Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-06T21:45:35.577Z Has data issue: false hasContentIssue false

Randomness—beyond Lebesgue measure

Published online by Cambridge University Press:  28 January 2010

S. Barry Cooper
Affiliation:
University of Leeds
Herman Geuvers
Affiliation:
Radboud Universiteit Nijmegen
Anand Pillay
Affiliation:
University of Leeds
Jouko Väänänen
Affiliation:
University of Amsterdam and University of Helsinki
Get access

Summary

Abstract. Much of the recent research on algorithmic randomness has focused on randomness for Lebesgue measure. While, from a computability theoretic point of view, the picture remains unchanged if one passes to arbitrary computable measures, interesting phenomena occur if one studies the the set of reals which are random for an arbitrary (continuous) probability measure or a generalized Hausdorff measure on Cantor space. This paper tries to give a survey of some of the research that has been done on randomness for non-Lebesgue measures.

Introduction. Most studies on algorithmic randomness focus on reals random with respect to the uniform distribution, i.e. the (1/2, 1/2)-Bernoulli measure, which is measure theoretically isomorphic to Lebesgue measure on the unit interval. The theory of uniform randomness, with all its ramifications (e.g. computable or Schnorr randomness) has been well studied over the past decades and has led to an impressive theory.

Recently, a lot of attention focused on the interaction of algorithmic randomness with recursion theory: What are the computational properties of random reals? In other words, which computational properties hold effectively for almost every real? This has led to a number of interesting results, many of which will be covered in a forthcoming book by Downey and Hirschfeldt [14].

While the understanding of “holds effectively” varied in these results (depending on the underlying notion of randomness, such as computable, Schnorr, or weak randomness, or various arithmetic levels of Martin-Löf randomness, to name only a few), the meaning of “for almost every” was usually understood with respect to Lebesgue measure.

Type
Chapter
Information
Logic Colloquium 2006 , pp. 247 - 279
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×