Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: October 2013

Chapter 6 - Functional MRI of cognition and mood in Parkinson’s disease


Parkinson's disease (PD) is associated with cognitive and emotional disturbances, whose response to dopamine therapy is either absent or, occasionally, deleterious to the patient. By measuring cerebral blood flow (CBF), first with positron emission tomography (PET) and now with functional magnetic resonance imaging (fMRI), researchers have mapped the neurobiological substrates of cognitive and behavioral symptoms in PD. Basal ganglia processing is based on the anatomy of parallel cortico-striatal loops, each of which has a functional role. Dopaminergic overmedication may lead to cognitive impairment via an action on the relatively preserved mesocortical or mesolimbic systems. The overmedication hypothesis has been rekindled recently with the description of disorders of motivation and impulse control in PD. fMRI provides evidence that dopamine may contribute to impulse control disorders (ICDs) in PD via its role as an energizing or activating agent that assigns incentive value to stimuli and actions.


1. SchragA, JahanshahiM, QuinnN.What contributes to quality of life in patients with Parkinson’s disease?J Neurol Neurosurg Psychiatry. 2000;69(3):308–12.
2. AlexanderGE, DeLongMR, StrickPL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.
3. AlbinRL, YoungAB, PenneyJB. The functional anatomy of basal ganglia disorders [see comments]. Trends Neurosci. 1989;12(10):366–75.
4. HaberSN, FudgeJL, McFarlandNR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.
5. ParentA.Extrinsic connections of the basal ganglia. Trends Neurosci. 1990;13(7):254–8.
6. MooreRY, BloomFE. Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci. 1978;1:129–69.
7. SesackS.R, PickelVM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol. 1992;320(2):145–60.
8. WickensJ, KotterR.Cellular models of reinforcement. In: HoukJC, DavisJL, BeiserDG, editors. Models of Information Processing in the Basal Ganglia. Cambridge, MA: MIT Press; 1995. 187–214.
9. ShenW, FlajoletM, GreengardP, SurmeierDJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008;321(5890):848–51.
10. SchultzW.Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80(1):1–27.
11. SchultzW, DayanP, MontaguePR. A neural substrate of prediction and reward. Science. 1997;275(5306):1593–9.
12. HareTA, O’DohertyJ, CamererCF, SchultzW, RangelA.Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J Neurosci. 2008;28(22):5623–30.
13. McClureSM, BernsGS, MontaguePR. Temporal prediction errors in a passive learning task activate human striatum. Neuron. 2003;38(2):339–46.
14. O’DohertyJP, DayanP, FristonK, CritchleyH, DolanRJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329–37.
15. McClureSM, DawND, MontaguePR. A computational substrate for incentive salience. Trends Neurosci. 2003;26(8):423–8.
16. NivY, DawND, JoelD, DayanP.Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl). 2007;191(3):507–20.
17. BerridgeKC. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl). 2007;191(3):391–431.
18. SalamoneJD, CorreaM, MingoteSM, WeberSM. Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol. 2005;5(1):34–41.
19. DagherA, RobbinsTW. Personality, addiction, dopamine: insights from Parkinson’s disease. Neuron. 2009;61(4):502–10.
20. AttwellD, BuchanAM, CharpakS, et al. Glial and neuronal control of brain blood flow. Nature, 2010;468(7321):232–43.
21. RaichleME. Circulatory and metabolic correlates of brain function in normal humans. In MountcastleVB, editor. Handbook of Physiology, Sect 1, Vol 5: The Nervous System. Bethesda: American Physiological Society; 1987. 643–74.
22. CollinsDL, NeelinP, PetersTM, EvansAC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994;18(2):192–205.
23. TalairachJ, TournouxP.Co-planar Stereotaxic Atlas of the Human Brain. Stuttgart: Thieme; 1988.
24. WorsleyKJ, LiaoCH, AstonJ, et al. A general statistical analysis for fMRI data. Neuroimage. 2002;15(1):1–15.
25. FristonKJ. Models of brain function in neuroimaging. Annu Rev of Psychol. 2005;56(1):57–87.
26. OgawaS, LeeTM, KayAR, TankDW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.
27. LogothetisNK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci. 2002;357(1424):1003–37.
28. LogothetisNK, PfeufferJ.On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging. 2004;22(10):1517–31.
29. LeeJH, DurandR, GradinaruV, et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature. 2010;465(7299):788–92.
30. BandettiniPA. Seven topics in functional magnetic resonance imaging. J Integr Neurosci. 2009;8(3):371–403.
31. LogothetisNK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.
32. ShmuelA, AugathM, OeltermannA, LogothetisNK. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci. 2006;9(4):569–77.
33. WaldvogelD, van GelderenP, MuellbacherW, et al. The relative metabolic demand of inhibition and excitation. Nature. 2000;406(6799):995–8.
34. ChoiJK, ChenYI, HamelE, JenkinsBG. Brain hemodynamic changes mediated by dopamine receptors: role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. Neuroimage. 2006;30(3):700–12.
35. NicolaSM, SurmeierJ, MalenkaRC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci. 2000;23:185–215.
36. KnutsonB, BjorkJM, FongGW, et al. Amphetamine modulates human incentive processing. Neuron. 2004;43(2):261–9.
37. ZinkCF, PagnoniG, Martin-SkurskiME, ChappelowJC, BernsGS. Human striatal responses to monetary reward depend on saliency. Neuron. 2004;42(3):509–17.
38. DuboisB, BollerF, PillonB, AgidY.Cognitive deficits in Parkinson’s disease. In: BollerF, GrafmanJ, editors. Handbook of Neuropsychology. New York: Elsevier Science; 1991. 195–240.
39. OwenAM, JamesM, LeighPN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain. 1992;115(Pt 6):1727–51.
40. MonchiO, PetridesM, PetreV, WorsleyK, DagherA.Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci. 2001;21(19):7733–41.
41. DagherA, OwenAM, BoeckerH, BrooksDJ. Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain. 1999;122(Pt 10):1973–87.
42. DagherA, OwenAM, BoeckerH, BrooksDJ. The role of the striatum and hippocampus in planning: a PET activation study in Parkinson’s disease. Brain. 2001;124(Pt 5):1020–32.
43. OwenAM, DoyonJ, DagherA, SadikotA, EvansAC. Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain. 1998;121(Pt 5):949–65.
44. BruckA, PortinR, LindellA, et al. Positron emission tomography shows that impaired frontal lobe functioning in Parkinson’s disease is related to dopaminergic hypofunction in the caudate nucleus. Neurosci Lett. 2001;311(2):81–4.
45. MariéRM, BarréL, DupuyB, et al. Relationships between striatal dopamine denervation and frontal executive tests in Parkinson’s disease. Neurosci Lett. 1999;260(2):77–80.
46. CoolsR, StefanovaE, BarkerRA, RobbinsTW, OwenAM. Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain. 2002;125(Pt 3):584–94.
47. MattayVS, TessitoreA, CallicottJH, et al. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol. 2002;51(2):156–64.
48. SawaguchiT, MatsumuraM, KubotaK.Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol. 1990;63(6):1385–400.
49. LiSC, SikstromS.Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neurosci Biobehav Rev. 2002;26(7):795–808.
50. MinkJW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.
51. HallettM.Physiology of basal ganglia disorders: an overview. Can J Neurol Sci. 1993;20(3):177–83.
52. MonchiO, PetridesM, DoyonJ, et al. Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci. 2004;24(3):702–10.
53. MonchiO, PetridesM, Mejia-ConstainB, StrafellaAP. Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain. 2007;130(Pt 1):233–44.
54. NgB, PalmerS, AbugharbiehR, McKeownMJ. Focusing effects of L-dopa in Parkinson’s disease. Hum Brain Mapp. 2010;31(1):88–97.
55. LewisSJ, DoveA, RobbinsTW, BarkerRA, OwenAM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. 2003;23(15):6351–6.
56. FoltynieT, GoldbergTE, LewisSG, et al. Planning ability in Parkinson’s disease is influenced by the COMT val158met polymorphism. Mov Disord. 2004;19(8):885–91.
57. Williams-GrayCH, HampshireA, RobbinsTW, OwenAM, BarkerRA. Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J Neurosci. 2007;27(18):4832–8.
58. Williams-GrayCH, HampshireA, BarkerRA, OwenAM. Attentional control in Parkinson’s disease is dependent on COMT val 158 met genotype. Brain. 2008;131(Pt 2):397–408.
59. GothamAM, BrownRG, MarsdenCD. ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain. 1988;111(Pt 2):299–321.
60. KishSJ, ShannakK, HornykiewiczO.Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318(14):876–80.
61. Goldman-RakicPS, MulyIEC, WilliamsGV. D1 receptors in prefrontal cells and circuits. Brain Res Rev. 2000;31(2–3):295–301.
62. CoolsR, LewisSJ, ClarkL, BarkerRA, RobbinsTW. L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology. 2007;32(1):180–9.
63. Weintrau, D, KoesterJ, PotenzaMN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589–95.
64. SeedatS, KeslerS, NiehausDJ, SteinDJ. Pathological gambling behaviour: emergence secondary to treatment of Parkinson’s disease with dopaminergic agents. Depress Anxiety. 2000;11(4):185–6.
65. Driver-DunckleyE, SamantaJ, StacyM.Pathological gambling associated with dopamine agonist therapy in Parkinson’s disease. Neurology. 2003;61(3):422–23.
66. VoonV, FoxSH. Medication-related impulse control and repetitive behaviors in Parkinson disease. Arch Neurol. 2007;64(8):1089–96.
67. KlosKJ, BowerJH, JosephsKA, MatsumotoJY, AhlskogJE. Pathological hypersexuality predominantly linked to adjuvant dopamine agonist therapy in Parkinson’s disease and multiple system atrophy. Parkinsonism Relat Disord. 2005;11(6):381–6.
68. VoonV, PessiglioneM, BrezingC, et al. Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron. 2010;65(1):135–42.
69. van EimerenT, BallangerB, PellecchiaG, et al. Dopamine agonists diminish value sensitivity of the orbitofrontal cortex: a trigger for pathological gambling in Parkinson’s disease?Neuropsychopharmacology. 2009;34(13)2758–66.
70. VoonV, SohrM, LangAE, et al. Impulse control disorders in Parkinson disease: a multicenter case–control study. Ann Neurol. 2011;69(6):986–96.
71. GallagherDA, O’SullivanSS, EvansAH, LeesAJ, SchragA.Pathological gambling in Parkinson’s disease: risk factors and differences from dopamine dysregulation. An analysis of published case series. Mov Disord. 2007;22(12):1757–63.
72. RaoH, MamikonyanE, DetreJA, et al. Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Mov Disord. 2010;25(11):1660–9.
73. PessiglioneM, SeymourB, FlandinG, DolanRJ, FrithCD. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006;442(7106):1042–5.
74. HollandPC, GallagherM.Amygdala-frontal interactions and reward expectancy. Curr Opin Neurobiol. 2004;14(2):148–55.
75. SchonbergT, O’DohertyJP, JoelD, et al. Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson’s disease patients: evidence from a model-based fMRI study. Neuroimage. 2010;49(1):772–81.
76. GoldsteinRZ, TomasiD, Alia-KleinN, et al. Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug Alcohol Depend. 2007;87(2–3):233–40.
77. PotenzaMN. Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans R Soc Lond B Biol Sci. 2008;363(1507):3181–9.
78. ReuterJ, RaedlerT, RoseM, et al. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8(2):147–8.
79. RibaJ, KrämerUM, HeldmannM, RichterS, MünteTF. Dopamine agonist increases risk taking but blunts reward-related brain activity. PLoS One. 2008;3(6):e2479.
80. FrankMJ. Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci. 2005;17(1):51–72.
81. FrankMJ, SamantaJ, MoustafaAA, ShermanSJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science. 2007;318(5854):1309–12.
82. FrankMJ, SeebergerLC, O’ReillyRC. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science. 2004;306(5703):1940–3.
83. BodiN, KériS, NagyH, et al. Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain 2009;132(Pt 9):2385–95.
84. RobbinsTW, EverittBJ. A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology (Berl). 2007;191(3):433–7.
85. BerridgeKC, RobinsonTE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?Brain Res Brain Res Rev. 1998;28(3):309–69.
86. RobinsonTE, BerridgeKC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993;18(3):247–91.
87. FrosiniD, PesaresiI, CosottiniM, et al. Parkinson’s disease and pathological gambling: results from a functional MRI study. Mov Dis. 2010;25(14):2449–53.
88. DjamshidianA, O’SullivanSS, WittmannBC, LeesAJ, AverbeckBB. Novelty seeking behaviour in Parkinson’s disease. Neuropsychologia. 2011;49(9):2483–88.
89. SimioniAC, DagherA, FellowsLK. Dissecting the effects of disease and treatment on impulsivity in Parkinson’s disease. J Int Neuropsychol Soc. 2012;18(06):942–51. doi: 10.1017/S135561771200094X.
90. VoonV, GaoJ, BrezingC, et al. Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain. 2011;134(Pt 5):1438–46.
91. MoodyTD, BookheimerSY, VanekZ, KnowltonBJ. An implicit learning task activates medial temporal lobe in patients with Parkinson’s disease. Behav Neurosci. 2004;118(2):438–42.
92. PackardMG, HirshR, WhiteNM. Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci. 1989;9(5):1465–72.
93. GrossmanM, CookeA, DeVitaC, et al. Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology. 2003;60(5):775–81.
94. GusnardDA, RaichleME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2(10):685–94.
95. Nagano-SaitoA, LeytonM, MonchiO, et al. Dopamine depletion impairs frontostriatal functional connectivity during a set-shifting task. J Neurosci. 2008;28(14):3697–706.
96. TinazS, SchendanHE, SternCE. Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging. 2008;29(3):397–407.
97. van EimerenT, MonchiO, BallangerB, StrafellaAP. Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol. 2009;66(7):877–83.
98. Nagano-SaitoA, LiuJ, DoyonJ, DagherA.Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neurosci Lett. 2009;458(1):1–5.
99. DelaveauP, Salgado-PinedaP, FossatiP, et al. Dopaminergic modulation of the default mode network in Parkinson’s disease. Eur Neuropsychopharmacol. 2010;20:784–92.
100. ArgyelanM, CarbonM, GhilardiMF, et al. Dopaminergic suppression of brain deactivation responses during sequence learning. J Neurosci. 2008;28(42):10687–95.
101. ScattonB, Javoy-AgidF, RouquierL, DuboisB, AgidY.Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res. 1983;275(2):321–8.
102. AsahinaM, SuharaT, ShinotohH, et al. Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry. 1998;65(2):155–63.
103. KuhlDE, MinoshimaS, FesslerJA, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol. 1996;40(3):399–410.
104. HilkerR, ThomasAV, KleinJC, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65(11):1716–22.
105. Nagano-SaitoA, WashimiY, ArahataY, et al. Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology. 2005;64(2):224–9.
106. ApostolovaLG, BeyerM, GreenAE, et al. Hippocampal, caudate, and ventricular changes in Parkinson’s disease with and without dementia. Mov Disord. 2010;25(6):687–8.