Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T20:21:45.824Z Has data issue: false hasContentIssue false

2 - How cannabis works in the brain

Published online by Cambridge University Press:  07 December 2009

Leslie Iversen
Affiliation:
University of Oxford, UK
David Castle
Affiliation:
Mental Health Research Institute, Melbourne
Robin Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

Important advances have been made in the past decade in understanding how cannabis affects the brain. As with morphine 20 years earlier, research on the psychopharmacology of a plant-derived drug led to the discovery of a naturally occurring cannabinoid system in the brain, whose functions are only now beginning to be understood. This chapter will review what is known about the interactions of cannabis with the cannabinoid system in the brain and how the drug affects psychomotor, cognitive, perceptual and appetitive functions. There is also speculation on what brain mechanisms may underly the intoxicant effects of cannabis, and a review of its addictive properties.

Cannabinoid receptors

In Chapter 1 the identification of Δ9-tetrahydrocannabinol (THC) was reviewed as the principal active component in the complex mixture of cannabinoids present in extracts of the plant Cannabis sativa, and the discovery of a series of naturally occurring endogenous cannabinoids (endocannabinoids), of which anandamide has so far been most intensively studied, was outlined. A series of synthetic cannabinoids – some of which are more potent and more water-soluble than THC – is also available (Pertwee, 1999) (Fig. 2.1). All of these compounds act as agonists at the CB1 cannabinoid receptor (Matsuda et al., 1990), which is the only one known to be expressed in the brain. A second cannabinoid receptor, CB2, is expressed only in peripheral tissues, principally in the immune system (Munro et al., 1993; Felder and Glass, 1998; Pertwee, 1999).

Type
Chapter
Information
Marijuana and Madness
Psychiatry and Neurobiology
, pp. 19 - 40
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, E. L. (1971). Marihuana and memory: acquisition or retrieval?Science, 173, 1038–1041CrossRefGoogle ScholarPubMed
Aceto, M. D., Scates, S. M., Lowe, J. A. and Martin, B. R (1996). Dependence on Δ9-tetrahydrocannabinol: studies on precipitated and abrupt withdrawal. J. Pharmacol. Exp. Ther., 278, 1290–1295Google ScholarPubMed
Aceto, M. D., Scates, S. M. and Martin, B. R. (2001). Spontaneous and precipitated withdrawal with a synthetic cannabinoid, WIN 55212–2. Eur. J. Pharmacol., 416, 75–81CrossRefGoogle ScholarPubMed
Adams, I. B. and Martin, B. R. (1996). Cannabis: pharmacology and toxicology in animals and humans. Addiction, 91, 1585–1614CrossRefGoogle ScholarPubMed
Alger, B. E. and Pitler, T. A. (1995). Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci., 18, 333–340CrossRefGoogle ScholarPubMed
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 4th edn. Washington, DC: American Psychiatric Association
Anthony, J. C., Warner, L. A. and Kessler, R. C. (1994). Comparative epidemiology of dependence on tobacco, alcohol, controlled substances and inhalants. Basic findings from the National Comorbidity Survey. Exp. Clin. Psychopharmacol., 2, 244–268CrossRefGoogle Scholar
Atha, M. J. and Blanchard, S. (1997). Self Reported Consumption Patterns and Attitudes Towards Drugs Among 1333 Regular Cannabis Users. Wigan, UK: Independent Drug Monitoring Unit
Beal, J. A., Olson, R., Laubenstein, L.et al. (1995). Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J. Pain Symptom Manage., 10, 89–97CrossRefGoogle ScholarPubMed
Bohme, G. A., Laville, M., Ledent, C., Paramentier, M. and Imperato, A. (2000). Enhanced long-term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience, 95, 5–7CrossRefGoogle ScholarPubMed
Breivogel, C. S. and Childers, S. R. (1998). The functional neuroanatomy of brain cannabinoid receptors. Neurobiol. Dis., 5, 417–431CrossRefGoogle ScholarPubMed
Brett, R., MacKenzie, F. and Pratt, J. (2001). Delta-9-tetrahydrocannabinol-induced alterations in limbic system glucose use in the rat. Neuro-Report, 12, 3573–3577Google ScholarPubMed
Budney, A. J., Hughes, J. R., Moore, B. A. and Novy, P. L. (2001). Marijuana abstinence effects in marijuana smokers maintained in their home environment. Arch. Gen. Psychiatry, 58, 917–924CrossRefGoogle ScholarPubMed
Cadoni, C., Pisanu, A., Solinas, M., Acquas, E. and Di Chiara, G. (2001). Behavioural sensitization after repeated exposure to delta-9-tetrahydrocannabinol and cross-sensitization with morphine. Psychopharmacology, 158, 259–266CrossRefGoogle ScholarPubMed
Colombo, G., Agabio, R., Diaz, G.et al. (1998). Appetite suppression and weight loss after the cannabinoid antagonist SR141716A. Life Sci., 63, PL113–PL117CrossRefGoogle Scholar
Compton, D. R., Aceto, M. D., Lowe, J. and Martin, B. R. (1996). In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A) inhibition of Δ9-tetrahydocannabinol-induced responses and apparent agonist activity. J. Pharmacol. Exp. Ther., 277, 586–594Google ScholarPubMed
Deadwyler, S. A., Hampson, R. E. and Childers, S. R. (1995). Functional significance of cannabinoid receptors in brain. In Cannabinoid Receptors, ed. R. G. Pertwee, pp. 206–231. London: Academic Press
DeSanty, K. P. and Dar, M. S. (2001). Cannabinoid-induced motor incoordination through the cerebellar CB1 receptor in mice. Pharmacol. Biochem. Behav., 69, 251–259CrossRefGoogle Scholar
Diana, M., Melis, M., Muntoni, A. L. and Gessa, G. L. (1998). Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc. Natl Acad. Sci. USA, 95, 10269–10273CrossRefGoogle ScholarPubMed
Dixon, W. E. (1899). The pharmacology of cannabis indica. Br. Med. J. 11, 1354–1357Google Scholar
D'Souza, D. C. and Kosten, T. R. (2001). Cannabinoid antagonists. Arch. Gen. Psychiatry, 58, 330–331CrossRefGoogle ScholarPubMed
Earlywine, M. (2002). Understanding Marijuana. New York: Oxford University Press
Egertová, M. and Elphick, M. R. (2000). Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB1. J. Comp. Neurol., 422, 159–1713.0.CO;2-1>CrossRefGoogle Scholar
Egertová, M., Giang, D. K., Cravatt, B. F. and Elphick, M. R. (1998). A new perspective on cannabinoid signaling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in the rat brain. Proc. R. Soc. Lond. B, 265, 2081–2085CrossRefGoogle ScholarPubMed
Elphick, M. R. and Egertová, M. (2001). The neurobiology and evolution of cannabinoid signaling. Phil. Trans. R. Soc. Lond., 356, 381–408CrossRefGoogle Scholar
Felder, C. C. and Glass, M. (1998). Cannabinoid receptors and their endogenous agonists. Annu. Rev. Pharmacol. Toxicol., 38, 179–200CrossRefGoogle ScholarPubMed
Freedland, C. S., Whitlow, C. T., Miller, M. D. and Porrino, L. J. (2002). Dose-dependent effects of delta-9-tetrahydrocannabinol on rates of local cerebral glucose utilization in rat. Synapse, 45, 134–142CrossRefGoogle ScholarPubMed
French, E. D., Dillon, K. and Wu, X. (1997). Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. NeuroReport, 8, 649–652CrossRefGoogle ScholarPubMed
Fride, E., Ginzburg, Y., Breuer, A.et al. (2001). Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. Eur. J. Pharmacol., 419, 207–214CrossRefGoogle Scholar
Fuentes, J. A., Ruiz-Gayo, M., Manzanares, J.et al. (1999). Cannabinoids as potential new analgesics. Life Sci., 65, 675–685CrossRefGoogle ScholarPubMed
Gerdeman, G. L., Ronesi, J. and Lovinger, D. M. (2002). Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci., 5, 446–451CrossRefGoogle ScholarPubMed
Ghozland, S., Matthes, H. W., Simonin, F.et al. (2002). Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J. Neurosci., 22, 1146–1154CrossRefGoogle ScholarPubMed
Gill, E. W., Paton, W. D. M. and Pertwee, R. G. (1970). Preliminary experiments on the chemistry and pharmacology of cannabis. Nature, 229, 134–136CrossRefGoogle Scholar
Giuffrida, A. and Piomelli, D. (2000). The endocannabinoid system: a physiological perspective on its role in psychomotor control. Chem. Physics Lipids, 108, 151–158CrossRefGoogle ScholarPubMed
Giuffrida, A., Parsons, L. H., Kerr, T. M.et al. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci., 2, 358–363CrossRefGoogle ScholarPubMed
Greenberg, H. S., Werness, S. A. S., Pugh, J. E.et al. (1994). Short-term effects of smoking marijuana on balance in patients with multiple sclerosis and normal volunteers. Clin. Pharmacol. Ther., 55, 324–328CrossRefGoogle ScholarPubMed
Hájos, N., Katona, I., Naiem, S. S.et al. (2000). Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci., 12, 3239–3249CrossRefGoogle ScholarPubMed
Hampson, R. E. and Deadwyler, S. A. (1999). Cannabinoids, hippocampal function and memory. Life Sci., 65, 715–723CrossRefGoogle ScholarPubMed
Han, C. J. and Robinson, J. K. (2001). Cannabinoid modulation of time estimation in the rat. Behav. Neurosci., 115, 243–246CrossRefGoogle ScholarPubMed
Herkenham, M., Lynn, A. B., Johnson, M. R.et al. (1991). Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci., 11, 563–583CrossRefGoogle ScholarPubMed
Hicks, R. E., Gualtieri, C. T., Mayo, P. Jr and Perez-Reyes, M. (1984). Cannabis, atropine and temporal information processing. Neuropsychobiology, 12, 229–237CrossRefGoogle ScholarPubMed
Hine, B., Friedman, E., Torrelio, M. and Gershon, S. (1975). Morphine-dependent rats: blockade of precipitated abstinence by tetrahydrocannabinol. Science, 187, 443–445CrossRefGoogle ScholarPubMed
Hoffman, A. F. and Lupica, C. R. (2000). Mechanisms of cannabinoid inhibition of GABAA synaptic transmission in the hippocampus. J. Neurosci., 20, 2470–2479CrossRefGoogle Scholar
Hollister, L. E. (1971). Hunger and appetite after single doses of marihuana, alcohol and dextroamphetamine. Clin. Pharmacol. Ther., 12, 44–49CrossRefGoogle ScholarPubMed
Hollister, L. E. (1986). Health aspects of cannabis. Pharmacol. Rev., 38, 1–20Google ScholarPubMed
Hollister, L. E. (1998). Health aspects of cannabis: revisited. Int. J. Neuropsychopharmacol., 1, 71–80CrossRefGoogle ScholarPubMed
Huestis, M. A., Gorelick, D. A., Heishman, S. J.et al. (2001). Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch. Gen. Psychiatry, 58, 322–328CrossRefGoogle ScholarPubMed
Iversen, L. L. (2000). The Science of Marijuana. New York: Oxford University Press
Jones, R. T. (1978). Marihuana: human effects. In Handbook of Psychopharmacology, vol. 12, ed. L. L. Iversen, S. D. Iversen and S. H. Snyder, pp. 373–412. New York: Plenum PressCrossRef
Jones, R. T. (1987). Drug of abuse profile: cannabis. Clin. Chem., 33, 72B–81BGoogle ScholarPubMed
Katona, I., Sperlagh, B., Sik, A.et al. (1999). Presynaptically located CB1 receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci., 19, 4544–4558CrossRefGoogle ScholarPubMed
Katona, I., Sperlagh, B., Maglóczky, Z.et al. (2000). GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience, 100, 797–804CrossRefGoogle ScholarPubMed
Katona, I., Rancz, E. A., Acsády, L.et al. (2001). Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J. Neurosci., 21, 9506–9518CrossRefGoogle ScholarPubMed
Kaymakçalan, S., Ayhan, I. H. and Tulunay, F. C. (1977). Naloxone-induced or postwithdrawal abstinence signs in Δ9-tetrahydrocannabinol-tolerant rats. Psychopharmacology, 55, 243–249CrossRefGoogle ScholarPubMed
Koch, J. E. (2001). Δ9-THC stimulates food intake in Lewis rats. Effects on chow, high-fat and sweet high-fat diets. Pharmacol. Biochem. Behav., 68, 539–543CrossRefGoogle ScholarPubMed
Kreitzer, A. C. and Regehr, W. G. (2001a). Retrograde ion of prinhibitesynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron, 29, 717–727CrossRefGoogle Scholar
Kreitzer, A. C. (2001b). Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J. Neurosci., 21, RC174–RC179CrossRefGoogle Scholar
Ledent, C., Valverde, O., Cossu, G.et al. (1999). Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science, 283, 401–404CrossRefGoogle ScholarPubMed
Lenz, R. A., Wagner, J. J. and Alger, B. E. (1998). N- and L-type calcium channel involvement in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. J. Physiol. (Lond.), 512, 61–73CrossRefGoogle ScholarPubMed
Lepore, M., Vorel, S. R., Lowinson, J. and Gardner, E. L. (1995). Conditioned place preference induced by Δ9-tetrahydrocannabinol: comparison with cocaine, morphine and food reward. Life Sci., 56, 2073–2080CrossRefGoogle ScholarPubMed
Lichtman, A. H. and Martin, B. R. (1996). Δ9-Tetrahydrocannabinol impairs spatial memory through a cannabinoid mechanism. Psychopharmacology, 126, 125–131CrossRefGoogle Scholar
Lichtman, A. H., Fisher, J. and Martin, B. R. (2001a). Precipitated cannabinoid withdrawal is reversed by Δ9-tetrahydrocannabinol or clonidine. Pharmacol. Biochem. Behav., 69, 181–188CrossRefGoogle Scholar
Lichtman, A. H., Sheikh, S. M., Loh, H. H. and Martin, B. R. (2001b). Opioid and cannabinoid modulation of precipitated withdrawal in Δ9-tetrahydrocannabinol and morphine-dependent mice. J. Pharmacol. Exp. Ther., 298, 1007–1014Google Scholar
Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A. and Kano, M. (2001). Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron, 31, 463–475CrossRefGoogle ScholarPubMed
Mallet, P. E. and Beninger, R. J. (1998). The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by Δ9-tetrahydrocannabinol or anandamide. Psychopharmacology, 140, 11–19CrossRefGoogle ScholarPubMed
Manno, J. E., Glenn, M. S., Kiplinger, G. F.et al. (1970). Comparative effects of smoking marihuana or placebo on human motor and mental performance. Clin. Pharmacol. Ther., 11, 808–815CrossRefGoogle ScholarPubMed
Marsicano, G. and Lutz, B. (1999). Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci., 11, 4213–4225CrossRefGoogle ScholarPubMed
Marsicano, G., Wotjak, C. T., Azad, S. C.et al. (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature, 418, 530–534CrossRefGoogle ScholarPubMed
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. and Bonner, T. I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346, 561–564CrossRefGoogle ScholarPubMed
Mattes, R. D., Engelman, K., Shaw, L. M. and Elsohly, M. A. (1994). Cannabinoids and appetite stimulation. Pharmacol. Biochem. Behav., 49, 187–194CrossRefGoogle ScholarPubMed
Mathew, R. J., Wilson, W. H., Coleman, R. E., Turkington, T. G. and DeGrado, T. R. (1997). Marijuana intoxication and brain activation in marijuana smokers. Life Sci., 60, 2075–2089CrossRefGoogle ScholarPubMed
Mathew, R. J., Wilson, W. H., Turkington, T. G. and Coleman, R. E. (1998). Cerebellar activity and disturbed time sense after THC. Brain Res., 797, 183–189CrossRefGoogle ScholarPubMed
Mechoulam, R. and Fride, E. (2001). A hunger for cannabinoids. Nature, 410, 763–765CrossRefGoogle ScholarPubMed
Mechoulam, R., Fride, E., Hanus, L.et al. (1997). Anandamide may mediate sleep induction. Nature, 389, 25–26CrossRefGoogle ScholarPubMed
Mendelson, J. H., Babor, T. F., Kuehnle, J. C.et al. (1976). Behavioral and biological aspects of marijuana use. Annal NY Acad. Sci., 282, 186–210CrossRefGoogle Scholar
Meng, I. D., Manning, B. H., Martin, W. J. and Fields, H. L. (1998). An analgesia circuit activated by cannabinoids. Nature, 395, 381–383CrossRefGoogle ScholarPubMed
Miller, L. L. and Branconnier, R. J. (1983). Cannabis: effects on memory and the cholinergic limbic system. Psychol. Bull., 93, 441–456CrossRefGoogle ScholarPubMed
Misner, D. L. and Sullivan, J. M. (1999). Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J. Neurosci., 19, 6795–6805CrossRefGoogle ScholarPubMed
Munro, S., Thomas, K. L. and Abu-Shaar, M. (1993). Molecular characterization of a peripheral receptor for cannabinoids. Nature, 365, 61–65CrossRefGoogle ScholarPubMed
Nakamura-Palacios, E. M., Winsauer, P. J. and Moerschbaecher, J. M. (2000). Effects of the cannabinoid ligand SR141716A alone or in combination with delta-9-tetrahydrocannabinol or scopolamine on learning in squirrel monkeys. Behav. Pharmacol., 11, 377–386CrossRefGoogle ScholarPubMed
Ohno-Shosaku, T., Maejima, T. and Kano, M. (2001). Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron, 29, 729–738CrossRefGoogle ScholarPubMed
O'Leary, D. S., Block, R. I., Koeppel, J. A.et al. (2002). Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology, 26, 802–816CrossRefGoogle ScholarPubMed
Patel, S. and Hillard, C. J. (2001). Cannabinoid CB1 receptor agonists produce cerebellar dysfunction in mice. J. Pharmacol. Exp. Ther., 297, 629–637Google Scholar
Perio, A. A., Rinaldi-Carmona, M. M., Maruani, J. J.et al. (1996). Central mediation of the cannabinoid cue: activity of a selective CB1 antagonist SR 141716A. Behav. Pharmacol., 7, 65–71Google ScholarPubMed
Pertwee, R. G. (1991). Tolerance to, and dependence on psychotropic cannabinoids. In The Biological Basis of Drug Tolerance, ed. J. Pratt, pp. 232–265. London: Academic Press
Pertwee, R. G. (1999). Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem., 6, 635–664Google ScholarPubMed
Pettit, D. A. D., Harrison, M. P., Olson, J. M., Spencer, R. F. and Cabral, G. A. (1998). Immunohistochemical localization of the neural cannabinoid receptor in rat brain. J. Neurosci. Res., 51, 391–4023.0.CO;2-A>CrossRefGoogle ScholarPubMed
Pitler, T. A. and Alger, B. E. (1992). Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J. Neurosci., 12, 4122–4132CrossRefGoogle ScholarPubMed
Pitler, T. A. and Alger, B. E. (1994). Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron, 13, 1447–1455Google Scholar
Pontieri, F. E., Monnazzi, P., Scontrini, A., Buttarelli, F. R. and Patacchioli, F. R. (2001). Behavioral sensitization to heroin by cannabinoid pretreatment in the rat. Eur. J. Pharmacol., 421, R1–R3CrossRefGoogle ScholarPubMed
Reibaud, M., Obinu, M. C., Ledent, C.et al. (1999). Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur. J. Pharmacol., 379, 1–2CrossRefGoogle ScholarPubMed
Rinaldi-Carmona, M., Barth, F., Heaulme, M.et al. (1994). SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett., 350, 240–244CrossRefGoogle ScholarPubMed
Rodríguez de Fonseca, F., Rocio, M., Carrera, A.et al. (1997). Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science, 276, 2050–2054CrossRefGoogle ScholarPubMed
Rodríguez de Fonseca, F., Del Arco, I., Martín-Calderón, J. L., Gorriti, M. A. and Navarro, M. (1998). Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol. Dis., 5, 483–501CrossRefGoogle ScholarPubMed
Roth, S. (1978). Stereoselective presynaptic inhibitory effect of delta-9-tetrahydrocannabinol on cholinergic transmission in the myenteric plexus of the guinea pig. Can. J. Physiol. Pharmacol., 56, 968–975CrossRefGoogle Scholar
Rubino, T., Patrini, G., Massi, P.et al. (1998). Cannabinoid-precipitated withdrawal: a time course study of the behavioral aspect and its correlation with cannabinoid receptors and G protein expression. J. Pharmacol. Exp. Ther., 285, 813–819Google ScholarPubMed
Santucci, V., Storme, J. J., Soubrie, P. and Fur, G. (1996). Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR141716A in rats as assessed by electroencephalographic spectral and sleep-waking cycle analysis. Life Sci., 58, 103–110CrossRefGoogle ScholarPubMed
Sañudo-Peña, M. C., Tsou, K. and Walker, J. M. (2000). Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci., 65, 703–713CrossRefGoogle Scholar
Schlicker, E. and Kathmann, M. (2001). Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci., 22, 565–572CrossRefGoogle ScholarPubMed
Shen, M., Piser, T. M., Seybold, V. S. and Thayer, S. A. (1996). Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci., 16, 4322–4334CrossRefGoogle ScholarPubMed
Smith, F. L., Cichewicz, D., Martin, Z. L. and Welch, S. P. (1998). The enhancement of morphine antinociception in mice by delta-9-tetrahydrocannabinol. Pharmacol. Biochem. Behav., 60, 559–566CrossRefGoogle Scholar
Solowij, N. (1998). Cannabis and Cognitive Functioning. Cambridge: Cambridge University Press
Stiglick, A. and Kalant, H. (1985). Residual effects of chronic cannabis treatment on behaviour in mature rats. Psychopharmacology, 85, 436–439CrossRefGoogle ScholarPubMed
Swift, W., Hall, W. and Teesson, M. (2001). Cannabis use and dependence among Australian adults: results from the National Survey of Mental Health and Wellbeing. Addiction, 96, 737–748CrossRefGoogle ScholarPubMed
Szabo, B., Siemes, S. and Wallmichrath, I. (2002). Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci., 15, 2057–2061CrossRefGoogle ScholarPubMed
Tanda, G., Pontieri, F. E. and Di Chiara, G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common µ1 opioid receptor mechanism. Science, 276, 2048–2050CrossRefGoogle ScholarPubMed
Tanda, G., Munzar, P. and Goldberg, S. R. (2000). Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nature Neurosci., 3, 1073–1074CrossRefGoogle ScholarPubMed
Terranova, J. P., Michaud, J. C., Fur, G.et al. (1995). Inhibition of long-term potentiation in rat hippocampal slices by anandamide and WIN55 212–2; reversal by SR141 716-A, a selective antagonist of CB1 cannabinoid receptors. Naunyn Schmiedbergs Arch. Pharmacol., 352, 576–579CrossRefGoogle Scholar
Terranova, J. P., Stomre, J. J., Lafon, N.et al. (1996). Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist SR141716A. Psychopharmacology, 126, 165–172CrossRefGoogle Scholar
Valverde, O., Maldonado, R., Valjent, E., Zimmer, A. M. and Zimmer, A. (2000). Cannabinoid withdrawal syndrome is reduced in pre-proenkephalin knock-out mice. J. Neurosci., 15, 9284–9289CrossRefGoogle Scholar
Valverde, O., Noble, F.et al. (2001). Δ9-Tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur. J. Neurosci., 13, 1816–1824CrossRefGoogle ScholarPubMed
Varma, N., Calrson, G. C., Ledent, C. and Alger, B. E. (2001). Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J. Neurosci., 21, RC188–RC193CrossRefGoogle ScholarPubMed
Welch, S. P. and Stevens, D. L. (1992). Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. J. Pharmacol. Exp. Ther., 262, 10–18Google ScholarPubMed
Williams, C. M. and Kirkham, T. C. (1999). Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology, 143, 315–317CrossRefGoogle ScholarPubMed
Wilson, R. I. and Nicoll, R. A. (2001). Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature, 410, 588–592CrossRefGoogle ScholarPubMed
Yamaguchi, T., Hagiwara, Y., Tanaka, H.et al. (2001). Endogenous cannabinoid 2-arachidonylglycerol, attenuates naloxone-precipitated withdrawal signs in morphine-dependent mice. Brain Res., 909, 121–126CrossRefGoogle ScholarPubMed
Zimmer, A., Zimmer, A. M., Hohmann, A. G., Herkenham, M. and Bonner, T. I. (1999). Increased mortality, hypoactivity and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl Acad. Sci. USA, 96, 5780–5785CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×