Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2009
  • Online publication date: February 2011

16 - Inter-cell interference control


An important requirement for the LTE system is improved cell-edge performance and throughput. This is to provide some level of service consistency in terms of geographical coverage as well as in terms of available data throughput within the coverage area. In a cellular system, however, the SINR disparity between cell-center and cell-edge users can be of the order of 20 dB. The disparity can be even higher in a coverage-limited cellular system. This leads to vastly lower data throughputs for the cell-edge users relative to cell-center users creating a large QoS discrepancy.

The cell-edge performance may be either noise-limited or interference-limited. In a noise-limited situation that typically occurs in large cells in rural areas, the performance can generally be improved by providing a power gain. The power gain can be achieved by using high-gain directional transmit antennas, increased transmit power, transmit beam-forming and receive beam-forming or receive diversity, etc. The total transmit power is generally dictated by regulatory requirements and hence limits the coverage gains possible due to increased transmit power.

The situation is different in small cells interference-limited cases, where, in addition to noise, inter-cell interference also contributes to degraded cell-edge SINR. In this case, providing a transmit power gain may not help because as the signal power goes up, the interference power also increases. This is assuming that with a transmit power gain all cells in the system will operate at a higher transmit power.