Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T05:36:16.741Z Has data issue: false hasContentIssue false

Part I - Treatment Strategies

Published online by Cambridge University Press:  19 October 2021

Michael Cummings
Affiliation:
University of California, Los Angeles
Stephen Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kaneko, K. (2018). Negative symptoms and cognitive impairments in schizophrenia: two key symptoms negatively influencing social functioning. Yonago Acta Med, 61, 91102.Google Scholar
Dack, C., Ross, J., Papadopoulos, C., et al. (2013). A review and meta-analysis of the patient factors associated with psychiatric in-patient aggression. Acta Psychiatr Scand, 127, 255268.CrossRefGoogle ScholarPubMed
Quanbeck, C. D., McDermott, B. E., Lam, J., et al. (2007). Categorization of aggressive acts committed by chronically assaultive state hospital patients. Psychiatr Serv, 58, 521528.CrossRefGoogle ScholarPubMed
Stahl, S. M., Morrissette, D. A., Cummings, M., et al. (2014). California State Hospital Violence Assessment and Treatment (Cal-VAT) guidelines. CNS Spectr, 19, 449465.Google Scholar
Merritt, K., McGuire, P., Egerton, A. (2013). Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis. Front Psychiatry, 4, 151.CrossRefGoogle ScholarPubMed
Howes, O. D., McCutcheon, R., Agid, O., et al. (2017). Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry, 174, 216229.CrossRefGoogle Scholar
Maust, D. T., Kim, H. M., Seyfried, L. S., et al. (2015). Antipsychotics, other psychotropics, and the risk of death in patients with dementia: number needed to harm. JAMA Psychiatry, 72, 438445.CrossRefGoogle ScholarPubMed
Galling, B., Roldan, A., Hagi, K., et al. (2017). Antipsychotic augmentation vs. monotherapy in schizophrenia: systematic review, meta-analysis and meta-regression analysis. World Psychiatry, 16, 7789.CrossRefGoogle ScholarPubMed
Nucifora, F. C. Jr., Woznica, E., Lee, B. J., et al. (2018). Treatment resistant schizophrenia: clinical, biological, and therapeutic perspectives. Neurobiol Dis, 131, 104257.Google ScholarPubMed
Kane, J., Honigfeld, G., Singer, J., et al. (1988). Clozapine for the treatment-resistant schizophrenic. a double-blind comparison with chlorpromazine. Arch Gen Psychiatry, 45, 789796.Google Scholar
Stroup, T. S., Gerhard, T., Crystal, S., et al. (2016). Comparative effectiveness of clozapine and standard antipsychotic treatment in adults with schizophrenia. Am J Psychiatry, 173, 166173.Google Scholar
Yoshimura, B., Yada, Y., So, R., et al. (2017). The critical treatment window of clozapine in treatment-resistant schizophrenia: secondary analysis of an observational study. Psychiatry Res, 250, 6570.CrossRefGoogle ScholarPubMed
Ogloff, J. R., Daffern, M. (2006). The dynamic appraisal of situational aggression: an instrument to assess risk for imminent aggression in psychiatric inpatients. Behav Sci Law, 24, 799813.CrossRefGoogle ScholarPubMed
Hankin, C. S., Bronstone, A., Koran, L. M. (2011). Agitation in the inpatient psychiatric setting: a review of clinical presentation, burden, and treatment. J Psychiatr Pract, 17, 170185.CrossRefGoogle ScholarPubMed
Vaaler, A. E., Iversen, V. C., Morken, G., et al. (2011). Short-term prediction of threatening and violent behaviour in an Acute Psychiatric Intensive Care Unit based on patient and environment characteristics. BMC Psychiatry, 11, 44.Google Scholar
Volavka, J., Citrome, L. (2011). Pathways to aggression in schizophrenia affect results of treatment. Schizophr Bull, 37, 921929.Google Scholar
Joshi, A., Krishnamurthy, V. B., Purichia, H., et al. (2012). “What’s in a name?” Delirium by any other name would be as deadly. A review of the nature of delirium consultations. J Psychiatr Pract, 18, 413418.CrossRefGoogle Scholar
Ruberg, S. J., Chen, L., Stauffer, V., et al. (2011). Identification of early changes in specific symptoms that predict longer-term response to atypical antipsychotics in the treatment of patients with schizophrenia. BMC Psychiatry, 11, 23.Google Scholar
Lopez, L. V., Kane, J. M. (2013). Plasma levels of second-generation antipsychotics and clinical response in acute psychosis: a review of the literature. Schizophr Res, 147, 368374.CrossRefGoogle ScholarPubMed
Meyer, J. M., Cummings, M. A., Proctor, G., et al. (2016). Psychopharmacology of persistent violence and aggression. Psychiatr Clin North Am, 39, 541556.Google Scholar
Siskind, D., Siskind, V., Kisely, S. (2017). Clozapine response rates among people with treatment-resistant schizophrenia: data from a systematic review and meta-analysis. Can J Psychiatry, 62, 772777.Google Scholar
Lally, J., Tully, J., Robertson, D., et al. (2016). Augmentation of clozapine with electroconvulsive therapy in treatment resistant schizophrenia: a systematic review and meta-analysis. Schizophr Res, 171, 215224.CrossRefGoogle ScholarPubMed
Stein-Parbury, J., Reid, K., Smith, N., et al. (2008). Use of pro re nata medications in acute inpatient care. Aust N Z J Psychiatry, 42, 283292.Google Scholar

References

Schoretsanitis, G., Kane, J. M., Correll, C. U., et al. (2020). Blood levels to optimize antipsychotic treatment in clinical practice: a joint consensus statement of the American Society of Clinical Psychopharmacology and the Therapeutic Drug Monitoring Task Force of the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie. J Clin Psychiatry, 81(3), 19CS13169.Google Scholar
Meyer, J. M. (2014). A rational approach to employing high plasma levels of antipsychotics for violence associated with schizophrenia: case vignettes. CNS Spectr, 19, 432438.CrossRefGoogle ScholarPubMed
Meyer, J. M., Cummings, M. A., Proctor, G., et al. (2016). Psychopharmacology of persistent violence and aggression. Psychiatr Clin North Am, 39, 541556.CrossRefGoogle ScholarPubMed
Castro, V. M., Roberson, A. M., McCoy, T. H., et al. (2016). Stratifying risk for renal insufficiency among lithium-treated patients: an electronic health record study. Neuropsychopharmacol, 41, 11381143.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2018). Gilman: The Pharmacological Basis of Therapeutics. Pharmacotherapy of Psychosis and Mania. New York: McGraw-Hill.Google Scholar
Letmaier, M., Painold, A., Holl, A. K., et al. (2012). Hyponatraemia during psychopharmacological treatment: results of a drug surveillance programme. Int J Neuropsychopharmacol, 15, 739748.CrossRefGoogle ScholarPubMed
Kim, Y-S., Kim, D. W., Jung, K-H., et al. (2014). Frequency of and risk factors for oxcarbazepine-induced severe and symptomatic hyponatremia. Seizure, 23, 208212.Google Scholar

References

Gottfried, E. D., Christopher, S. C. (2017). Mental disorders among criminal offenders: a review of the literature. J Correct Health Care, 23, 336346.CrossRefGoogle ScholarPubMed
Cummings, M. A., Proctor, G. J., Arias, A. W. (2020). Dopamine antagonist antipsychotics in diverted forensic populations. CNS Spectr, 25, 128135.Google Scholar
de Haan, L., Lavalaye, J., van Bruggen, M., et al. (2004). Subjective experience and dopamine D2 receptor occupancy in patients treated with antipsychotics: clinical implications. Can J Psychiatry, 49, 290296.Google Scholar
Garcia, S., Martinez-Cengotitabengoa, M., Lopez-Zurbano, S., et al. (2016). Adherence to antipsychotic medication in bipolar disorder and schizophrenic patients: a systematic review. J Clin Psychopharmacol, 36, 355371.CrossRefGoogle ScholarPubMed
Ostuzzi, G., Barbui, C. (2016). Comparative effectiveness of long-acting antipsychotics: issues and challenges from a pragmatic randomised study. Epidemiol Psychiatr Sci, 25, 2123.Google Scholar
Stevens, G. L., Dawson, G., Zummo, J. (2016). Clinical benefits and impact of early use of long-acting injectable antipsychotics for schizophrenia. Early Interv Psychiatry, 10, 365377.CrossRefGoogle ScholarPubMed
Mohr, P., Knytl, P., Vorackova, V., et al. (2017). Long-acting injectable antipsychotics for prevention and management of violent behaviour in psychotic patients. Int J Clin Pract, 71, 17.CrossRefGoogle ScholarPubMed
Taipale, H., Mittendorfer-Rutz, E., Alexanderson, K., et al. (2018). Antipsychotics and mortality in a nationwide cohort of 29,823 patients with schizophrenia. Schizophr Res, 197, 274280.CrossRefGoogle Scholar
Marcus, S. C., Zummo, J., Pettit, A. R., et al. (2015). Antipsychotic adherence and rehospitalization in schizophrenia patients receiving oral versus long-acting injectable antipsychotics following hospital discharge. J Manag Care Spec Pharm, 21, 754768.Google Scholar
Cummings, M. A., Proctor, G. J., Arias, A. W. (2019). Dopamine antagonist antipsychotics in diverted forensic populations. CNS Spectr, in press. doi: 10.1017/S1092852919000841CrossRefGoogle Scholar
Meyer, J. M. (2017). Converting oral to long-acting injectable antipsychotics: a guide for the perplexed. CNS Spectr, 22, 1428.CrossRefGoogle ScholarPubMed
Lieberman, J. A. (2004). Dopamine partial agonists: a new class of antipsychotic. CNS Drugs, 18, 251267.Google Scholar
Stip, E., Tourjman, V. (2010). Aripiprazole in schizophrenia and schizoaffective disorder: a review. Clin Ther, 32, S320.Google Scholar
Park, E. J., Amatya, S., Kim, M. S., et al. (2013). Long-acting injectable formulations of antipsychotic drugs for the treatment of schizophrenia. Arch Pharm Res, 36, 651659.CrossRefGoogle ScholarPubMed
Spanarello, S., La Ferla, T. (2014). The pharmacokinetics of long-acting antipsychotic medications. Curr Clin Pharmacol, 9, 310317.Google Scholar
Midha, K. K., Hubbard, J. W., Marder, S. R., et al. (1994). Impact of clinical pharmacokinetics on neuroleptic therapy in patients with schizophrenia. J Psychiatry Neurosci, 19, 254264.Google Scholar
Nyberg, S., Dencker, S. J., Malm, U., et al. (1998). D(2)- and 5-HT(2) receptor occupancy in high-dose neuroleptic-treated patients. Int J Neuropsychopharmacol, 1, 95101.Google Scholar
Hard, M. L., Mills, R. J., Sadler, B. M., et al. (2017). Aripiprazole lauroxil: pharmacokinetic profile of this long-acting injectable antipsychotic in persons with schizophrenia. J Clin Psychopharmacol, 37, 289295.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2019). Monitoring and improving antipsychotic adherence in outpatient forensic diversion programs. CNS Spectr, 25(2), 136144.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2014). A rational approach to employing high plasma levels of antipsychotics for violence associated with schizophrenia: case vignettes. CNS Spectr, 19, 432438.Google Scholar

References

Meyer, J. M. (2019). The Clozapine Handbook. Stahl’s Handbooks. New York: Cambridge University Press.Google Scholar
Kane, J., Honigfeld, G., Singer, J., et al. (1988). Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch Gen Psychiatry, 45, 789796.CrossRefGoogle ScholarPubMed
Howes, O. D., McCutcheon, R., Agid, O., et al. (2016). Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry, 174, 216229.Google Scholar
Galling, B., Roldan, A., Hagi, K., et al. (2017). Antipsychotic augmentation vs. monotherapy in schizophrenia: systematic review, meta-analysis and meta-regression analysis. World Psychiatry, 16, 7789.Google Scholar
Stroup, T. S., Gerhard, T., Crystal, S., et al. (2015). Comparative effectiveness of clozapine and standard antipsychotic treatment in adults with schizophrenia. Am J Psychiatry, 173, 166173.Google Scholar
Siskind, D., Siskind, V., Kisely, S. (2017). Clozapine Response Rates among People with Treatment-resistant Schizophrenia: Data from a Systematic Review and Meta-analysis. Los Angeles, CA: SAGE Publications.Google Scholar
Yoshimura, B., Yada, Y., So, R., et al. (2017). The critical treatment window of clozapine in treatment-resistant schizophrenia: secondary analysis of an observational study. Psychiatry Res, 250, 6570.Google Scholar
Meltzer, H. Y., Alphs, L., Green, A. I., et al. (2003). Clozapine treatment for suicidality in schizophrenia: international suicide prevention trial (InterSePT). Arch Gen Psychiatry, 60, 8291.Google Scholar
Quanbeck, C. D., McDermott, B. E., Lam, J., et al. (2007). Categorization of aggressive acts committed by chronically assaultive state hospital patients. Psychiatr Serv, 58, 521528.Google Scholar
Meyer, J. M., Cummings, M. A., Proctor, G., et al. (2016). Psychopharmacology of persistent violence and aggression. Psychiatr Clin North Am, 39, 541556.Google Scholar
Fazel, S., Gulati, G., Linsell, L., et al. (2009). Schizophrenia and violence: systematic review and meta-analysis. PLoS Med, 6, e1000120.Google Scholar
Fazel, S., Långström, N., Hjern, A., et al. (2009). Schizophrenia, substance abuse, and violent crime. JAMA, 301, 20162023.Google Scholar
Krakowski, M. I., Czobor, P., Citrome, L., et al. (2006). Atypical antipsychotic agents in the treatment of violent patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry, 63, 622629.Google Scholar
Frogley, C., Taylor, D., Dickens, G., et al. (2012). A systematic review of the evidence of clozapine’s anti-aggressive effects. Int J Neuropsychopharmacol, 15, 13511371.CrossRefGoogle ScholarPubMed
Vanderwaal, F. M. (2015). Impact of motivational interviewing on medication adherence in schizophrenia. Issues Ment Health Nurs, 36, 900904.CrossRefGoogle ScholarPubMed
Reimer, J., Kuhn, J., Wietfeld, R., et al. (2019). Motivational interviewing: a possibility for doctor-patient communication in schizophrenia? Der Nervenarzt, 90(11), 11441153.Google Scholar

References

Kaneko, K. (2018). Negative symptoms and cognitive impairments in schizophrenia: two key symptoms negatively influencing social functioning. Yonago Acta Med, 61, 91102.Google Scholar
Liu, J., Chan, T. C. T., Chong, S. A., et al. (2019). Impact of emotion dysregulation and cognitive insight on psychotic and depressive symptoms during the early course of schizophrenia spectrum disorders. Early Interv Psychiatry, 14(6), 691697.CrossRefGoogle ScholarPubMed
Barch, D. M., Pagliaccio, D., Luking, K. (2016). Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia. Curr Top Behav Neurosci, 27, 411449.Google Scholar
Sher, L., Kahn, R. S. (2019). Suicide in schizophrenia: an educational overview. Medicina (Kaunas), 55(7), 361.Google Scholar
Pompili, M., Orsolini, L., Lamis, D. A., et al. (2017). Suicide prevention in schizophrenia: do long-acting injectable antipsychotics (LAIs) have a role? CNS Neurol Disord Drug Targets, 16, 454462.Google Scholar
Taipale, H., Mittendorfer-Rutz, E., Alexanderson, K., et al. (2018). Antipsychotics and mortality in a nationwide cohort of 29,823 patients with schizophrenia. Schizophr Res, 197, 274280.Google Scholar
Ertugrul, A. (2002). Clozapine and suicide. Am J Psychiatry, 159, 323; author reply 324.Google Scholar
Kane, J. M. (2017). Clozapine reduces all-cause mortality. Am J Psychiatry, 174, 920921.Google Scholar
Roberts, E., Cipriani, A., Geddes, J. R., et al. (2017). The evidence for lithium in suicide prevention. Br J Psychiatry, 211, 396.CrossRefGoogle ScholarPubMed
Kanehisa, M., Terao, T., Shiotsuki, I., et al. (2017). Serum lithium levels and suicide attempts: a case-controlled comparison in lithium therapy-naive individuals. Psychopharmacology (Berl), 234, 33353342.Google Scholar
Deslauriers, J., Belleville, K., Beaudet, N., et al. (2016). A two-hit model of suicide-trait-related behaviors in the context of a schizophrenia-like phenotype: distinct effects of lithium chloride and clozapine. Physiol Behav, 156, 4858.Google Scholar
Sachs, G. S., Nierenberg, A. A., Calabrese, J. R., et al. (2007). Effectiveness of adjunctive antidepressant treatment for bipolar depression. N Engl J Med, 356, 17111722.Google Scholar
Gitlin, M. J. (2018). Antidepressants in bipolar depression: an enduring controversy. Int J Bipolar Disord, 6, 25.Google Scholar
Cheniaux, E., Nardi, A. E. (2019). Evaluating the efficacy and safety of antidepressants in patients with bipolar disorder. Expert Opin Drug Saf, 18, 893913.Google Scholar
Marx, W., Moseley, G., Berk, M., et al. (2017). Nutritional psychiatry: the present state of the evidence. Proc Nutr Soc, 76, 427436.CrossRefGoogle ScholarPubMed
Dougall, N., Maayan, N., Soares-Weiser, K., et al. (2015). Transcranial magnetic stimulation for schizophrenia. Schizophr Bull, 41, 12201222.Google Scholar
Moffa, A. H., Brunoni, A. R., Nikolin, S., et al. (2018). Transcranial direct current stimulation in psychiatric disorders: a comprehensive review. Psychiatr Clin North Am, 41, 447463.Google Scholar
Pompili, M., Lester, D., Dominici, G., et al. (2013). Indications for electroconvulsive treatment in schizophrenia: a systematic review. Schizophr Res, 146, 19.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476483.Google Scholar
Tiihonen, J., Mittendorfer-Rutz, E., Torniainen, M., et al. (2016). Mortality and cumulative exposure to antipsychotics, antidepressants, and benzodiazepines in patients with schizophrenia: an observational follow-up study. Am J Psychiatry, 173, 600606.Google Scholar
Rubio, J. M., Correll, C. U. (2017). Reduced all-cause mortality with antipsychotics and antidepressants compared to increased all-cause mortality with benzodiazepines in patients with schizophrenia observed in naturalistic treatment settings. Evid Based Ment Health, 20, e6.Google Scholar
Loebel, A., Xu, J., Hsu, J., et al. (2015). The development of lurasidone for bipolar depression. Ann N Y Acad Sci, 1358, 95104.Google Scholar
Post, R. M. (2016). Treatment of bipolar depression: evolving recommendations. Psychiatr Clin North Am, 39, 1133.CrossRefGoogle ScholarPubMed
Szmulewicz, A. G., Angriman, F., Samame, C., et al. (2017). Dopaminergic agents in the treatment of bipolar depression: a systematic review and meta-analysis. Acta Psychiatr Scand, 135, 527538.Google Scholar

References

Meyer, J. M., Cummings, M. A., Proctor, G., et al. (2016). Psychopharmacology of persistent violence and aggression. Psychiatr Clin North Am, 39, 541556.Google Scholar
Nolan, K. A., Czobor, P., Roy, B. B., et al. (2003). Characteristics of assaultive behavior among psychiatric inpatients. Psychiatr Serv, 54, 10121016.Google Scholar
Quanbeck, C. D., McDermott, B. E., Lam, J., et al. (2007). Categorization of aggressive acts committed by chronically assaultive state hospital patients. Psychiatr Serv, 58, 521528.Google Scholar
Stahl, S. M., Morrissette, D. A., Cummings, M., et al. (2014). California State Hospital Violence Assessment and Treatment (Cal-VAT) guidelines. CNS Spectr, 19, 449465.Google Scholar
Dardashti, L., O’Day, J., Barsom, M., et al. (2015). Illustrative cases to support the Cal-VAT guidelines. CNS Spectr, 20, 311318.Google Scholar
Morrissette, D. A., Stahl, S. M. (2014). Treating the violent patient with psychosis or impulsivity utilizing antipsychotic polypharmacy and high-dose monotherapy. CNS Spectr, 19, 439448.Google Scholar
Nielsen, J., Dahm, M., Lublin, H., et al. (2010). Psychiatrists’ attitude towards and knowledge of clozapine treatment. Psychopharmacol, 24, 965971.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2014). A rational approach to employing high plasma levels of antipsychotics for violence associated with schizophrenia: case vignettes. CNS Spectr, 19, 432438.CrossRefGoogle ScholarPubMed
McCutcheon, R., Beck, K., Bloomfield, M. A., et al. (2015). Treatment resistant or resistant to treatment? Antipsychotic plasma levels in patients with poorly controlled psychotic symptoms. J Psychopharmacol, 29, 892897.Google Scholar
Meyer, J. M. (2019). Monitoring and improving antipsychotic adherence in outpatient forensic diversion programs. CNS Spectr, 25(2), 19.Google Scholar
Keckich, W. (1978). Neuroleptics: violence as a manifestation of akathisia. JAMA, 240, 2185.Google Scholar
Schulte, J. (1985). Homicide and suicide associated with akathisia and haloperidol. Am J Forensic Psychiatry, 6, 37.Google Scholar
Galynker, I., Nazarian, D. (1997). Akathisia as violence. J Clin Psychiatry, 58, 3132.Google Scholar
Stubbs, J. H., Hutchins, D. A., Mountjoy, C. Q. (2000). Relationship of akathisia to aggressive and self-injurious behaviour: a prevalence study in a UK tertiary referral centre. Int J Psychiatry Clin Pract, 4, 319325.Google Scholar
Antosik-Wojcinska, A., Stefanowski, B., Swiecicki, L. (2015). Efficacy and safety of antidepressant’s use in the treatment of depressive episodes in bipolar disorder – review of research. Psychiatr Pol, 49, 12231239.Google Scholar
Lähteenvuo, M., Tanskanen, A., Taipale, H., et al. (2018). Real-world effectiveness of pharmacologic treatments for the prevention of rehospitalization in a Finnish nationwide cohort of patients with bipolar disorder. JAMA Psychiatry, 75, 347355.Google Scholar
Volz, A., Khorsand, V., Gillies, D., et al. (2007). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Dold, M., Li, C., Tardy, M., et al. (2012). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476483.Google Scholar
Dold, M., Li, C., Gillies, D., et al. (2013). Benzodiazepine augmentation of antipsychotic drugs in schizophrenia: a meta-analysis and Cochrane review of randomized controlled trials. Eur Neuropsychopharmacol, 23, 10231033.Google Scholar
Gillies, D., Sampson, S., Beck, A., et al. (2013). Benzodiazepines for psychosis-induced aggression or agitation. Cochrane Database Syst Rev, 9, CD003079.Google Scholar
Dodds, T. J. (2017). Prescribed benzodiazepines and suicide risk: a review of the literature. Prim Care Companion CNS Disord, 19(2).CrossRefGoogle Scholar
Takeuchi, H., Remington, G. (2013). A systematic review of reported cases involving psychotic symptoms worsened by aripiprazole in schizophrenia or schizoaffective disorder. Psychopharmacology (Berl), 228, 175185.CrossRefGoogle ScholarPubMed
Stahl, S. (2014). Antipsychotic agents. In Stahl’s Essential Psychopharmacology (ed.). New York: Cambridge University Press, p. 169.Google Scholar
Meyer, J. M., Stahl, S. M. (2019). The Clozapine Handbook. New York: Cambridge University Press.Google Scholar

References

Meyer, J. M. (2018). Pharmacotherapy of psychosis and mania. In Brunton, L. L., Hilal-Dandan, R., and Knollmann, B. C. (eds.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed. Chicago, IL: McGraw-Hill, pp. 279302.Google Scholar
Baldessarini, R. J., Tondo, L., Vazquez, G. H. (2019). Pharmacological treatment of adult bipolar disorder. Mol Psychiatry, 24, 198217.Google Scholar
Post, R. M., Ketter, T. A., Uhde, T., et al. (2007). Thirty years of clinical experience with carbamazepine in the treatment of bipolar illness: principles and practice. CNS Drugs, 21, 4771.Google Scholar
Zaccara, G., Perucca, E. (2014). Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord, 16, 409431.Google Scholar
Yatham, L. N., Beaulieu, S., Schaffer, A., et al. (2016). Optimal duration of risperidone or olanzapine adjunctive therapy to mood stabilizer following remission of a manic episode: a CANMAT randomized double-blind trial. Mol Psychiatry, 21, 10501056.Google Scholar
Leucht, S., Helfer, B., Dold, M., et al. (2015). Lithium for schizophrenia. Cochrane Database Syst Rev, 10, CD003834.Google Scholar
Jochim, J., Rifkin-Zybutz, R. P., Geddes, J., et al. (2019). Valproate for acute mania. Cochrane Database Syst Rev, 10, CD004052.Google ScholarPubMed
Vasudev, A., Macritchie, K., Watson, S., et al. (2008). Oxcarbazepine in the maintenance treatment of bipolar disorder. Cochrane Database Syst Rev, 10, CD005171.Google Scholar
Vasudev, A., Macritchie, K., Vasudev, K., et al. (2011). Oxcarbazepine for acute affective episodes in bipolar disorder. Cochrane Database Syst Rev, 10, CD004857.Google Scholar
Kim, Y. S., Kim, D. W., Jung, K. H., et al. (2014). Frequency of and risk factors for oxcarbazepine-induced severe and symptomatic hyponatremia. Seizure, 23, 208212.CrossRefGoogle ScholarPubMed
Malhi, G. S., Tanious, M. (2011). Optimal frequency of lithium administration in the treatment of bipolar disorder: clinical and dosing considerations. CNS Drugs, 25, 289298.Google Scholar
Castro, V. M., Roberson, A. M., McCoy, T. H., et al. (2016). Stratifying risk for renal insufficiency among lithium-treated patients: an electronic health record study. Neuropsychopharmacology, 41, 11381143.Google Scholar
Gerhard, T., Devanand, D. P., Huang, C., et al. (2015). Lithium treatment and risk for dementia in adults with bipolar disorder: population-based cohort study. Br J Psychiatry, 207, 4651.Google Scholar
Hayes, J. F., Pitman, A., Marston, L., et al. (2016). Self-harm, unintentional injury, and suicide in bipolar disorder during maintenance mood stabilizer treatment: a UK population-based electronic health records study. JAMA Psychiatry, 73, 630637.Google Scholar
Song, J., Sjolander, A., Joas, E., et al. (2017). Suicidal behavior during lithium and valproate treatment: a within-individual 8-year prospective study of 50,000 patients with bipolar disorder. Am J Psychiatry, 174, 795802.Google Scholar
Van Gestel, H., Franke, K., Petite, J., et al. (2019). Brain age in bipolar disorders: effects of lithium treatment. Aust N Z J Psychiatry, 53(12), 11791188.CrossRefGoogle ScholarPubMed
Hirschfeld, R. M., Allen, M. H., McEvoy, J. P., et al. (1999). Safety and tolerability of oral loading divalproex sodium in acutely manic bipolar patients. J Clin Psychiatry, 60, 815818.Google Scholar
Wingard, L., Brandt, L., Boden, R., et al. (2019). Monotherapy vs. combination therapy for post mania maintenance treatment: a population based cohort study. Eur Neuropsychopharmacology, pii, S0924-977X(19)30234-2. doi: 10.1016/j.euroneuro.2019.04.003Google Scholar
Remington, G., Teo, C., Mann, S., et al. (2013). Examining levels of antipsychotic adherence to better understand nonadherence. J Clin Psychopharmacol, 33, 261263.Google Scholar
Murru, A., Pacchiarotti, I., Amann, B. L., et al. (2013). Treatment adherence in bipolar I and schizoaffective disorder, bipolar type. J Affect Disord, 151, 10031008.Google Scholar
Even, C., Thuile, J., Kalck-Stern, M., et al. (2010). Psychoeducation for patients with bipolar disorder receiving lithium: short and long term impact on locus of control and knowledge about lithium. J Affect Disord, 123, 299302.Google Scholar
Butler, M., Urosevic, S., Desai, P., et al. (2018). AHRQ comparative effectiveness reviews. In Treatment for Bipolar Disorder in Adults: A Systematic Review (eds.). Rockville, MD: Agency for Healthcare Research and Quality.Google Scholar
Meyer, J. M. (2020). Monitoring and improving antipsychotic adherence in outpatient forensic diversion programs. CNS Spectr, 25, 136144.Google Scholar
Murru, A., Pacchiarotti, I., Nivoli, A. M., et al. (2011). What we know and what we don’t know about the treatment of schizoaffective disorder. Eur Neuropsychopharmacol, 21, 680690.Google Scholar
Vieta, E. (2010). Developing an individualized treatment plan for patients with schizoaffective disorder: from pharmacotherapy to psychoeducation. J Clin Psychiatry, 71 Suppl. 2, 1419.Google Scholar
Koola, M. M., Fawcett, J. A., Kelly, D. L. (2011). Case report on the management of depression in schizoaffective disorder, bipolar type focusing on lithium levels and measurement-based care. J Nerv Ment Dis, 199, 989990.Google Scholar
Bartova, L., Papageorgiou, K., Milenkovic, I., et al. (2018). Rapid antidepressant effect of S-ketamine in schizophrenia. Eur Neuropsychopharmacol, 28, 980982.Google Scholar
Tundo, A., de Filippis, R., De Crescenzo, F. (2019). Pramipexole in the treatment of unipolar and bipolar depression. A systematic review and meta-analysis. Acta Psychiatr Scand, 140, 116125.Google Scholar
Kelleher, J. P., Centorrino, F., Huxley, N. A., et al. (2012). Pilot randomized, controlled trial of pramipexole to augment antipsychotic treatment. Eur Neuropsychopharmacol, 22, 415418.Google Scholar
Eli Lilly and Company (2019). Zyprexa Package Insert. Indianapolis.Google Scholar
Pfizer Inc. (2018). Geodon Package Insert. New York, New York.Google Scholar
Kook, K. A., Stimmel, G. L., Wilkins, J. N., et al. (1985). Accuracy and safety of a priori lithium loading. J Clin Psychiatry, 46, 4951.Google ScholarPubMed
Reed, R. C., Dutta, S. (2006). Does it really matter when a blood sample for valproic acid concentration is taken following once-daily administration of divalproex-ER? Ther Drug Monit, 28, 413418.Google Scholar
Meyer, J. M. (2019). Monitoring and improving antipsychotic adherence in outpatient forensic diversion programs. CNS Spectr, in press. doi: 10.1017/S1092852919000865CrossRefGoogle Scholar
Hard, M. L., Mills, R. J., Sadler, B. M., et al. (2017). Aripiprazole lauroxil: pharmacokinetic profile of this long-acting injectable antipsychotic in persons with schizophrenia. J Clin Psychopharmacol, 37, 289295.Google Scholar
Hard, M. L., Mills, R. J., Sadler, B. M., et al. (2017). Pharmacokinetic profile of a 2-month dose regimen of aripiprazole lauroxil: a phase i study and a population pharmacokinetic model. CNS Drugs, 31, 617624.CrossRefGoogle Scholar

References

Temmingh, H., Stein, D. J. (2015). Anxiety in patients with schizophrenia: epidemiology and management. CNS Drugs, 29, 819832.CrossRefGoogle ScholarPubMed
Bosanac, P., Mancuso, S. G., Castle, D. J. (2016). Anxiety symptoms in psychotic disorders: results from the Second Australian National Mental Health Survey. Clin Schizophr Relat Psychoses, 10, 93100.Google Scholar
Van der Heiden, W., Konnecke, R., Maurer, K., et al. (2005). Depression in the long-term course of schizophrenia. Eur Arch Psychiatry Clin Neurosci, 255, 174184.Google Scholar
Wang, D., Gopal, S., Baker, S., et al. (2018). Trajectories and changes in individual items of positive and negative syndrome scale among schizophrenia patients prior to impending relapse. NPJ Schizophr, 4, 10.Google Scholar
Velligan, D., Carpenter, W., Waters, H. C., et al. (2018). Relapse Risk Assessment for Schizophrenia Patients (RASP): a new self-report screening tool. Clin Schizophr Relat Psychoses, 11, 224235.Google Scholar
Lohr, J. B., Eidt, C. A., Abdulrazzaq Alfaraj, A., et al. (2015). The clinical challenges of akathisia. CNS Spectr, 20 Suppl. 1, 114; quiz 1516.Google Scholar
Porcelli, S., Bianchini, O., De Girolamo, G., et al. (2016). Clinical factors related to schizophrenia relapse. Int J Psychiatry Clin Pract, 20, 5469.Google Scholar
Salem, H., Nagpal, C., Pigott, T., et al. (2017). Revisiting antipsychotic-induced akathisia: current issues and prospective challenges. Curr Neuropharmacol, 15, 789798.Google Scholar
Shear, M. K., Frances, A., Weiden, P. (1983). Suicide associated with akathisia and depot fluphenazine treatment. J Clin Psychopharmacol, 3, 235236.Google Scholar
Drake, R. E., Ehrlich, J. (1985). Suicide attempts associated with akathisia. Am J Psychiatry, 142, 499501.Google ScholarPubMed
Sachdev, P., Loneragan, C. (1992). Reported association of akathisia with suicide. J Nerv Ment Dis, 180, 339.CrossRefGoogle ScholarPubMed
Lima, A. R., Soares-Weiser, K., Bacaltchuk, J., et al. (2002). Benzodiazepines for neuroleptic-induced acute akathisia. Cochrane Database Syst Rev, 1999(1), CD001950.Google Scholar
Lima, A. R., Bacalcthuk, J., Barnes, T. R., et al. (2004). Central action beta-blockers versus placebo for neuroleptic-induced acute akathisia. Cochrane Database Syst Rev, 2004, CD001946.Google Scholar
Praharaj, S. K., Kongasseri, S., Behere, R. V., et al. (2015). Mirtazapine for antipsychotic-induced acute akathisia: a systematic review and meta-analysis of randomized placebo-controlled trials. Ther Adv Psychopharmacol, 5, 307313.CrossRefGoogle ScholarPubMed
Lima, A. R., Weiser, K. V., Bacaltchuk, J., et al. (2004). Anticholinergics for neuroleptic-induced acute akathisia. Cochrane Database Syst Rev, 2004, CD003727.Google Scholar
Vinogradov, S., Fisher, M., Warm, H., et al. (2009). The cognitive cost of anticholinergic burden: decreased response to cognitive training in schizophrenia. Am J Psychiatry, 166, 10551062.CrossRefGoogle ScholarPubMed
Borghans, L., Sambeth, A., Blokland, A. (2020). Biperiden selectively impairs verbal episodic memory in a dose- and time-dependent manner in healthy subjects. J Clin Psychopharmacol, 40, 3037.Google Scholar
Tiihonen, J., Suokas, J. T., Suvisaari, J. M., et al. (2012). Polypharmacy with antipsychotics, antidepressants, or benzodiazepines and mortality in schizophrenia. Arch Gen Psychiatry, 69, 476483.Google Scholar
Tiihonen, J., Mittendorfer-Rutz, E., Torniainen, M., et al. (2016). Mortality and cumulative exposure to antipsychotics, antidepressants, and benzodiazepines in patients with schizophrenia: an observational follow-up study. Am J Psychiatry, 173, 600606.Google Scholar
Young, S., Pfaff, D., Lewandowski, K. E., et al. (2013). Anxiety disorder comorbidity in bipolar disorder, schizophrenia and schizoaffective disorder. Psychopathology, 46, 176185.Google Scholar
Serafini, G., Gonda, X., Aguglia, A., et al. (2019). Bipolar subtypes and their clinical correlates in a sample of 391 bipolar individuals. Psychiatry Res, 281, 112528.Google Scholar
Leucht, S., Helfer, B., Dold, M., et al. (2015). Lithium for schizophrenia. Cochrane Database Syst Rev, 2015, CD003834.Google Scholar
Dold, M., Li, C., Tardy, M., et al. (2012). Benzodiazepines for schizophrenia. Cochrane Database Syst Rev, 11, CD006391.Google Scholar
Zaman, H., Sampson, S. J., Beck, A. L., et al. (2017). Benzodiazepines for psychosis-induced aggression or agitation. Cochrane Database Syst Rev, 12, CD003079.Google Scholar
Dold, M., Li, C., Gillies, D., et al. (2013). Benzodiazepine augmentation of antipsychotic drugs in schizophrenia: a meta-analysis and Cochrane review of randomized controlled trials. Eur Neuropsychopharmacol, 23, 10231033.Google Scholar
Murru, A., Pacchiarotti, I., Nivoli, A. M., et al. (2011). What we know and what we don’t know about the treatment of schizoaffective disorder. Eur Neuropsychopharmacol, 21, 680690.Google Scholar
Tezenas du Montcel, C., Pelissolo, A., Schurhoff, F., et al. (2019). Obsessive-compulsive symptoms in schizophrenia: an up-to-date review of literature. Curr Psychiatry Rep, 21, 64.CrossRefGoogle ScholarPubMed
Scotti-Muzzi, E., Saide, O. L. (2017). Schizo-obsessive spectrum disorders: an update. CNS Spectr, 22, 258272.Google Scholar

References

Kuhlman, S. J., Craig, L. M., Duffy, J. F. (2018). Introduction to chronobiology. Cold Spring Harb Perspect Biol, 10(9), a033613.Google Scholar
Capezuti, E. A. (2016). The power and importance of sleep. Geriatr Nurs, 37, 487488.Google Scholar
Chan, M. S., Chung, K. F., Yung, K. P., et al. (2017). Sleep in schizophrenia: a systematic review and meta-analysis of polysomnographic findings in case-control studies. Sleep Med Rev, 32, 6984.Google Scholar
Cosgrave, J., Wulff, K., Gehrman, P. (2018). Sleep, circadian rhythms, and schizophrenia: where we are and where we need to go. Curr Opin Psychiatry, 31, 176182.Google Scholar
Altena, E., Micoulaud-Franchi, J. A., Geoffroy, P. A., et al. (2016). The bidirectional relation between emotional reactivity and sleep: from disruption to recovery. Behav Neurosci, 130, 336350.Google Scholar
Bollu, P. C., Kaur, H. (2019). Sleep medicine: insomnia and sleep. Mo Med, 116, 6875.Google Scholar
Sargant, W. (1958). Sedatives and tranquillizers. I. Br Med J, 2, 10311032.Google Scholar
Ashton, H. (1994). Guidelines for the rational use of benzodiazepines. When and what to use. Drugs, 48, 2540.CrossRefGoogle ScholarPubMed
de la Iglesia-Larrad, J. I., Barral, C., Casado-Espada, N. M., et al. (2019). Benzodiazepine abuse, misuse, dependence, and withdrawal among schizophrenic patients: a review of the literature. Psychiatry Res, 284(1), 12660.Google Scholar
Tiihonen, J., Mittendorfer-Rutz, E., Torniainen, M., et al. (2016). Mortality and cumulative exposure to antipsychotics, antidepressants, and benzodiazepines in patients with schizophrenia: an observational follow-up study. Am J Psychiatry, 173, 600606.Google Scholar
Matheson, E., Hainer, B. L. (2017). Insomnia: pharmacologic therapy. Am Fam Physician, 96, 2935.Google Scholar
Monti, J. M., Monti, D. (2005). Sleep disturbance in schizophrenia. Int Rev Psychiatry, 17, 247253.Google Scholar
Pavlova, M. (2017). Circadian rhythm sleep-wake disorders. Continuum (Minneap Minn), 23, 10511063.Google Scholar
Liblau, R. S., Vassalli, A., Seifinejad, A., et al. (2015). Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy. Lancet Neurol, 14, 318328.Google Scholar
Coleman, P. J., Gotter, A. L., Herring, W. J., et al. (2017). The discovery of suvorexant, the first orexin receptor drug for insomnia. Annu Rev Pharmacol Toxicol, 57, 509533.CrossRefGoogle ScholarPubMed
Kuriyama, A., Tabata, H. (2017). Suvorexant for the treatment of primary insomnia: a systematic review and meta-analysis. Sleep Med Rev, 35, 17.Google Scholar
Herring, W. J., Connor, K. M., Ivgy-May, N., et al. (2016). Suvorexant in patients with insomnia: results from two 3-month randomized controlled clinical trials. Biol Psychiatry, 79, 136148.Google Scholar
Murphy, P., Moline, M., Mayleben, D., et al. (2017). Lemborexant, a dual orexin receptor antagonist (DORA) for the treatment of insomnia disorder: results from a bayesian, adaptive, randomized, double-blind, placebo-controlled study. J Clin Sleep Med, 13, 12891299.Google Scholar
Dujardin, S., Pijpers, A., Pevernagie, D. (2018). Prescription drugs used in insomnia. Sleep Med Clin, 13, 169182.Google Scholar
Yanai, K., Rogala, B., Chugh, K., et al. (2012). Safety considerations in the management of allergic diseases: focus on antihistamines. Curr Med Res Opin, 28, 623642.Google Scholar
Antosik-Wojcinska, A. Z., Stefanowski, B., Swiecicki, L. (2015). Efficacy and safety of antidepressant’s use in the treatment of depressive episodes in bipolar disorder – review of research. Psychiatr Pol, 49, 12231239.Google Scholar
Mendelson, W. B. (2005). A review of the evidence for the efficacy and safety of trazodone in insomnia. J Clin Psychiatry, 66, 469476.Google Scholar
Chew, M. L., Mulsant, B. H., Pollock, B. G., et al. (2008). Anticholinergic activity of 107 medications commonly used by older adults. J Am Geriatr Soc, 56, 13331341.Google Scholar
Rosenberg, R. P. (2006). Sleep maintenance insomnia: strengths and weaknesses of current pharmacologic therapies. Ann Clin Psychiatry, 18, 4956.Google Scholar
Zammit, G. K., Corser, B., Doghramji, K., et al. (2006). Sleep and residual sedation after administration of zaleplon, zolpidem, and placebo during experimental middle-of-the-night awakening. J Clin Sleep Med, 2, 417423.Google Scholar
Huedo-Medina, T. B., Kirsch, I., Middlemass, J., et al. (2012). Effectiveness of non-benzodiazepine hypnotics in treatment of adult insomnia: meta-analysis of data submitted to the Food and Drug Administration. BMJ, 345, e8343.Google Scholar
Atkin, T., Comai, S., Gobbi, G. (2018). Drugs for insomnia beyond benzodiazepines: pharmacology, clinical applications, and discovery. Pharmacol Rev, 70, 197245.Google Scholar
Williams, W. P. 3rd, McLin, D. E. 3rd, Dressman, M. A., et al. (2016). Comparative review of approved melatonin agonists for the treatment of circadian rhythm sleep-wake disorders. Pharmacotherapy, 36, 10281041.Google Scholar
Liu, J., Zhong, R., Xiong, W., et al. (2017). Melatonin increases reactive aggression in humans. Psychopharmacology (Berl), 234, 29712978.Google Scholar
Tordjman, S., Chokron, S., Delorme, R., et al. (2017). Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol, 15, 434443.Google Scholar
Asnis, G. M., Thomas, M., Henderson, M. A. (2015). Pharmacotherapy treatment options for insomnia: a primer for clinicians. Int J Mol Sci, 17(1), 50.Google Scholar
Joober, R., Cole, K., Tabbane, K., et al. (2017). An algorithmic approach to the management of insomnia in patients with schizophrenia. Ann Clin Psychiatry, 29, 133144.Google Scholar

References

Kelleher, I., Connor, D., Clarke, M. C., et al. (2012). Prevalence of psychotic symptoms in childhood and adolescence: a systematic review and meta-analysis of population-based studies. Psychol Med, 42, 18571863.Google Scholar
Maloney, A. E., Yakutis, L. J., Frazier, J. A. (2012). Empirical evidence for psychopharmacologic treatment in early-onset psychosis and schizophrenia. Child Adolesc Psychiatr Clin, 21, 885909.Google Scholar
McClellan, J., Stock, S. (2013). Practice parameter for the assessment and treatment of children and adolescents with schizophrenia. J Am Acad Child Adolesc Psychiatry, 52, 976990.Google Scholar
Sikich, L. (2013). Diagnosis and evaluation of hallucinations and other psychotic symptoms in children and adolescents. Child Adolesc Psychiatr Clin, 22, 655673.Google Scholar
McClellan, J. (2018). Psychosis in children and adolescents. J Am Acad Child Adolesc Psychiatry, 57, 308312.Google Scholar
Reichenberg, A., Caspi, A., Harrington, H., et al. (2010). Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study. Am J Psychiatry, 167, 160169.Google Scholar
Ross, R. G. (2008). New findings on antipsychotic use in children and adolescents with schizophrenia spectrum disorders. Am J Psychiatry, 165(11), 13691372.Google Scholar
Rapoport, J. L., Gogtay, N. (2011). Childhood onset schizophrenia: support for a progressive neurodevelopmental disorder. Int J Dev Neurosci, 29, 251258.CrossRefGoogle ScholarPubMed
Penttilä, J., Paillére-Martinot, M-L., Martinot, J-L., et al. (2008). Global and temporal cortical folding in patients with early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry, 47, 11251132.Google Scholar
Cornblatt, B. A., Lencz, T., Smith, C. W., et al. (2007). Can antidepressants be used to treat the schizophrenia prodrome? Results of a prospective, naturalistic treatment study of adolescents. J Clin Psychiatry, 64(4), 546557.Google Scholar
Amminger, G. P., Schäfer, M. R., Papageorgiou, K., et al. (2010). Long-chain ω-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry, 67, 146154.Google Scholar
McGorry, P. D., Nelson, B., Markulev, C., et al. (2017). Effect of ω-3 polyunsaturated fatty acids in young people at ultrahigh risk for psychotic disorders: the NEURAPRO randomized clinical trial. JAMA Psychiatry, 74, 1927.Google Scholar
Cannon, T. D., Cadenhead, K., Cornblatt, B., et al. (2008). Prediction of psychosis in youth at high clinical risk: a multisite longitudinal study in North America. Arch Gen Psychiatry, 65, 2837.Google Scholar
Ienciu, M., Romos¸an, F., Bredicean, C., et al. (2010). First episode psychosis and treatment delay – causes and consequences. Psychiatria Danubina, 22, 540543.Google Scholar
Rubio, J. M., Sanjuán, J., Flórez-Salamanca, L., et al. (2012). Examining the course of hallucinatory experiences in children and adolescents: a systematic review. Schizophr Res, 138, 248254.Google Scholar
Norman, R. M., Mallal, A. K., Manchanda, R., et al. (2007). Does treatment delay predict occupational functioning in first-episode psychosis? Schizophr Res, 91, 259262.Google Scholar
Poulton, R., Caspi, A., Moffitt, T. E., et al. (2000). Children’s self-reported psychotic symptoms and adult schizophreniform disorder: a 15-year longitudinal study. Arch Gen Psychiatry, 57, 10531058.CrossRefGoogle ScholarPubMed
Robins, L. N., Helzer, J. E., Croughan, J., et al. (1981). National Institute of Mental Health diagnostic interview schedule: its history, characteristics, and validity. Arch Gen Psychiatry, 38, 381389.Google Scholar
Barrera, M., Garrison-Jones, C. V. (1988). Properties of the Beck Depression Inventory as a screening instrument for adolescent depression. J Abnorm Child Psychol, 16, 263273.Google Scholar
Jellinek, M. S., Murphy, J. M., Robinson, J., et al. (1988). Pediatric Symptom Checklist: screening school-age children for psychosocial dysfunction. J Pediatrics, 112, 201209.Google Scholar
Werry, J. S., McClellan, J. M., Chard, L. (1991). Childhood and adolescent schizophrenic, bipolar, and schizoaffective disorders: a clinical and outcome study. J Am Acad Child Adolesc Psychiatry, 30, 457465.Google Scholar
Carlson, G. A., Fennig, S., Bromet, E. J. (1994). The confusion between bipolar disorder and schizophrenia in youth: where does it stand in the 1990s? J Am Acad Child Adolesc Psychiatry, 33, 453460.Google Scholar
Kaufman, J., Birmaher, B., Brent, D., et al. (1997). Schedule for affective disorders and schizophrenia for school-age children – present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry, 36, 980988.Google Scholar
Conners, C. K., Sitarenios, G., Parker, J. D., et al. (1998). The revised Conners’ Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol, 26, 257268.Google Scholar
Angold, A., Costello, E. J. (2000). The child and adolescent psychiatric assessment (CAPA). J Am Acad Child Adolesc Psychiatry, 39, 3948.Google Scholar
Muris, P., Schmidt, H., Merckelbach, H. (2000). Correlations among two self-report questionnaires for measuring DSM-defined anxiety disorder symptoms in children: The Screen for Child Anxiety Related Emotional Disorders and the Spence Children’s Anxiety Scale. Pers Individ Differ, 28, 333346.Google Scholar
Geller, B., Zimerman, B., Williams, M., et al. (2001). Reliability of the Washington University in St. Louis Kiddie Schedule for Affective Disorders and Schizophrenia (WASH-U-KSADS) mania and rapid cycling sections. J Am Acad Child Adolesc Psychiatry, 40, 450455.Google Scholar
Lachar, D., Randle, S. L., Harper, R. A., et al. (2001). The brief psychiatric rating scale for children (BPRS-C): validity and reliability of an anchored version. J Am Acad Child Adolesc Psychiatry, 40, 333340.Google Scholar
Gracious, B. L., Youngstrom, E. A., Findling, R. L., et al. (2002). Discriminative validity of a parent version of the Young Mania Rating Scale. J Am Acad Child Adolesc Psychiatry, 41, 13501359.Google Scholar
Group, R. U. o. P. P. A. S. (2002). The pediatric anxiety rating scale (PARS): development and psychometric properties. J Am Acad Child Adolesc Psychiatry, 41, 10611069.Google Scholar
Knight, J. R., Sherritt, L., Shrier, L. A., et al. (2002). Validity of the CRAFFT substance abuse screening test among adolescent clinic patients. Arch Pediatr Adolesc Med, 156, 607614.Google Scholar
Kroenke, K., Spitzer, R. L. (2002). The PHQ-9: a new depression diagnostic and severity measure. Psychiatr Ann, 32, 509515.Google Scholar
Mohamadesmaiel, E., Alipour, A. (2002). A preliminary study on the reliability, validity and cut off points of the disorders of Children Symptom Inventory-4 (CSI-4). J Except Child, 2, 239254.Google Scholar
Brooks, S. J., Krulewicz, S. P., Kutcher, S. (2003). The Kutcher Adolescent Depression Scale: assessment of its evaluative properties over the course of an 8-week pediatric pharmacotherapy trial. J Child Adolesc Psychopharmacol, 13, 337349.Google Scholar
Pavuluri, M. N., Herbener, E. S., Sweeney, J. A. (2004). Psychotic symptoms in pediatric bipolar disorder. J Affect Disord, 80, 1928.Google Scholar
Timbremont, B., Braet, C., Dreessen, L. (2004). Assessing depression in youth: relation between the Children’s Depression Inventory and a structured interview. J Clin Child Adolesc Psychol, 33, 149157.CrossRefGoogle ScholarPubMed
III Hale, W. W., Raaijmakers, Q., Muris, P., et al. (2005). Psychometric properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED) in the general adolescent population. J Am Acad Child Adolesc Psychiatry, 44, 283290.Google Scholar
Perrin, S., Meiser-Stedman, R., Smith, P. (2005). The Children’s Revised Impact of Event Scale (CRIES): validity as a screening instrument for PTSD. Behav Cog Psychother, 33, 487498.Google Scholar
Pappas, D. (2006). ADHD Rating Scale-IV: checklists, norms, and clinical interpretation. J Psychoed Assess, 24, 172178.Google Scholar
Wagner, K. D., Hirschfeld, R., Emslie, G. J., et al. (2006). Validation of the Mood Disorder Questionnaire for bipolar disorders in adolescents. J Clin Psychiatry, 67(5), 827830.Google Scholar
Chandler, S., Charman, T., Baird, G., et al. (2007). Validation of the social communication questionnaire in a population cohort of children with autism spectrum disorders. J Am Acad Child Adolesc Psychiatry, 46, 13241332.CrossRefGoogle Scholar
Charman, T., Baird, G., Simonoff, E., et al. (2007). Efficacy of three screening instruments in the identification of autistic-spectrum disorders. Br J Psychiatry, 191, 554559.Google Scholar
Polderman, T. J., Derks, E. M., Hudziak, J. J., et al. (2007). Across the continuum of attention skills: a twin study of the SWAN ADHD rating scale. J Child Psychol Psychiatry, 48, 10801087.Google Scholar
Gallant, J., Storch, E. A., Merlo, L. J., et al. (2008). Convergent and discriminant validity of the Children’s Yale-Brown Obsessive Compulsive Scale-symptom checklist. J Anxiety Disord, 22, 13691376.Google Scholar
Kaminer, Y. (2008). The teen addiction severity index around the globe: the tower of Babel revisited. Subst Abuse, 29, 8994.Google Scholar
Lanktree, C. B., Gilbert, A. M., Briere, J., et al. (2008). Multi-informant assessment of maltreated children: convergent and discriminant validity of the TSCC and TSCYC. Child Abuse Negl, 32, 621625.Google Scholar
Winters, K. C., Kaminer, Y. (2008). Screening and assessing adolescent substance use disorders in clinical populations. J Am Acad Child Adolesc Psychiatry, 47, 740.Google Scholar
Mayes, S. D., Calhoun, S. L., Murray, M. J., et al. (2009). Comparison of scores on the Checklist for Autism Spectrum Disorder, Childhood Autism Rating Scale, and Gilliam Asperger’s Disorder Scale for children with low functioning autism, high functioning autism, Asperger’s disorder, ADHD, and typical development. J Aut Dev Disord, 39, 16821693.Google Scholar
Nakamura, B. J., Ebesutani, C., Bernstein, A., et al. (2009). A psychometric analysis of the child behavior checklist DSM-oriented scales. J Psychopathol Behav Assess, 31, 178189.Google Scholar
Posserud, M-B., Lundervold, A. J., Gillberg, C. (2009). Validation of the autism spectrum screening questionnaire in a total population sample. J Aut Dev Disord, 39, 126134.Google Scholar
Chlebowski, C., Green, J. A., Barton, M. L., et al. (2010). Using the childhood autism rating scale to diagnose autism spectrum disorders. J Aut Dev Disord, 40, 787799.Google Scholar
Reynolds, C. R. (2010). Behavior assessment system for children. The Corsini Encyclopedia of Psychology, 12.Google Scholar
Becker, S. P., Langberg, J. M., Vaughn, A. J., et al. (2012). Clinical utility of the Vanderbilt ADHD diagnostic parent rating scale comorbidity screening scales. J Dev Behav Pediatr, 33, 221.Google Scholar
Fux, L., Walger, P., Schimmelmann, B. G., et al. (2013). The schizophrenia proneness instrument, child and youth version (SPI-CY): practicability and discriminative validity. Schizophr Res, 146, 6978.Google Scholar
Martinez, W., Polo, A. J., Zelic, K. J. (2014). Symptom variation on the Trauma Symptom Checklist for Children: a within-scale meta-analytic review. J Traumatic Stress, 27, 655663.Google Scholar
Stucky, B. D., Edelen, M. O., Ramchand, R. (2014). A psychometric assessment of the GAIN General Individual Severity Scale (GAIN-GISS) and Short Screeners (GAIN-SS) among adolescents in outpatient treatment programs. J Subst Abuse Treat, 46, 165173.Google Scholar
Sparrow, S., Cicchetti, D. V., Saulnier, C. A. (2016). Vineland adaptive behavior scales (Vineland-3). Antonio: Psychological Corporation.Google Scholar
Pagsberg, A. K., Tarp, S., Glintborg, D., et al. (2017). Acute antipsychotic treatment of children and adolescents with schizophrenia-spectrum disorders: a systematic review and network meta-analysis. J Am Acad Child Adolesc Psychiatry, 56, 191202.Google Scholar
Craddock, K. E., Zhou, X., Liu, S., et al. (2018). Symptom dimensions and subgroups in childhood-onset schizophrenia. Schizophr Res, 197, 7177.Google Scholar
Doric, A., Stevanovic, D., Stupar, D., et al. (2019). UCLA PTSD reaction index for DSM-5 (PTSD-RI-5): a psychometric study of adolescents sampled from communities in eleven countries. Eur J Psychotraumatology, 10, 1605282.Google Scholar
Child Mind Institute. (2017). Children’s Mental Health Report. Available from: https://childmind.org/report/2017-childrens-mental-health-report (last accessed November 3, 2020).Google Scholar
Galynker, I., Ieronimo, C., Perez-Acquino, A., et al. (1996). Panic attacks with psychotic features. J Clin Psychiatry, 57, 402406.Google Scholar
Schäfer, I., Fisher, H. L. (2011). Childhood trauma and psychosis – what is the evidence? Dialogues Clin Neurosci, 13, 360.Google Scholar
Rodowski, M. F., Cagande, C. C., Riddle, M. A. (2008). Childhood obsessive-compulsive disorder presenting as schizophrenia spectrum disorders. J Child Adolesc Psychopharmacol, 18, 395401.Google Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. Arlington: American Psychiatric Association, p. 81.Google Scholar
Mullin, A., Gokhale, A., Moreno-De-Luca, A., et al. (2013). Neurodevelopmental disorders: mechanisms and boundary definitions from genomes, interactomes and proteomes. Transl Psychiatry, 3, e329e329.Google Scholar
Landa, R. J., Gross, A. L., Stuart, E. A., et al. (2013). Developmental trajectories in children with and without autism spectrum disorders: the first 3 years. Child Dev, 84, 429442.Google Scholar
McNamara, D. (2012). Genetic microarrays grow for neurodevelopmental diagnosis. Available from: www.mdedge.com/clinicalneurologynews/article/52657/neurology/genetic-microarrays-grow-neurodevelopmental-diagnosis (last accessed November 3, 2020).Google Scholar
Fluyau, D., Mitra, P., Lorthe, K. (2019). Antipsychotics for amphetamine psychosis. A systematic review. Front Psychiatry, 10, 740.Google Scholar
Cheng, W-J., Chen, C-H., Chen, C-K., et al. (2018). Similar psychotic and cognitive profile between ketamine dependence with persistent psychosis and schizophrenia. Schizophr Res, 199, 313318.Google Scholar
American Addiction Centers. (2019). Dextromethorphan abuse. Available from: www.drugabuse.com/dextromethorphan (last accessed November 3, 2020).Google Scholar
Abraham, H. D. (1983). Visual phenomenology of the LSD flashback. Arch Gen Psychiatry, 40(8), 884889.Google Scholar
National Institute on Drug Abuse. (2019). Hallucinogens Drug Facts. Available from: www.drugabuse.gov/publications/drugfacts/hallucinogens (last accessed November 3, 2020).Google Scholar
National Institute on Drug Abuse. (2019). Marijuana Drug Facts. Available from: http://www.drugabuse.gov/publications/drugfacts/marijuana (last accessed November 3, 2020).Google Scholar
National Institute on Drug Abuse. (2018). Synthetic Cannabinoids Drug Facts. Avavilable from: http://www.drugabuse.gov/publications/drugfacts/synthetic-cannabinoids-k2spice (last accessed November 3, 2020).Google Scholar
National Institute on Drug Abuse. (2018). Synthetic Cathinones Drug Facts. Available from: http://www.drugabuse.gov/publications/drugfacts/synthetic-cathinones-bath-salts (last accessed November 3, 2020).Google Scholar
Fohrman, D. A., Stein, M. T. (2006). Psychosis: 6 steps rule out medical causes in kids. Curr Psychiatr, 5, 3547.Google Scholar
Stevens, J. R., Prince, J. B., Prager, L. M., et al. (2014). Psychotic disorders in children and adolescents: a primer on contemporary evaluation and management. Prim Care Companion CNS Disord, 16, PCC.13f01514.Google Scholar
Lowenthal, E. D., Cruz, N., Yin, D. (2010). Neurologic and psychiatric manifestations of pediatric HIV infection. HIV Curriculum for the Health Professional, 194205.Google Scholar
Ramsey, D., Muskin, P. R. (2013). Vitamin deficiencies and mental health: how are they linked. Curr Psychiatr, 12, 3743.Google Scholar
Firth, J., Carney, R., Stubbs, B., et al. (2018). Nutritional deficiencies and clinical correlates in first-episode psychosis: a systematic review and meta-analysis. Schizophr Bull, 44, 12751292.Google Scholar
American Academy of Child and Adolescent Psychiatry. (2011). Practice parameters for the use of atypical antipsychotics medication in children and adolescents. Available from: https://www.aacap.org/App_Themes/AACAP/docs/practice_parameters/Atypical_Antipsychotic_Medications_Web.pdfGoogle Scholar
Werry, J. S., Weiss, G., Douglas, V., et al. (1966). Studies on the hyperactive child: III. The effect of chlorpromazine upon behavior and learning ability. J Am Acad Child Psychiatry, 5, 292312.Google Scholar
Engelhardt, D. M., Polizos, P., Waizer, J., et al. (1973). A double-blind comparison of fluphenazine and haloperidol in outpatient schizophrenic children. J Aut Child Schizophr, 3, 128137.Google Scholar
Pool, D., Bloom, W., Mielke, D., et al. (1976). A controlled evaluation of loxitane in seventy-five adolescent schizophrenic patients. Curr Therapeut Res, 19(1), 99104.Google Scholar
Spencer, E. K., Kafantaris, V., Padron-Gayol, M. V., et al. (1992). Haloperidol in schizophrenic children: early findings from a study in progress. Psychopharmacol Bull, 28(2), 183186.Google Scholar
Kumra, S., Frazier, J. A., Jacobsen, L. K., et al. (1996). Childhood-onset schizophrenia: a double-blind clozapine-haloperidol comparison. Arch Gen Psychiatry, 53, 10901097.Google Scholar
Woods, S. W., Breier, A., Zipursky, R. B., et al. (2003). Randomized trial of olanzapine versus placebo in the symptomatic acute treatment of the schizophrenic prodrome. Biological Psychiatry, 54, 453464.Google Scholar
Sikich, L., Hamer, R. M., Bashford, R. A., et al. (2004). A pilot study of risperidone, olanzapine, and haloperidol in psychotic youth: a double-blind, randomized, 8-week trial. Neuropsychopharmacology, 29, 133145.Google Scholar
McGlashan, T. H., Zipursky, R. B., Perkins, D., et al. (2006). Randomized, double-blind trial of olanzapine versus placebo in patients prodromally symptomatic for psychosis. Am J Psychiatry, 163, 790799.Google Scholar
Shaw, P., Sporn, A., Gogtay, N., et al. (2006). Childhood-onset schizophrenia: a double-blind, randomized clozapine-olanzapine comparison. Arch Gen Psychiatry, 63, 721730.Google Scholar
Berger, G. E., Proffitt, T-M., McConchie, M., et al. (2008). Dosing quetiapine in drug-naive first-episode psychosis: a controlled, double-blind, randomized, single-center study investigating efficacy, tolerability, and safety of 200 mg/day vs. 400 mg/day of quetiapine fumarate in 141 patients aged 15 to 25 years. J Clin Psychiatry, 69, 17021714.Google Scholar
Findling, R. L., Robb, A., Nyilas, M., et al. (2008). A multiple-center, randomized, double-blind, placebo-controlled study of oral aripiprazole for treatment of adolescents with schizophrenia. Am J Psychiatry, 165, 14321441.Google Scholar
Sikich, L., Frazier, J. A., McClellan, J., et al. (2008). Double-blind comparison of first- and second-generation antipsychotics in early-onset schizophrenia and schizo-affective disorder: findings from the treatment of early-onset schizophrenia spectrum disorders (TEOSS) study. Am J Psychiatry, 165, 14201431.Google Scholar
Haas, M., Unis, A. S., Armenteros, J., et al. (2009). A 6-week, randomized, double-blind, placebo-controlled study of the efficacy and safety of risperidone in adolescents with schizophrenia. J Child Adolesc Psychopharmacol, 19, 611621.Google Scholar
Kryzhanovskaya, L., Schulz, S. C., Mcdougle, C., et al. (2009). Olanzapine versus placebo in adolescents with schizophrenia: a 6-week, randomized, double-blind, placebo-controlled trial. J Am Acad Child Adolesc Psychiatry, 48, 6070.Google Scholar
Findling, R. L., Johnson, J. L., McClellan, J., et al. (2010). Double-blind maintenance safety and effectiveness findings from the Treatment of Early-Onset Schizophrenia Spectrum (TEOSS) study. J Am Acad Child Adolesc Psychiatry, 49, 583594.Google Scholar
Singh, J., Robb, A., Vijapurkar, U., et al. (2011). A randomized, double-blind study of paliperidone extended-release in treatment of acute schizophrenia in adolescents. Biological Psychiatry, 70, 11791187.CrossRefGoogle ScholarPubMed
Findling, R. L., McKenna, K., Earley, W. R., et al. (2012). Efficacy and safety of quetiapine in adolescents with schizophrenia investigated in a 6-week, double-blind, placebo-controlled trial. J Child Adolesc Psychopharmacol, 22, 327342.Google Scholar
Savitz, A. J., Lane, R., Nuamah, I., et al. (2015). Efficacy and safety of paliperidone extended release in adolescents with schizophrenia: a randomized, double-blind study. J Am Acad Child Adolesc Psychiatry, 54, 126–137. e121.Google Scholar
Goldman, R., Loebel, A., Cucchiaro, J., et al. (2017). Efficacy and safety of lurasidone in adolescents with schizophrenia: a 6-week, randomized placebo-controlled study. J Child Adolesc Psychopharmacol, 27, 516525.Google Scholar
Lytle, S., McVoy, M., Sajatovic, M. (2017). Long-acting injectable antipsychotics in children and adolescents. J Child Adolesc Psychopharmacol, 27, 29.Google Scholar
Lieberman, J. A., Stroup, T. S., McEvoy, J. P., et al. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med, 353, 12091223.Google Scholar
Stahl, S. M. (2019). Stahl’s Essential Psychopharmacology: Prescriber’s Guide, Children and Adolescents. New York: Cambridge University Press.Google Scholar
Stevens, J. R., Prince, J. B. (2012). Schooling students with psychotic disorders. Child Adolesc Psychiatr Clin N Am, 21(1), 187200.Google Scholar
Xia, J., Merinder, L. B., Belgamwar, M. R. (2011). Psychoeducation for schizophrenia. Cochrane Database Syst Rev, 2011(6), CD002831.Google Scholar
Turkington, D., Kingdon, D., Turner, T. (2002). Effectiveness of a brief cognitive–behavioural therapy intervention in the treatment of schizophrenia. Br J Psychiatry, 180, 523527.Google Scholar
McGorry, P. D., Yung, A. R., Phillips, L. J., et al. (2002). Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Arch Gen Psychiatry, 59, 921928.Google Scholar
Wykes, T., Newton, E., Landau, S., et al. (2007). Cognitive remediation therapy (CRT) for young early onset patients with schizophrenia: an exploratory randomized controlled trial. Schizophr Res, 94, 221230.Google Scholar
Lee, R., Redoblado-Hodge, M., Naismith, S., et al. (2013). Cognitive remediation improves memory and psychosocial functioning in first-episode psychiatric out-patients. Psychol Med, 43, 11611173.Google Scholar

References

Kennedy, S. H., Milev, R., Giacobbe, P., et al. (2009). Canadian Network for Mood and Anxiety Treatments (CANMAT) clinical guidelines for the management of major depressive disorder in adults. IV. Neurostimulation therapies. J Affect Disord, 117 Suppl. 1, S4453.Google Scholar
Poublon, N. A., Haagh, M., et al. (2011). The efficacy of ECT in the treatment of schizophrenia. A systematic review. Erasmus J Med, 2(1), 48.Google Scholar
Brenner, H. D., Dencker, S. J., Goldstein, M. J., et al. (1990). Defining treatment refractoriness in schizophrenia. Schizophr Bull, 16, 551561.Google Scholar
Conley, R. R., Buchanan, R. W. (1997). Evaluation of treatment-resistant schizophrenia. Schizophr Bull, 23, 663674.Google Scholar
Meltzer, H. Y. (1997). Treatment-resistant schizophrenia – the role of clozapine. Curr Med Res Opin, 14, 120.Google Scholar
Meltzer, H. Y. (1992). Treatment of the neuroleptic-nonresponsive schizophrenic patient. Schizophr Bull, 18, 515542.Google Scholar
Remington, G., Saha, A., Chong, S. A., et al. (2005). Augmentation strategies in clozapine-resistant schizophrenia. CNS Drugs, 19, 843872.Google Scholar
Tranulis, C., Mouaffak, F., Chouchana, L., et al. (2006). Somatic augmentation strategies in clozapine resistance – what facts? Clin Neuropharmacol, 29, 3444.Google Scholar
Cipriani, A., Boso, M., Barbui, C. (2009). Clozapine combined with different antipsychotic drugs for treatment resistant schizophrenia. Cochrane Database Syst Rev, 8(3), CD006324.Google Scholar
Porcelli, S., Balzarro, B., Serretti, A. (2012). Clozapine resistance: augmentation strategies. Eur Neuropsychopharmacol, 22, 165182.Google Scholar
Taylor, D. M., Smith, L., Gee, S. H., et al. (2012). Augmentation of clozapine with a second antipsychotic – a meta-analysis. Acta Psychiatr Scand, 125, 1524.Google Scholar
American Psychiatric Association. (2001). The Practice of Electroconvulsive Therapy: Recommendations for Treatment, Training, and Privileging: A Task Force Report of the American Psychiatric Association. Washington, D.C.Google Scholar
Tharyan, P., Adams, C. E. (2005). Electroconvulsive therapy for schizophrenia. Cochrane Database Syst Rev, 18(2), CD000076.Google Scholar
Pompili, M., Lester, D., Dominici, G., et al. (2013). Indications for electroconvulsive treatment in schizophrenia: a systematic review. Schizophr Res, 146, 19.Google Scholar
Gazdag, G., Kocsis-Ficzere, N., Tolna, J. (2006). The augmentation of clozapine treatment with electroconvulsive therapy. Ideggyogy Sz, 59, 261267.Google Scholar
Small, J. G., Milstein, V., Klapper, M., Kellams, J.J., Small, I.F. (1982). ECT combined with neuroleptics in the treatment of schizophrenia. Psychopharmacol Bull, 18(2), 3435.Google Scholar
Abraham, K. R., Kulhara, P. (1987). The efficacy of electroconvulsive therapy in the treatment of schizophrenia. A comparative study. Br J Psychiatry, 151, 152155.Google Scholar
Petrides, G., Malur, C., Braga, R. J., et al. (2015). Electroconvulsive therapy augmentation in clozapine-resistant schizophrenia: a prospective, randomized study. Am J Psychiatry, 172, 5258.Google Scholar
Grover, S., Hazari, N., Kate, N. (2015). Combined use of clozapine and ECT: a review. Acta Neuropsychiatr, 27, 131142.Google Scholar
Leucht, S., Tardy, M., Komossa, K., et al. (2012). Maintenance treatment with antipsychotic drugs for schizophrenia. Cochrane Database Syst Rev, 2012, CD008016.Google Scholar
Zipursky, R. B., Menezes, N. M., Streiner, D. L. (2014). Risk of symptom recurrence with medication discontinuation in first-episode psychosis: a systematic review. Schizophr Res, 152, 408414.Google Scholar
Sackeim, H. A., Haskett, R. F., Mulsant, B. H., et al. (2001). Continuation pharmacotherapy in the prevention of relapse following electroconvulsive therapy: a randomized controlled trial. JAMA, 285, 12991307.Google Scholar
Ward, H. B., Szabo, S. T., Rakesh, G. (2018). Maintenance ECT in schizophrenia: a systematic review. Psychiatry Res, 264, 131142.Google Scholar
Chanpattana, W., Chakrabhand, M. L., Sackeim, H. A., et al. (1999). ECT in treatment-resistant schizophrenia: a controlled study. Journal of ECT, 15(3), 178192.Google Scholar
Yang, Y., Cheng, X., Xu, Q., et al. (2016). The maintenance of modified electroconvulsive therapy combined with risperidone is better than risperidone alone in preventing relapse of schizophrenia and improving cognitive function. Arq Neuropsiquiatr, 10, 823828.Google Scholar
Maley, C. T., Becker, J. E., Shultz, E. K. B. (2019). Electroconvulsive therapy and other neuromodulation techniques for the treatment of psychosis. Child Adolesc Psychiatr Clin N Am, 28, 91100.Google Scholar
Freitas, C., Fregni, F., Pascual-Leone, A. (2009). Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr Res, 108(1–3), 1124.Google Scholar
Slotema, C. W., Blom, J. D., van Lutterveld, R., et al. (2014). Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations. Biol Psychiatry, 76, 101110.Google Scholar
Nieuwdorp, W., Koops, S., Somers, M., et al. (2015). Transcranial magnetic stimulation, transcranial direct current stimulation and electroconvulsive therapy for medication-resistant psychosis of schizophrenia. Curr Opin Psychiatry, 28, 222228.Google Scholar
Dlabac-de Lange, J. J., Knegtering, R., Aleman, A. (2010). Repetitive transcranial magnetic stimulation for negative symptoms of schizophrenia: review and meta-analysis. J Clin Psychiatry, 71, 411418.Google Scholar
Prikryl, R., Kucerova, H. (2013). Can repetitive transcranial magnetic stimulation be considered an effective treatment option for negative symptoms of schizophrenia? Journal of ECT, 29(1), 6774.Google Scholar
Shi, C., Yu, X., Cheung, E., et al. (2014). Revisiting the therapeutic effect of rTMS on negative symptoms in schizophrenia: a meta-analysis. Psychiatry Res, 215(3), 505513.Google Scholar
Zhou, K., Tang, Y., Song, Z., et al. (2019). Repetitive transcranial magnetic stimulation as an adjunctive treatment for negative symptoms and cognitive impairment in patients with schizophrenia: a randomized, double-blind, sham-controlled trial. Neuropsychiatr Dis Treat, 15, 11411150.Google Scholar
Marzouk, T., Winkelbeiner, S., Azizi, H., et al. (2019). Transcranial magnetic stimulation for positive symptoms in schizophrenia: a systematic review. Neuropsychobiology, 10, 113.Google Scholar
Arumugham, S. S., Thirthalli, J., Andrade, C. (2016). Efficacy and safety of combining clozapine with electrical or magnetic brain stimulation in treatment-refractory schizophrenia. Expert Rev Clin Pharmacol, 9, 12451252.Google Scholar
Narayana, S., Papanicolaou, A. C., McGregor, A., et al. (2015). Clinical applications of transcranial magnetic stimulation in pediatric neurology. J Child Neurol, 30, 11111124.Google Scholar
Brunelin, J., Mondino, M., Gassab, L., et al. (2012). Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am J Psychiatry, 169, 719724.CrossRefGoogle ScholarPubMed
Mervis, J. E., Capizzi, R. J., Boroda, E., et al. (2017). Transcranial direct current stimulation over the dorsolateral prefrontal cortex in schizophrenia: a quantitative review of cognitive outcomes. Front Hum Neurosci, 11, 44.Google Scholar
Fitzgerald, P. B., McQueen, S., Daskalakis, Z. J., et al. (2014). A negative pilot study of daily bimodal transcranial direct current stimulation in schizophrenia. Brain Stimul, 7, 813816.Google Scholar
Frohlich, F., Burrello, T. N., Mellin, J. M., et al. (2016). Exploratory study of once-daily transcranial direct current stimulation (tDCS) as a treatment for auditory hallucinations in schizophrenia. Eur Psychiatry, 33, 5460.Google Scholar
Narita, Z., Stickley, A., DeVylder, J., et al. (2019). Effect of multi-session prefrontal transcranial direct current stimulation on cognition in schizophrenia: a systematic review and meta-analysis. Schizophr Res, 216, 367373.Google Scholar
Hasan, A., Wolff-Menzler, C., Pfeiffer, S., et al. (2015). Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur Arch Psychiatry Clin Neurosci, 265, 589600.Google Scholar
Perez, S. M., Carreno, F. R., Frazer, A., et al. (2014). Vagal nerve stimulation reverses aberrant dopamine system function in the methylazoxymethanol acetate rodent model of schizophrenia. J Neurosci, 34, 92619267.Google Scholar
Smucny, J., Visani, A., Tregellas, J. R. (2015). Could vagus nerve stimulation target hippocampal hyperactivity to improve cognition in schizophrenia? Front Psychiatry, 6, 43.Google Scholar
Blumer, D., Davies, K., Alexander, A., et al. (2001). Major psychiatric disorders subsequent to treating epilepsy by vagus nerve stimulation. Epilepsy Behav, 2, 466472.Google Scholar
Keller, S., Lichtenberg, P. (2008). Psychotic exacerbation in a patient with seizure disorder treated with vagus nerve stimulation. Isr Med Assoc J, 10, 550551.Google Scholar
Mikell, C. B., McKhann, G. M., Segal, S., et al. (2009). The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia. Stereotact Funct Neurosurg, 87, 256265.Google Scholar
Kuhn, J., Bodatsch, M., Sturm, V., et al. (2014). Deep brain stimulation in schizophrenia. Act Nerv Super, 3, 6978.Google Scholar
Gault, J. M., Davis, R., Cascella, N. G., et al. (2018). Approaches to neuromodulation for schizophrenia. J Neurol Neurosurg Psychiatry, 89, 777787.Google Scholar
Schermer, M. (2011). Ethical issues in deep brain stimulation. Front Integr Neurosci, 5, 17.Google Scholar
Benazzi, F. (2006). Various forms of depression. Dialogues Clin Neurosci, 8, 151161.Google Scholar
Aichhorn, W., Stelzig-Schoeler, R., Geretsegger, C., et al. (2007). Bright light therapy for negative symptoms in schizophrenia: a pilot study. J Clin Psychiatry, 68, 1146.Google Scholar
Roopram, S. M., Burger, A. M., van Dijk, D. A., et al. (2016). A pilot study of bright light therapy in schizophrenia. Psychiatry Res, 245, 317320.Google Scholar

References

Myles, N., Newall, H. D., Curtis, J., et al. (2012). Tobacco use before, at, and after first-episode psychosis: a systematic meta-analysis. J Clin Psychiatry, 73, 468475.Google Scholar
Myles, H., Myles, N., Large, M. (2016). Cannabis use in first episode psychosis: meta-analysis of prevalence, and the time course of initiation and continued use. Aust N Z J Psychiatry, 50, 208219.Google Scholar
Hasan, A., von Keller, R., Friemel, C. M., et al. (2019). Cannabis use and psychosis: a review of reviews. Eur Arch Psychiatry Clin Neurosci, 270(4), 403412.Google Scholar
Callaghan, R. C., Cunningham, J. K., Allebeck, P., et al. (2012). Methamphetamine use and schizophrenia: a population-based cohort study in California. Am J Psychiatry, 169, 389396.Google Scholar
Substance Abuse and Mental Health Services Administration. (2019). First-episode psychosis and co-occurring substance use disorders. Rockville, MD: National Mental Health and Substance Use Policy Laboratory. Publication no. PEP19-PL-Guide-3.Google Scholar
Swartz, M. S., Wagner, H. R., Swanson, J. W., et al. (2006). Substance use in persons with schizophrenia: baseline prevalence and correlates from the NIMH CATIE study. J Nerv Ment Dis, 194, 164172.Google Scholar
Kerfoot, K. E., Rosenheck, R. A., Petrakis, I. L., et al. (2011). Substance use and schizophrenia: adverse correlates in the CATIE study sample. Schizophr Res, 132, 177182.Google Scholar
Fazel, S., Långström, N., Hjern, A., et al. (2009). Schizophrenia, substance abuse, and violent crime. JAMA, 301, 20162023.Google Scholar
Lamsma, J., Cahn, W., Fazel, S. (2019). Use of illicit substances and violent behaviour in psychotic disorders: two nationwide case-control studies and meta-analyses. Psychol Med, 50(12), 20282033.Google Scholar
Jaffee, W. B., Trucco, E., Levy, S., et al. (2007). Is this urine really negative? A systematic review of tampering methods in urine drug screening and testing. J Subst Abuse Treat, 33, 3342.Google Scholar
DiClemente, C. C., Nidecker, M., Bellack, A. S. (2008). Motivation and the stages of change among individuals with severe mental illness and substance abuse disorders. J Subst Abuse Treat, 34, 2535.Google Scholar
Ziedonis, D. M., Smelson, D., Rosenthal, R. N., et al. (2005). Improving the care of individuals with schizophrenia and substance use disorders: consensus recommendations. J Psychiatr Pract, 11, 315.Google Scholar
McDonell, M. G., Srebnik, D., Angelo, F., et al. (2013). Randomized controlled trial of contingency management for stimulant use in community mental health patients with serious mental illness. Am J Psychiatry, 170, 94101.Google Scholar
McPherson, S., Orr, M., Lederhos, C., et al. (2018). Decreases in smoking during treatment for methamphetamine-use disorders: preliminary evidence. Behav Pharmacol, 29, 370374.Google Scholar
Green, A. I., Tohen, M. F., Hamer, R. M., et al. (2004). First episode schizophrenia-related psychosis and substance use disorders: acute response to olanzapine and haloperidol. Schizophr Res, 66, 125135.Google Scholar
Bennett, M. E., Bradshaw, K. R., Catalano, L. T. (2017). Treatment of substance use disorders in schizophrenia. Am J Drug Alcohol Abuse, 43, 377390.Google Scholar
Buchanan, R. W., Kreyenbuhl, J., Kelly, D. L., et al. (2012). The 2009 schizophrenia PORT psychopharmacological treatment recommendations and summary statements. FOCUS, 10, 194216.Google Scholar
Martins, S. S., Gorelick, D. A. (2011). Conditional substance abuse and dependence by diagnosis of mood or anxiety disorder or schizophrenia in the U.S. population. Drug Alcohol Depend, 119, 2836.Google Scholar
Wildgust, H. J., Beary, M. (2010). Are there modifiable risk factors which will reduce the excess mortality in schizophrenia? J Psychopharmacol, 24, 3750.Google Scholar
Cather, C., Pachas, G. N., Cieslak, K. M., et al. (2017). Achieving smoking cessation in individuals with schizophrenia: special considerations. CNS Drugs, 31, 471481.Google Scholar
Kalkhoran, S., Glantz, S. A. (2016). E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir Med, 4, 116128.Google Scholar
Tsuda, Y., Saruwatari, J., Yasui-Furukori, N. (2014). Meta-analysis: the effects of smoking on the disposition of two commonly used antipsychotic agents, olanzapine and clozapine. BMJ Open, 4, e004216.Google Scholar
Meyer, J. M. (2001). Individual changes in clozapine levels after smoking cessation: results and a predictive model. J Clin Psychopharmacol, 21, 569574.Google Scholar
Robertson, A. G., Easter, M. M., Lin, H., et al. (2018). Medication-assisted treatment for alcohol-dependent adults with serious mental illness and criminal justice involvement: effects on treatment utilization and outcomes. Am J Psychiatry, 175, 665673.Google Scholar
Robertson, A. G., Easter, M. M., Lin, H. J., et al. (2018). Associations between pharmacotherapy for opioid dependence and clinical and criminal justice outcomes among adults with co-occurring serious mental illness. J Subst Abuse Treat, 86, 1725.Google Scholar
Spencer, C., Castle, D., Michie, P. T. (2002). Motivations that maintain substance use among individuals with psychotic disorders. Schizophr Bull, 28, 233247.Google Scholar
Toftdahl, N. G., Nordentoft, M., Hjorthoj, C. (2016). The effect of changes in cannabis exposure on psychotic symptoms in patients with comorbid cannabis use disorder. J Dual Diagn, 12, 129136.Google Scholar
Green, A. I., Burgess, E. S., Dawson, R., et al. (2003). Alcohol and cannabis use in schizophrenia: effects of clozapine vs. risperidone. Schizophr Res, 60, 8185.Google Scholar
Chan, B., Freeman, M., Kondo, K., et al. (2019). Pharmacotherapy for methamphetamine/amphetamine use disorder – a systematic review and meta-analysis. Addiction, 114, 21222136.Google Scholar
Chan, B., Kondo, K., Freeman, M., et al. (2019). Pharmacotherapy for cocaine use disorder – a systematic review and meta-analysis. J Gen Intern Med, 34, 28582873.Google Scholar
Sena, S. F., Kazimi, S., Wu, A. H. (2002). False-positive phencyclidine immunoassay results caused by venlafaxine and O-desmethylvenlafaxine. Clin Chem, 48, 676677.Google Scholar
Heit, H. A., Gourlay, D. L. (2004). Urine drug testing in pain medicine. J Pain Symptom Manage, 27, 260267.Google Scholar
Moeller, K. E., Lee, K. C., Kissack, J. C. (2008). Urine drug screening: practical guide for clinicians. Mayo Clin Proc, 83(1), 6676.Google Scholar
Nasky, K. M., Cowan, G. L., Knittel, D. R. (2009). False-positive urine screening for benzodiazepines: an association with sertraline? A two-year retrospective chart analysis. Psychiatry (Edgmont), 6, 36.Google Scholar
Reisfield, G. M., Goldberger, B. A., Bertholf, R. L. (2009). “False-positive” and “false-negative” test results in clinical urine drug testing. Bioanalysis, 1, 937952.Google Scholar
Mikel, C., Pesce, A. J., Rosenthal, M., et al. (2012). Therapeutic monitoring of benzodiazepines in the management of pain: current limitations of point of care immunoassays suggest testing by mass spectrometry to assure accuracy and improve patient safety. Clin Chim Acta, 413, 11991202.Google Scholar
Saitman, A., Park, H-D., Fitzgerald, R. L. (2014). False-positive interferences of common urine drug screen immunoassays: a review. J Anal Toxicol, 38, 387396.Google Scholar
Bohn, M., Babor, T., Kranzler, H. (1991). Validity of the Drug Abuse Screening Test (DAST-10) in inpatient substance abusers. Problems of Drug Dependence, 119, 233235.Google Scholar
Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., et al. (1991). The Fagerström test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict, 86, 11191127.Google Scholar
Saunders, J. B., Aasland, O. G., Babor, T. F., et al. (1993). Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption – II. Addiction, 88, 791804.Google Scholar
Bush, K., Kivlahan, D. R., McDonell, M. B., et al. (1998). The AUDIT alcohol consumption questions (AUDIT-C): an effective brief screening test for problem drinking. Arch Intern Med, 158, 17891795.Google Scholar
Knight, J. R., Shrier, L. A., Bravender, T. D., et al. (1999). A new brief screen for adolescent substance abuse. Arch Pediatr Adolesc Med, 153, 591596.Google Scholar
Maisto, S. A., Carey, M. P., Carey, K. B., et al. (2000). Use of the AUDIT and the DAST-10 to identify alcohol and drug use disorders among adults with a severe and persistent mental illness. Psychol Assess, 12, 186192.Google Scholar
Knight, J. R., Sherritt, L., Shrier, L. A., et al. (2002). Validity of the CRAFFT substance abuse screening test among adolescent clinic patients. Arch Pediatr Adolesc Med, 156, 607614.Google Scholar
Bradley, K. A., DeBenedetti, A. F., Volk, R. J., et al. (2007). AUDIT-C as a brief screen for alcohol misuse in primary care. Alcohol Clin Exp Res, 31, 12081217.Google Scholar
Pearsall, R., Smith, D. J., Geddes, J. R. (2019). Pharmacological and behavioural interventions to promote smoking cessation in adults with schizophrenia and bipolar disorders: a systematic review and meta-analysis of randomised trials. BMJ Open, 9, e027389.Google Scholar
Tsoi, D. T-Y., Porwal, M., Webster, A. C. (2010). Efficacy and safety of bupropion for smoking cessation and reduction in schizophrenia: systematic review and meta-analysis. Br J Psychiatry, 196, 346353.Google Scholar
Evins, A. E., Cather, C., Pratt, S. A., et al. (2014). Maintenance treatment with varenicline for smoking cessation in patients with schizophrenia and bipolar disorder: a randomized clinical trial. JAMA, 311, 145154.Google Scholar
Ralevski, E., O’Brien, E., Jane, J. S., et al. (2011). Treatment with acamprosate in patients with schizophrenia spectrum disorders and comorbid alcohol dependence. J Dual Diagn, 7, 6473.Google Scholar
Paz, R. D., Tardito, S., Atzori, M., et al. (2008). Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol, 18, 773786.Google Scholar
Forest Pharmaceuticals, I. (2004). Highlights of prescribing information for acamprosate sodium. New York.Google Scholar
Petrakis, I. L., Nich, C., Ralevski, E. (2006). Psychotic spectrum disorders and alcohol abuse: a review of pharmacotherapeutic strategies and a report on the effectiveness of naltrexone and disulfiram. Schizophr Bull, 32, 644654.Google Scholar

References

Siever, L. J. (2008). Neurobiology of aggression and violence. Am J Psychiatry, 165, 429442.Google Scholar
Meyer, J. M., Cummings, M. A., Proctor, G., et al. (2016). Psychopharmacology of persistent violence and aggression. Psychiatr Clin North Am, 39, 541556.Google Scholar
Rosenbloom, M. H., Schmahmann, J. D., Price, B. H. (2012). The functional neuroanatomy of decision-making. J Neuropsychiatry Clin Neurosci, 24, 266277.Google Scholar
Nash, R. P., Weinberg, M. S., Laughon, S. L., et al. (2019). Acute pharmacological management of behavioral and emotional dysregulation following a traumatic brain injury: a systematic review of the literature. Psychosomatics, 60, 139152.Google Scholar
Hicks, A. J., Clay, F. J., Hopwood, M., et al. (2019). The efficacy and harms of pharmacological interventions for aggression after traumatic brain injury: a systematic review. Front Neurol, 10, 1169.Google Scholar
Tangamornsuksan, W., Chaiyakunapruk, N., Somkrua, R., et al. (2013). Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol, 149, 10251032.Google Scholar
Hammond, F. M., Bickett, A. K., Norton, J. H., et al. (2014). Effectiveness of amantadine hydrochloride in the reduction of chronic traumatic brain injury irritability and aggression. J Head Trauma Rehabil, 29, 391399.Google Scholar
Sami, M. B., Faruqui, R. (2015). The effectiveness of dopamine agonists for treatment of neuropsychiatric symptoms post brain injury and stroke. Acta Neuropsychiatr, 27, 317326.Google Scholar
Hammond, F. M., Malec, J. F., Zafonte, R. D., et al. (2017). Potential impact of amantadine on aggression in chronic traumatic brain injury. J Head Trauma Rehabil, 32, 308318.Google Scholar
Hammond, F. M., Sherer, M., Malec, J. F., et al. (2015). Amantadine effect on perceptions of irritability after traumatic brain injury: results of the amantadine irritability multisite study. J Neurotrauma, 32, 12301238.Google Scholar
Cummings, J., Lai, T. J., Hemrungrojn, S., et al. (2016). Role of donepezil in the management of neuropsychiatric symptoms in Alzheimer’s disease and dementia with Lewy bodies. CNS Neurosci Ther, 22, 159166.Google Scholar
Gareri, P., Putignano, D., Castagna, A., et al. (2014). Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer’s disease: the MEMAGE study. J Alzheimers Dis, 41, 633640.Google Scholar
Seitz, D. P., Adunuri, N., Gill, S. S., et al. (2011). Antidepressants for agitation and psychosis in dementia. Cochrane Database Syst Rev, 2011, CD008191.Google Scholar
Maust, D. T., Kim, H. M., Seyfried, L. S., et al. (2015). Antipsychotics, other psychotropics, and the risk of death in patients with dementia: number needed to harm. JAMA Psychiatry, 72, 438445.Google Scholar
Deardorff, W. J., Grossberg, G. T. (2019). Behavioral and psychological symptoms in Alzheimer’s dementia and vascular dementia. Handb Clin Neurol, 165, 532.Google Scholar
Reus, V. I., Fochtmann, L. J., Eyler, A. E., et al. (2016). The American Psychiatric Association practice guideline on the use of antipsychotics to treat agitation or psychosis in patients with dementia. Am J Psychiatry, 173, 543546.Google Scholar
Devanand, D. P., Mintzer, J., Schultz, S., et al. (2012). The antipsychotic discontinuation in Alzheimer disease trial: clinical rationale and study design. Am J Geriatr Psychiatry, 20, 362373.Google Scholar
Gallagher, D., Herrmann, N. (2014). Antiepileptic drugs for the treatment of agitation and aggression in dementia: do they have a place in therapy? Drugs, 74, 17471755.Google Scholar
Suzuki, H., Gen, K. (2015). Clinical efficacy of lamotrigine and changes in the dosages of concomitantly used psychotropic drugs in Alzheimer’s disease with behavioural and psychological symptoms of dementia: a preliminary open-label trial. Psychogeriatrics, 15, 3237.Google Scholar
Tampi, R. R., Tampi, D. J. (2014). Efficacy and tolerability of benzodiazepines for the treatment of behavioral and psychological symptoms of dementia: a systematic review of randomized controlled trials. Am J Alzheimers Dis Other Demen, 29, 565574.Google Scholar
Plantier, D., Luaute, J., Group, S. (2016). Drugs for behavior disorders after traumatic brain injury: systematic review and expert consensus leading to French recommendations for good practice. Ann Phys Rehabil Med, 59, 4257.Google Scholar
Keszycki, R. M., Fisher, D. W., Dong, H. (2019). The hyperactivity-impulsivity-irritiability-disinhibition-aggression-agitation domain in Alzheimer’s disease: current management and future directions. Front Pharmacol, 10, 1109.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×