Skip to main content Accessibility help
×
Hostname: page-component-6d856f89d9-fb4gq Total loading time: 0 Render date: 2024-07-16T08:39:35.788Z Has data issue: false hasContentIssue false

9 - The genetic basis of male infertility

from Part 2 - Implications of the new technologies

Published online by Cambridge University Press:  09 August 2009

T. D. Glover
Affiliation:
University of Leeds
C. L. R. Barratt
Affiliation:
University of Birmingham
Get access

Summary

Background information

It is estimated that about 30–40% of couples seeking fertility treatments are diagnosed with male factor infertility. The identification and classification of male infertility still relies on the results of the semen analysis, obtained on at least two separate occasions, and reported according to standard reference values set out by the World Health Organization (1992). Infertile males can be affected by azoospermia, oligozoospermia, asthenozoospermia, teratozoospermia or by any combination of any of these. Once a man is diagnosed as infertile or subfertile, he is usually referred to a reproductive specialist (andrologist or urologist) for evaluation. Today, even the most comprehensive work-up (which includes a detailed history and physical examination, hormonal and immunological assays, ultrasound or Doppler studies and genetic testing) may fail to detect the aetiology responsible for the reproductive disorder in about 60% of the cases. Lately, however, advances in molecular biology and molecular genetics are improving our understanding of many forms of male infertility previously classified as idiopathic. These discoveries are important for many reasons. First, with the use of assisted-reproductive technologies, in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), it is possible to offer reproductive hope to men once considered to be irreversibly sterile; however, in these instances, if genetic anomalies (mendelian and chromosomal disorders) are the cause of their infertility, then there is an increased risk of transmitting the genetic defects to future generations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×