Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: October 2013

Chapter 18 - MRI in clinical trials


This chapter focuses on various functional magnetic resonance imaging (fMRI), voxel-based morphometry (VBM), and diffusion tensor imaging (DTI) studies in patients with (focal) dystonia, which have shown functional and structural changes within subcortical-cortical sensorimotor networks. An important role of a dysfunction of somatosensory processing has been more and more recognized over the past years and has become one of the main focuses of research in dystonia. One important issue when investigating the somatosensory system with fMRI is the standardization of sensory stimuli. Resting-state fMRI studies of patients with action-induced dystonia can further add to the understanding of the disorder. A recent resting-state MRI study investigated patients with writer's cramp (WC) and applied independent component analyses (ICA) to study functional connectivity of different functional networks at rest. Based on possible genetic predisposition these functional and structural changes could lead to the clinical presentation of dedifferentiated motor programs in dystonia.


1. GoetzCG, TilleyBC, ShaftmanSR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.
2. FahnS, SulzerD.Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx. 2004;1(1):139–54.
3. MarekK, JenningsD, SeibylJ.Imaging the dopamine system to assess disease-modifying drugs: studies comparing dopamine agonists and levodopa. Neurology. 2003;61(6 Suppl 3):S43–8.
4. Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA. 2002;287(13):1653–61.
5. HagmannP, KurantM, GigandetX, et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS One. 2007;2(7):e597.
6. HelmichRC, DerikxLC, BakkerM, et al. Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex. 2010;20(5):1175–86.
7. WeinerMW, VeitchDP, AisenPS, et al. The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2012;8(1 Suppl):S1–68.
8. Parkinson Progressive Marker Initiative. The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol. 2011;95(4):629–35.
9. Balzer-GeldsetzerM, CostaAS, KronenburgerM, et al. Parkinson’s disease and dementia: a longitudinal study (DEMPARK). Neuroepidemiology. 2011;37(3–4):168–76.
10. RavinaB, EidelbergD, AhlskogJE, et al. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64(2):208–15.
11. ShenLH, LiaoMH, TsengYC. Recent advances in imaging of dopaminergic neurons for evaluation of neuropsychiatric disorders. J Biomed Biotechnol. 2012;2012:259349.
12. VarroneA, HalldinC.New developments of dopaminergic imaging in Parkinson’s disease. Q J Nucl Med Mol Imaging. 2012;56(1):68–82.
13. PicconiB, PiccoliG, CalabresiP.Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol. 2012;970:553–72.
14. SchuffN, SuhyJ, GoldmanR, et al. An MRI substudy of a donepezil clinical trial in mild cognitive impairment. Neurobiol Aging. 2011;32(12):2318.e31–41.
15. WeinerMW, SadowskyC, SaxtonJ, et al. Magnetic resonance imaging and neuropsychological results from a trial of memantine in Alzheimer’s disease. Alzheimers Dement. 2011;7(4):425–35.
16. PaviourDC, PriceSL, JahanshahiM, LeesAJ, FoxNC. Longitudinal MRI in progressive supranuclear palsy and multiple system atrophy: rates and regions of atrophy. Brain. 2006;129(Pt 4):1040–9.
17. JosephsKA, WhitwellJL, BoeveBF, et al. Rates of cerebral atrophy in autopsy-confirmed progressive supranuclear palsy. Ann Neurol. 2006;59(1):200–3.
18. AylwardEH, RosenblattA, FieldK, et al. Caudate volume as an outcome measure in clinical trials for Huntington’s disease: a pilot study. Brain Res Bull. 2003;62(2):137–41.
19. HuMT, WhiteSJ, ChaudhuriKR, et al. Correlating rates of cerebral atrophy in Parkinson’s disease with measures of cognitive decline. J Neural Transm. 2001;108(5):571–80.
20. ChebroluH, SlevinJT, GashDA, et al. MRI volumetric and intensity analysis of the cerebellum in Parkinson’s disease patients infused with glial-derived neurotrophic factor (GDNF). Exp Neurol. 2006;198(2):450–6.
21. VaillancourtDE, SprakerMB, ProdoehlJ, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology. 2009;72(16):1378–84.
22. GattellaroG, MinatiL, GrisoliM, et al. White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol. 2009;30(6):1222–6.
23. ZhangK, YuC, ZhangY, et al. Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease. Eur J Radiol. 2011;77(2):269–73.
24. ZhanW, KangGA, GlassGA, et al. Regional alterations of brain microstructure in Parkinson’s disease using diffusion tensor imaging. Mov Disord. 2012;27(1):90–7.
25. ScherflerC, SchockeMF, SeppiK, et al. Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain. 2006;129(Pt 2):538–42.
26. Ibarretxe-BilbaoN, JunqueC, MartiMJ, et al. Olfactory impairment in Parkinson’s disease and white matter abnormalities in central olfactory areas: a voxel-based diffusion tensor imaging study. Mov Disord. 2010;25(12):1888–94.
27. RolheiserTM, FultonHG, GoodKP, et al. Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson’s disease. J Neurol. 2011;258(7):1254–60.
28. PierpaoliC, BasserPJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36(6):893–906.
29. BoskaMD, HasanKM, KibuuleD, et al. Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis. 2007;26(3):590–6.
30. BasserPJ, PajevicS, PierpaoliC, DudaJ, AldroubiA.In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44(4):625–32.
31. BloodAJ, TuchDS, MakrisN, et al. White matter abnormalities in dystonia normalize after botulinum toxin treatment. Neuroreport. 2006;17(12):1251–5.
32. FoxRJ, CroninT, LinJ, et al. Measuring myelin repair and axonal loss with diffusion tensor imaging. AJNR Am J Neuroradiol. 2011;32 (1):85–91.
33. van EimerenT, BallangerB, PellecchiaG, et al. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease?Neuropsychopharmacology. 2009;34(13):2758–66.
34. HarringtonDL, CastilloGN, GreenbergPA, et al. Neurobehavioral mechanisms of temporal processing deficits in Parkinson’s disease. PLoS One. 2011;6(2):e17461.
35. VoonV, GaoJ, BrezingC, et al. Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain. 2011;134(Pt 5):1438–46.
36. MacDonaldPA, MacDonaldAA, SeergobinKN, et al. The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: support from functional MRI. Brain. 2011;134(Pt 5):1447–63.
37. HoneyGD, SucklingJ, ZelayaF, et al. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Brain. 2003;126(Pt 8):1767–81.
38. DelaveauP, Salgado-PinedaP, FossatiP, et al. Dopaminergic modulation of the default mode network in Parkinson’s disease. Eur Neuropsychopharmacol. 2010;20(11):784–92.
39. WuT, LongX, WangL, et al. Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum Brain Mapp. 2011;32(9):1443–57.
40. WuT, WangL, ChenY, et al. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett. 2009;460(1):6–10.
41. LotzeM, ReimoldM, HeymansU, et al. Reduced ventrolateral fMRI response during observation of emotional gestures related to the degree of dopaminergic impairment in Parkinson disease. J Cogn Neurosci. 2009;21(7):1321–31.
42. FirbankMJ, HarrisonRM, O’BrienJT. A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson’s disease. Dement Geriatr Cogn Disord. 2002;14(2):64–76.
43. LucettiC, Del DottoP, GambacciniG, et al. Influences of dopaminergic treatment on motor cortex in Parkinson disease: a MRI/MRS study. Mov Disord. 2007;22(15):2170–5.
44. BrazziniA, CantellaR, De la CruzA, et al. Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. J Vasc Interv Radiol. 2010;21(4):443–51.
45. LlumiguanoC, KovacsN, UsprungZ, et al. 1H-MRS experiences after bilateral DBS of the STN in Parkinson’s disease. Parkinsonism Relat Disord. 2008;14(3):229–32.
46. VallesF, FiandacaMS, EberlingJL, et al. Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase I study for the treatment of Parkinson disease. Neurosurgery. 2010;67(5):1377–85.
47. SinghN, FletcherPT, PrestonJS, et al. Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. Med Image Comput Comput Assist Interv. 2010;13(Pt 3):529–37.
48. Johansen-BergH, BehrensTE, SilleryE, et al. Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex. 2005;15(1):31–9.
49. YeoSS, KimSH, AhnYH, SonSM, JangSH. Anatomical location of the pedunculopontine nucleus in the human brain: diffusion tensor imaging study. Stereotact Funct Neurosurg. 2011;89(3):152–6.
50. KamagataK, MotoiY, HoriM, et al. Posterior hypoperfusion in Parkinson’s disease with and without dementia measured with arterial spin labeling MRI. J Magn Reson Imaging. 2011;33(4):803–7.
51. MichaeliS, OzG, SorceDJ, et al. Assessment of brain iron and neuronal integrity in patients with Parkinson’s disease using novel MRI contrasts. Mov Disord. 2007;22(3):334–40.
52. HagmannP, CammounL, GigandetX, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.