Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T00:04:20.663Z Has data issue: false hasContentIssue false

Chapter 8 - FSH Treatment in Male Infertility

Published online by Cambridge University Press:  24 May 2020

R. John Aitken
Affiliation:
University of Newcastle, New South Wales
David Mortimer
Affiliation:
Oozoa Biomedical Inc, Vancouver
Gabor Kovacs
Affiliation:
Epworth Healthcare Melbourne
Get access

Summary

The regulation of the endocrine and reproductive function of the testis is under the concerted action of gonadotropin-releasing hormone (GnRH) and gonadotropins, such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van Rijkom, J., Leufkens, H., Crommelin, D., Rutten, F. and Broekmans, A. (1999) Assessment of biotechnology drugs: what are the issues? Health Policy 47(3):255274.CrossRefGoogle ScholarPubMed
Zwart-van Rijkom, J. E., Broekmans, F. J. and Leufkens, H. G. (2002) From HMG through purified urinary FSH preparations to recombinant FSH: a substitution study. Hum Reprod 17(4):857865.CrossRefGoogle ScholarPubMed
Barbonetti, A., Calogero, A. E., Balercia, G., Garolla, A., Krausz, C., La Vignera, S., et al. (2018) The use of follicle stimulating hormone (FSH) for the treatment of the infertile man: position statement from the Italian Society of Andrology and Sexual Medicine (SIAMS). J Endocrinol Invest 41(9):11071122.CrossRefGoogle ScholarPubMed
Swee, D. S. and Quinton, R. (2019) Managing congenital hypogonadotrophic hypogonadism: a contemporary approach directed at optimizing fertility and long-term outcomes in males. Therap Adv Endo Metab [Internet], cited 2019 April 11;10. Available from: www.ncbi.nlm.nih.gov/pmc/articles/PMC6378644/CrossRefGoogle Scholar
Boehm, U., Bouloux, P-M., Dattani, M. T., de Roux, N., Dodé, C., Dunkel, L., et al. (2015) Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism: pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 11(9):547564.CrossRefGoogle ScholarPubMed
Krausz, C. and Riera-Escamilla, A. (2018) Genetics of male infertility. Nature Rev Urol 15(6):369384.CrossRefGoogle ScholarPubMed
Maione, L, Dwyer, A. A., Francou, B., Guiochon-Mantel, A., Binart, N., Bouligand, J., et al. (2018) Genetics in endocrinology: genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 178(3):R55R80.CrossRefGoogle Scholar
Warne, D. W., Decosterd, G., Okada, H., Yano, Y., Koide, N. and Howles, C. M. (2009) A combined analysis of data to identify predictive factors for spermatogenesis in men with hypogonadotropic hypogonadism treated with recombinant human follicle-stimulating hormone and human chorionic gonadotropin. Fertil Steril 92(2):594604.CrossRefGoogle ScholarPubMed
Lui, P. Y., Gebski, V. J., Turner, L. et al. (2002) Predicting pregnancy and spermatogenesis by survival analysis during gonadotrophin treatment of gonadotrophin-dificient infertile men. Hum Reprod 17: 625633.Google Scholar
Burris, A. S., Rodbard, H. W., Winters, S. J. and Sherins, R. J. (1988) Gonadotropin therapy in men with isolated hypogonadotropic hypogonadism: the response to human chorionic gonadotropin is predicted by initial testicular size. J Clin Endocrinol Metab 66(6):11441151.CrossRefGoogle ScholarPubMed
Büchter, D., Behre, H. M., Kliesch, S. and Nieschlag, E. (1998) Pulsatile GnRH or human chorionic gonadotropin/human menopausal gonadotropin as effective treatment for men with hypogonadotropic hypogonadism: a review of 42 cases. Eur J Endocrinol 139(3):298303.Google Scholar
Liu, P. Y., Baker, H. W. G., Jayadev, V., Zacharin, M., Conway, A. J. and Handelsman, D. J. (2009) Induction of spermatogenesis and fertility during gonadotropin treatment of gonadotropin-deficient infertile men: predictors of fertility outcome. J Clin Endocrinol Metab 94(3):801808.CrossRefGoogle ScholarPubMed
Schubert, M., Pérez Lanuza, L. and Gromoll, J. (2019) Pharmacogenetics of FSH action in the male. Front Endocrinol (Lausanne) 28(10):47.CrossRefGoogle Scholar
Colpi, G. M., Francavilla, S., Haidl, G., Link, K., Behre, H. M., et al. (2018) European Academy of Andrology guideline Management of oligo-astheno-teratozoospermia. Andrology 6(4):513524.CrossRefGoogle ScholarPubMed
Omar, M. I., Pal, R. P., Kelly, B. D., Bruins, H. M., Yuan, Y., Diemer, T., et al. (2019) Benefits of empiric nutritional and medical therapy for semen parameters and pregnancy and live birth rates in couples with idiopathic infertility: a systematic review and meta-analysis. Eur Urol 75(4):615625.CrossRefGoogle ScholarPubMed
Santi, D., Granata, A. R. and Simoni, M. (2015) FSH treatment of male idiopathic infertility improves pregnancy rate: a meta-analysis. Endocr Connect 4(3):R46R58.CrossRefGoogle ScholarPubMed
Attia, A. M., Abou-Setta, A. M. and Al-Inany, H. G. (2013) Gonadotrophins for idiopathic male factor subfertility. Cochrane Database Syst Rev 23(8):CD005071.Google Scholar
Valenti, D., La Vignera, S., Condorelli, R. A., Rago, R., Barone, N., Vicari, E., et al. (2013) Follicle-stimulating hormone treatment in normogonadotropic infertile men. Nat Rev Urol 10(1):5562.CrossRefGoogle ScholarPubMed
Colacurci, N., Monti, M. G., Fornaro, F., Izzo, G., Izzo, P., Trotta, C., et al. (2012) Recombinant human FSH reduces sperm DNA fragmentation in men with idiopathic oligoasthenoteratozoospermia. J Androl 33(4):588593.CrossRefGoogle ScholarPubMed
Ruvolo, G., Roccheri, M. C., Brucculeri, A. M., Longobardi, S., Cittadini, E. and Bosco, L. (2013) Lower sperm DNA fragmentation after r-FSH administration in functional hypogonadotropic hypogonadism. J Assist Reprod Genet 30(4):497503.CrossRefGoogle ScholarPubMed
Garolla, A., Ghezzi, M., Cosci, I., Sartini, B., Bottacin, A., Engl, B., et al. (2017) FSH treatment in infertile males candidate to assisted reproduction improved sperm DNA fragmentation and pregnancy rate. Endocrine 56(2):416425.CrossRefGoogle ScholarPubMed
Casamonti, E., Vinci, S., Serra, E., Fino, M. G., Brilli, S., Lotti, F., et al. (2017) Short-term FSH treatment and sperm maturation: a prospective study in idiopathic infertile men. Andrology 5(3):414422.CrossRefGoogle ScholarPubMed
Simoni, M., Santi, D., Negri, L., Hoffmann, I., Muratori, M., Baldi, E., et al. (2016) Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p. N680S: a pharmacogenetic study. Hum Reprod 31(9):19601969.CrossRefGoogle ScholarPubMed
Piomboni, P., Serafini, F., Gambera, L., Musacchio, C., Collodel, G., Morgante, G., et al. (2009) Sperm aneuploidies after human recombinant follicle stimulating hormone therapy in infertile males. Reprod Biomed Online 18(5):622629.Google Scholar
Foresta, C., Bettella, A., Ferlin, A., Garolla, A. and Rossato, M. (1998) Evidence for a stimulatory role of follicle-stimulating hormone on the spermatogonial population in adult males. Fertil Steril 69(4):636642.CrossRefGoogle ScholarPubMed
Foresta, C., Bettella, A., Merico, M., Garolla, A., Ferlin, A. and Rossato, M. (2002) Use of recombinant human follicle-stimulating hormone in the treatment of male factor infertility. Fertil Steril 77(2):238244.CrossRefGoogle ScholarPubMed
Garolla, A., Selice, R., Engl, B., Bertoldo, A., Menegazzo, M., Finos, L., et al. (2014) Spermatid count as a predictor of response to FSH therapy. Reprod Biomed Online 29(1):102112.CrossRefGoogle ScholarPubMed
Ding, Y. M., Zhang, X. J., Li, J. P., Chen, S. S., Zhang, R. T., Tan, W. L., et al. (2015) Treatment of idiopathic oligozoospermia with recombinant human follicle-stimulating hormone: a prospective, randomized, double-blind, placebo-controlled clinical study in Chinese population. Clin Endocrinol (Oxford, UK) 83(6):866871.CrossRefGoogle ScholarPubMed
Arnaldi, G., Balercia, G., Barbatelli, G. and Mantero, F. (2000) Effects of long-term treatment with human pure follicle-stimulating hormone on semen parameters and sperm-cell ultrastructure in idiopathic oligoteratoasthenozoospermia. Andrologia 32(3):155161.Google Scholar
Paradisi, R., Busacchi, P., Seracchioli, R., Porcu, E. and Venturoli, S. (2006) Effects of high doses of recombinant human follicle-stimulating hormone in the treatment of male factor infertility: results of a pilot study. Fertil Steril 86(3):728731.Google Scholar
Paradisi, R., NatalI, F., Fabbri, R., Battaglia, C., Seracchiol, R. and Venturoli, S. (2014) Evidence for a stimulatory role of high doses of recombinant human follicle-stimulating hormone in the treatment of male-factor infertility. Andrologia 46(9):10671072.CrossRefGoogle ScholarPubMed
Simoni, M., Gromoll, J. and Nieschlag, E. (1997) The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology and pathophysiology.Endocr Rev 18(6):739773.Google ScholarPubMed
Selice, R., Garolla, A., Pengo, M., Caretta, N., Ferlin, A. and Foresta, C. (2011) The response to FSH treatment in oligozoospermic men depends on FSH receptor gene polymorphisms. Int J Androl 34(4):306312.Google Scholar
Simoni, M., Gromoll, J., Hoppner, W., Kamischke, A., Krafft, T., Stahle, D., et al. (1999) Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab 84(2):751757.Google ScholarPubMed
Grigorova, M., Rull, K. and Laan, M. (2007) Haplotype structure of FSHB, the beta-subunit gene for fertility-associated follicle-stimulating hormone: possible influence of balancing selection. Ann Hum Genet 71(Pt 1):1828.Google Scholar
Grigorova, M., Punab, M., Ausmees, K. and Laan, M. (2008) FSHB promoter polymorphism within evolutionary conserved element is associated with serum FSH level in men. Hum Reprod 23(9):21602166.Google Scholar
Ferlin, A., Vinanzi, C., Selice, R., Garolla, A., Frigo, A. C. and Foresta, C. (2011) Toward a pharmacogenetic approach to male infertility: polymorphism of follicle-stimulating hormone beta-subunit promoter. Fertil Steril 96(6):13441349.Google Scholar
Krausz, C. (2011) Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab 25(2):271285.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×