrossRefGoogle Scholar
Williams, J. -P., Paige, D. A., and Manning, C. E. (2003). Layering in the wall rock of Valles Marineris: intrusive and extrusive magmatism. Geophysical Research Letters, 30, 1623, doi: 10.1029/2003GL017662.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (1994). Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Review of Geophysics, 32, 221–263.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2002). Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. Journal of Geophysical Research, 107, 5057, doi: 10.1029/2001JE001593.CrossRefGoogle Scholar
Wilson, R. J. (1997). A general circulation model simulation of the martian polar warming. Geophysical Research Letters, 24, 123–126.CrossRefGoogle Scholar
Wilson, R. J., Banfield, D., Conrath, B. J., and Smith, M. D. (2002). Traveling waves in the northern hemisphere of Mars. Geophysical Research Letters, 29, 1684, doi: 10.1029/2002GL014866.CrossRefGoogle Scholar
Wise, D. U., Golombek, M. P., and McGill, G. E. (1979). Tectonic evolution of Mars. Journal of Geophysical Research, 84, 7934–7939.CrossRefGoogle Scholar
Wood, C. A. and Ashwal, L. D. (1981). SNC Meteorites: igneous rocks from Mars. In Proceedings of the 12th Lunar and Planetary Science Conference. New York: Pergamon Press, pp. 1359–1375.Google Scholar
Wood, C. A., Head, J. W., and Cintala, M. J. (1978). Interior morphology of fresh martian craters: the effects of target characteristics. In Proceedings of the 9th Lunar and Planetary Science Conference. New York: Pergamon Press, pp. 3691–3709.Google Scholar
Wyatt, M. B. and McSween, H. Y. (2002). Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature, 417, 263–266.CrossRefGoogle ScholarPubMed
Yen, A. S., Gellert, R., Schröder, C., et al. (2005). An integrated view of the chemistry and mineralogy of martian soils. Nature, 436, 49–54.CrossRefGoogle ScholarPubMed
Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M., and Folkner, W. M. (2003). Fluid core size of Mars from detection of the solar tide. Science, 300, 299–303.CrossRefGoogle ScholarPubMed
Youdin, A. N. and Shu, F. H. (2002). Planetesimal formation by gravitational instability. Astrophysical Journal, 580, 494–505.CrossRefGoogle Scholar
Yung, Y. L., Nair, H., and Gerstell, M. F. (1997). CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation. Icarus, 130, 222–224.CrossRefGoogle ScholarPubMed
Zhai, Y., Cummer, S. A., and Farrell, W. M. (2006). Quasi-electrostatic field analysis and simulation of martian and terrestrial dust. Journal of Geophysical Research, 111, E06016, doi: 10.1029/2005JE002618.CrossRefGoogle Scholar
Zharkov, V. N. (1996). The internal structure of Mars: a key to understanding the origin of terrestrial planets. Solar System Research, 30, 456–465.Google Scholar
Zolotov, M. Y. and Shock, E. L. (2000). An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases. Meteoritics and Planetary Science, 35, 629–638.CrossRefGoogle ScholarPubMed
Zuber, M. T. (2001). The crust and mantle of Mars. Nature, 412, 220–227.CrossRefGoogle ScholarPubMed
Zuber, M. T., Smith, D. E., Solomon, S. C., et al. (1998). Observations of the north polar region of Mars from the Mars Orbiter Laser Altimeter. Science, 282, 2053–2060.CrossRefGoogle ScholarPubMed
Zuber, M. T., Solomon, S. C., Phillips, R. J., et al. (2000). Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788–1793.CrossRefGoogle ScholarPubMed
Zurek, R. and Martin, L. (1993). Interannual variability of planet-encircling dust storms on Mars. Journal of Geophysical Research, 98, 3247–3259.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Nadine Barlow, Northern Arizona University
  • Book: Mars: An Introduction to its Interior, Surface and Atmosphere
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536069.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Nadine Barlow, Northern Arizona University
  • Book: Mars: An Introduction to its Interior, Surface and Atmosphere
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536069.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Nadine Barlow, Northern Arizona University
  • Book: Mars: An Introduction to its Interior, Surface and Atmosphere
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536069.011
Available formats
×