Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-28T22:48:46.199Z Has data issue: false hasContentIssue false

30 - The Liver in Lysosomal Storage Diseases

from SECTION IV - METABOLIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

T. Andrew Burrow M.D.
Affiliation:
Resident, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Resident, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
Kevin E. Bove M.D.
Affiliation:
Professor of Pathology and Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Pediatric Pathologist, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
Gregory A. Grabowski M.D.
Affiliation:
Professor, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Director, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

Lysosomes are membrane-bound cellular organelles that contain multiple hydrolases needed for the digestion of various macromolecules, including mucopolysaccharides, glycosphingolipids, and oligosaccharides [1]. The lysosomal storage diseases are a group of more than 40 diseases that are characterized by defective lysosomal function leading to an accumulation of specific substrates within the lysosomes and eventual impairment of cellular function. A schematic of the lysosomal system, enzyme trafficking, and substrate accumulation is shown in Figure 30.1.

These diseases are classified by the nature of the stored material that results from defects in selected lysosomal enzymes, their cofactors, and/or enzyme or substrate transport (Table 30.1). The lysosomal storage diseases are heterogeneous, progressive, multisystemic diseases that have a spectrum of ages of onset, severity, rates of progression, and organ involvement. Lysosomal storage diseases have significant morbidity and mortality in the absence of effective treatment. The majority of these diseases are autosomal recessive, and although individually each is rare, the combined birth prevalence is approximately 1 in 7000 live births [2]. The diseases are traditionally diagnosed biochemically but in many cases, may also be diagnosed molecularly by the discovery of pathogenic mutations in both copies of the particular gene.

The liver is nearly always involved in lysosomal storage diseases; this can be seen at the light or electron microscopic level. The degree of clinical involvement depends on the disorder. In many cases, mild elevations in liver studies and hepatomegaly are the only manifestations. However, significant hepatic injury may be present, resulting in considerable morbidity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sabatini, D D, Adesnik, M B. The biogenesis of membranes and organelles. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:433–517.Google Scholar
Poorthuis, B J, Wevers, R A, Kleijer, W J. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet 1999;105:151–6.CrossRefGoogle ScholarPubMed
Grabowski, G A, Hopkin, R J. Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 2003;4:403–36.CrossRefGoogle ScholarPubMed
Proia, R L, Wu, Y P. Blood to brain to the rescue. J Clin Invest 2004;113:1108–10.CrossRefGoogle ScholarPubMed
Degroote, S, Wolthoorn, J, Meer, G. The cell biology of glycosphingolipids. Semin Cell Dev Biol 2004;15:375–87.CrossRefGoogle ScholarPubMed
Beutler, E, Grabowski, G A. Gaucher disease. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw Hill, 2001:3635–68.Google Scholar
Meikle, P J, Hopwood, J J, Clague, A E, Carey, W F. Prevalence of lysosomal storage disorders. JAMA 1999;281:249–54.CrossRefGoogle ScholarPubMed
Grabowski, G A, Kolodny, E H, WeinrebNJ, et al NJ, et al. Gaucher disease: phenotypic and genetic variation. In: Scriver, C, Beaudet, A, Sly, W, Valle, D. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2006: in press.Google Scholar
Malhotra, A, Boxer, M, Mistry, P K. Hepatic response to enzyme replacement therapy (ERT) with mannose-terminated glucocerebrosidase in type 1 Gaucher disease. Hepatology 2004;40:161.Google Scholar
Lachmann, R H, Wight, D G, Lomas, D J. Massive hepatic fibrosis in Gaucher's disease: clinico-pathological and radiological features. Q J Med 2000;93:237–44.CrossRefGoogle ScholarPubMed
James, S P, Stromeyer, F W, Chang, C, Barranger, J A. Liver abnormalities in patients with Gaucher's disease. Gastroenterology 1981;80:126–33.Google ScholarPubMed
James, S P, Stromeyer, F W, Stowens, D W, Barranger, J A. Gaucher disease: hepatic abnormalities in 25 patients. Prog Clin Biol Res 1982;95:131–42.Google ScholarPubMed
Perel, Y, Bioulac-Sage, P, Chateil, J F. Gaucher's disease and fatal hepatic fibrosis despite prolonged enzyme replacement therapy. Pediatrics 2002;109:1170–3.CrossRefGoogle ScholarPubMed
Erjavec, Z, Hollak, C E, Vries, E G. Hepatocellular carcinoma in a patient with Gaucher disease on enzyme supplementation therapy. Ann Oncol 1999;10:243.CrossRefGoogle Scholar
Barton, N W, Brady, R O, Dambrosia, J M. Replacement therapy for inherited enzyme deficiency – macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med 1991;324:1464–70.CrossRefGoogle ScholarPubMed
Weinreb, N J, Aggio, M C, Andersson, H C. Gaucher disease type 1: revised recommendations on evaluations and monitoring for adult patients. Semin Hematol 2004;41:15–22.CrossRefGoogle ScholarPubMed
Weinreb, N J, Charrow, J, Andersson, H C. Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med 2002;113:112–19.CrossRefGoogle ScholarPubMed
Radin, N S. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J 1996;13:153–7.CrossRefGoogle ScholarPubMed
Platt, F M, Jeyakumar, M, Andersson, U. Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J Inherit Metab Dis 2001;24:275–90.CrossRefGoogle ScholarPubMed
Cox, T, Lachmann, R, Hollak, C. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 2000;355:1481–5.CrossRefGoogle ScholarPubMed
Altarescu, G, Hill, S, Wiggs, E. The efficacy of enzyme replacement therapy in patients with chronic neuronopathic Gaucher's disease. J Pediatr 2001;138:539–47.CrossRefGoogle ScholarPubMed
Prows, C A, Sanchez, N, Daugherty, C, Grabowski, G A. Gaucher disease: enzyme therapy in the acute neuronopathic variant. Am J Med Genet 1997;71:16–21.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Ricci, V, Stroppiano, M, Corsolini, F. Screening of 25 Italian patients with Niemann-Pick A reveals fourteen new mutations, one common and thirteen private, in SMPD1. Hum Mutat 2004;24:105.CrossRefGoogle ScholarPubMed
Pittis, M G, Ricci, V, Guerci, V I. Acid sphingomyelinase: identification of nine novel mutations among Italian Niemann Pick type B patients and characterization of in vivo functional in-frame start codon. Hum Mutat 2004;24:186–7.CrossRefGoogle ScholarPubMed
Sikora, J, Pavlu-Pereira, H, Elleder, M. Seven novel acid sphingomyelinase gene mutations in Niemann-Pick type A and B patients. Ann Hum Genet 2003;67:63–70.CrossRefGoogle ScholarPubMed
Schuchman, E H, Desnick, R J. Niemann-Pick disease types A and B: acid sphingomyelinase deficiencies. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3589–610.Google Scholar
Simonaro, C M, Desnick, R J, McGovern, M M. The demographics and distribution of type B Niemann-Pick disease: novel mutations lead to new genotype/phenotype correlations. Am J Hum Genet 2002;71:1413–19.CrossRefGoogle ScholarPubMed
Pavlu-Pereira, H, Asfaw, B, Poupctova, H. Acid sphingomyelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of twenty-five Czech and Slovak patients. A multi-approach study. J Inherit Metab Dis 2005;28:203–27.CrossRefGoogle Scholar
Wasserstein, M P, Desnick, R J, Schuchman, E H. The natural history of type B Niemann-Pick disease: results from a 10-year longitudinal study. Pediatrics 2004;114:e672–7.CrossRefGoogle ScholarPubMed
Labrune, P, Bedossa, P, Huguet, P. Fatal liver failure in two children with Niemann-Pick disease type B. J Pediatr Gastroenterol Nutr 1991;13:104–9.CrossRefGoogle ScholarPubMed
Sogawa, H, Horino, K, Nakamura, F. Chronic Niemann-Pick disease with sphingomyelinase deficiency in two brothers with mental retardation. Eur J Pediatr 1978;128:235–40.CrossRefGoogle ScholarPubMed
Takahashi, T, Akiyama, K, Tomihara, M. Heterogeneity of liver disorder in type B Niemann-Pick disease. Hum Pathol 1997;28:385–8.CrossRefGoogle ScholarPubMed
Tassoni, J P, Fawaz, K A, Johnston, D E. Cirrhosis and portal hypertension in a patient with adult Niemann-Pick disease. Gastroenterology 1991;100:567–9.CrossRefGoogle Scholar
Wilson, J A, Raufman, J P. Hepatic failure in adult Niemann-Pick disease. Am J Med Sci 1986;292:168–72.CrossRefGoogle ScholarPubMed
Kayler, L K, Merion, R M, Lee, S. Long-term survival after liver transplantation in children with metabolic disorders. Pediatr Transplant 2002;6:295–300.CrossRefGoogle ScholarPubMed
Smanik, E J, Tavill, A S, Jacobs, G H. Orthotopic liver transplantation in two adults with Niemann-Pick and Gaucher's diseases: implications for the treatment of inherited metabolic disease. Hepatology 1993;17:42–9.CrossRefGoogle ScholarPubMed
Victor, S, Coulter, J B, Besley, G T. Niemann-Pick disease: sixteen-year follow-up of allogeneic bone marrow transplantation in a type B variant. J Inherit Metab Dis 2003;26:775–85.CrossRefGoogle Scholar
Bayever, E, August, C S, Kamani, N. Allogeneic bone marrow transplantation for Niemann-Pick disease (type IA). Bone Marrow Transplant 1992;10(suppl 1):85–6.Google Scholar
Bar, J, Linke, T, Ferlinz, K. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat 2001;17:199–209.CrossRefGoogle ScholarPubMed
Moser, H W, Linke, T, FensomAH, et al AH, et al. Acid ceramidase deficiency: Farber lipogranulomatosis. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw Hill, 2001:3573–88.Google Scholar
Abul-Haj, S K, Martz, D G, Douglas, W F, Geppert, L J. Farber's disease. Report of a case with observations on its histogenesis and notes on the nature of the stored material. J Pediatr 1962;61:221–32.CrossRefGoogle ScholarPubMed
Zappatini-Tommasi, L, Dumontel, C, Guibaud, P, Girod, C. Farber disease: an ultrastructural study. Report of a case and review of the literature. Virchows Arch A Pathol Anat Histopathol 1992;420:281–90.CrossRefGoogle ScholarPubMed
Fiumara, A, Nigro, F, Pavone, L, Moser, H W. Farber disease with prolonged survival. J Inherit Metab Dis 1993;16:915–16.CrossRefGoogle ScholarPubMed
Antonarakis, S E, Valle, D, Moser, H W. Phenotypic variability in siblings with Farber disease. J Pediatr 1984;104:406–9.CrossRefGoogle ScholarPubMed
Cartigny, B, Libert, J, Fensom, A H. Clinical diagnosis of a new case of ceramidase deficiency (Farber's disease). J Inherit Metab Dis 1985;8:8.CrossRefGoogle Scholar
Nowaczyk, M J, Feigenbaum, A, Silver, M M. Bone marrow involvement and obstructive jaundice in Farber lipogranulomatosis: clinical and autopsy report of a new case. J Inherit Metab Dis 1996;19:655–60.CrossRefGoogle ScholarPubMed
Kattner, E, Schafer, A, Harzer, K. Hydrops fetalis: manifestation in lysosomal storage diseases including Farber disease. Eur J Pediatr 1997;156:292–5.CrossRefGoogle ScholarPubMed
Lijnschoten, G, Groener, J E, Maas, S M. Intrauterine fetal death due to Farber disease: case report. Pediatr Dev Pathol 2000;3:597–602.CrossRefGoogle ScholarPubMed
Yeager, A M, Uhas, K A, Coles, C D. Bone marrow transplantation for infantile ceramidase deficiency (Farber disease). Bone Marrow Transplant 2000;26:357–63.CrossRefGoogle Scholar
Vormoor, J, Ehlert, K, Groll, A H. Successful hematopoietic stem cell transplantation in Farber disease. J Pediatr 2004;144:132–4.CrossRefGoogle ScholarPubMed
Georgiou, T, Drousiotou, A, Campos, Y. Four novel mutations in patients from the Middle East with the infantile form of GM1-gangliosidosis. Hum Mutat 2004;24:352.CrossRefGoogle ScholarPubMed
Morrone, A, Bardelli, T, Donati, M A. β-Galactosidase gene mutations affecting the lysosomal enzyme and the elastin-binding protein in GM1-gangliosidosis patients with cardiac involvement. Hum Mutat 2000;15:354–66.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Yoshida, K, Oshima, A, Sakuraba, H. GM1 gangliosidosis in adults: clinical and molecular analysis of 16 Japanese patients. Ann Neurol 1992;31:328–32.CrossRefGoogle ScholarPubMed
Abu-Dalu, K I, Tamary, H, Livni, N. GM1 gangliosidosis presenting as neonatal ascites. J Pediatr 1982;100:940–3.CrossRefGoogle ScholarPubMed
Folkerth, R D, Alroy, J, Bhan, I, Kaye, E M. Infantile G(M1) gangliosidosis: complete morphology and histochemistry of two autopsy cases, with particular reference to delayed central nervous system myelination. Pediatr Dev Pathol 2000;3:73–86.CrossRefGoogle Scholar
Bonduelle, M, Lissens, W, Goossens, A. Lysosomal storage diseases presenting as transient or persistent hydrops fetalis. Genet Couns 1991;2:227–32.Google ScholarPubMed
Suzuki, Y, Nakamura, N, Fukuoka, K. β-Galactosidase deficiency in juvenile and adult patients. Report of six Japanese cases and review of literature. Hum Genet 1977;36:219–29.CrossRefGoogle ScholarPubMed
Bu-Ghanim, M, Sansaricq, C, Gordon, R, Morotti, R A. Pathologic quiz case: hepatosplenomegaly in an infant with hypotonia and coarse facial features. Gangliosidosis type 1. Arch Pathol Lab Med 2004;128:1297–8.Google Scholar
Suzuki, Y, Oshima, A, Nanba, E. β-Galactosidase deficiency (β-galactosidosis): GM1 gangliosidosis and morquio B disease. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3775–809.Google Scholar
Lowden, J A, Callahan, J W, Gravel, R A. Type 2 GM1 gangliosidosis with long survival and neuronal ceroid lipofuscinosis. Neurology 1981;31:719–24.CrossRefGoogle ScholarPubMed
Patterson, M C, Vanier, M T, SuzukiK, et al K, et al. Niemann-Pick Disease Type C: A Lipid Trafficking Disorder. In: Scriver, C R, Beaudet, A L, SlyWS, et al WS, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3611–33.Google Scholar
Millat, G, Marcais, C, Tomasetto, C. Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet 2001;68:1373–85.CrossRefGoogle ScholarPubMed
Vanier, M T, Millat, G. Niemann-Pick disease type C. Clin Genet 2003;64:269–81.CrossRefGoogle ScholarPubMed
Naureckiene, S, Sleat, D E, Lackland, H. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 2000;290:2298–301.CrossRefGoogle ScholarPubMed
Ko, D C, Binkley, J, Sidow, A, Scott, M P. The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci U S A 2003;100:2518–25.CrossRefGoogle ScholarPubMed
Vanier, M T, Wenger, D A, Comly, M E. Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. A collaborative study on 70 patients. Clin Genet 1988;33:331–48.CrossRefGoogle Scholar
Kelly, D A, Portmann, B, Mowat, A P. Niemann-Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J Pediatr 1993;123:242–7.CrossRefGoogle ScholarPubMed
Mieli-Vergani, G, Howard, E R, Mowat, A P. Liver disease in infancy: a 20 year perspective. Gut 1991;(suppl):S123–8.CrossRefGoogle Scholar
Yerushalmi, B, Sokol, R J, Narkewicz, M R. Niemann-pick disease type C in neonatal cholestasis at a North American Center. J Pediatr Gastroenterol Nutr 2002;35:44–50.CrossRefGoogle Scholar
Fink, J K, Filling-Katz, M R, Sokol, J. Clinical spectrum of Niemann-Pick disease type C. Neurology 1989;39:1040–9.CrossRefGoogle ScholarPubMed
Vanier, M T, Pentchev, P, Rodriguez-Lafrasse, C, Rousson, R. Niemann-Pick disease type C: an update. J Inherit Metab Dis 1991;14:580–95.CrossRefGoogle ScholarPubMed
Fensom, A H, Grant, A R, Steinberg, S J. An adult with a non-neuronopathic form of Niemann-Pick C disease. J Inherit Metab Dis 1999;22:84–6.CrossRefGoogle ScholarPubMed
Imrie, J, Vijayaraghaven, S, Whitehouse, C. Niemann-Pick disease type C in adults. J Inherit Metab Dis 2002;25:491–500.CrossRefGoogle ScholarPubMed
Dumontel, C, Girod, C, Dijoud, F. Fetal Niemann-Pick disease type C: ultrastructural and lipid findings in liver and spleen. Virchows Arch A Pathol Anat Histopathol 1993;422:253–9.CrossRefGoogle ScholarPubMed
Gilbert, E F, Callahan, J, Viseskul, C, Opitz, J M. Niemann-Pick disease type C. Pathological, histochemical, ultrastructural and biochemical studies. Eur J Pediatr 1981;136:263–74.CrossRefGoogle ScholarPubMed
Ashkenazi, A, Yarom, R, Gutman, A. Niemann-Pick disease and giant cell transformation of the liver. Acta Paediatr Scand 1971;60:285–94.CrossRefGoogle ScholarPubMed
Kovesi, T A, Lee, J, Shuckett, B, et, al. Pulmonary infiltration in Niemann-Pick disease type C. J Inherit Metab Dis 1996;19:792–3.CrossRefGoogle ScholarPubMed
Birch, N C, Radio, S, Horslen, S. Metastatic hepatocellular carcinoma in a patient with niemann-pick disease, type C. J Pediatr Gastroenterol Nutr 2003;37:624–6.CrossRefGoogle Scholar
Schofer, O, Mischo, B, Puschel, W. Early-lethal pulmonary form of Niemann-Pick type C disease belonging to a second, rare genetic complementation group. Eur J Pediatr 1998;157:45–9.CrossRefGoogle ScholarPubMed
Patterson, M C, Di Bisceglie, A M, Higgins, J J. The effect of cholesterol-lowering agents on hepatic and plasma cholesterol in Niemann-Pick disease type C. Neurology 1993;43:61–4.CrossRefGoogle ScholarPubMed
Hsu, Y S, Hwu, W L, Huang, S F. Niemann-Pick disease type C (a cellular cholesterol lipidosis) treated by bone marrow transplantation. Bone Marrow Transplant 1999;24:103–7.CrossRefGoogle ScholarPubMed
Gartner, J C, Bergman, I, Malatack, J J. Progression of neurovisceral storage disease with supranuclear ophthalmoplegia following orthotopic liver transplantation. Pediatrics 1986;77:104–6.Google ScholarPubMed
Thomas, G H. Disorders of glycoprotein degradation: α-mannosidosis, β-mannosidosis, fucosidosis, and sialidosis. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001;3507–33.Google Scholar
Willems, P J, Gatti, R, Darby, J K. Fucosidosis revisited: a review of 77 patients. Am J Med Genet 1991;38:111–31.CrossRefGoogle ScholarPubMed
Willems, P J, Seo, H C, Coucke, P. Spectrum of mutations in fucosidosis. Eur J Hum Genet 1999;7:60–7.CrossRefGoogle ScholarPubMed
Freitag, F, Blumcke, S, Spranger, J. Hepatic ultrastructure in mucolipidosis I (lipomucopolysaccharidosis). Virchows Arch B Cell Pathol 1971;7:189–204.Google Scholar
Vellodi, A, Cragg, H, Winchester, B. Allogeneic bone marrow transplantation for fucosidosis. Bone Marrow Transplant 1995;15:153–8.Google ScholarPubMed
Miano, M, Lanino, E, Gatti, R. Four year follow-up of a case of fucosidosis treated with unrelated donor bone marrow transplantation. Bone Marrow Transplant 2001;27:747–51.CrossRefGoogle ScholarPubMed
Berg, T, Riise, H M, Hansen, G M. Spectrum of mutations in α-mannosidosis. Am J Hum Genet 1999;64:77–88.CrossRefGoogle ScholarPubMed
Desnick, R J, Sharp, H L, Grabowski, G A. Mannosidosis: clinical, morphologic, immunologic, and biochemical studies. Pediatr Res 1976;10:985–96.CrossRefGoogle ScholarPubMed
Ara, J R, Mayayo, E, Marzo, M E. Neurological impairment in α-mannosidosis: a longitudinal clinical and MRI study of a brother and sister. Childs Nerv Syst 1999;15:369–71.CrossRefGoogle ScholarPubMed
Monus, Z, Konyar, E, Szabo, L. Histomorphologic and histochemical investigations in mannosidosis. A light and electron microscopic study. Virchows Arch B Cell Pathol 1977;26:159–73.Google ScholarPubMed
Wall, D A, Grange, D K, Goulding, P. Bone marrow transplantation for the treatment of α-mannosidosis. J Pediatr 1998;133:282–5.CrossRefGoogle ScholarPubMed
Albert, M H, Schuster, F, Peters, C. T-cell-depleted peripheral blood stem cell transplantation for α-mannosidosis. Bone Marrow Transplant 2003;32:443–6.CrossRefGoogle ScholarPubMed
Lowden, J A, O'Brien, J S. Sialidosis: a review of human neuraminidase deficiency. Am J Hum Genet 1979;31:1–18.Google ScholarPubMed
Young, I D, Young, E P, Mossman, J. Neuraminidase deficiency: case report and review of the phenotype. J Med Genet 1987;24:283–90.CrossRefGoogle ScholarPubMed
d'Azzo, A, Andria, G, Strisciuglio, P, Galjaard, H. Galactosialidosis. In: Scriver, C R, Beaudet, A L, Valle, D. The metabolic and molecular bases of inherited disease. New York: McGraw Hill, 2001:3811–26.Google Scholar
Spoel, A, Bonten, E, d'Azzo, A. Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 1998;17:1588–97.CrossRefGoogle ScholarPubMed
Aylsworth, A S, Thomas, G H, Hood, J L. A severe infantile sialidosis: clinical, biochemical, and microscopic features. J Pediatr 1980;96:662–8.CrossRefGoogle ScholarPubMed
Nordborg, C, Kyllerman, M, Conradi, N, Mansson, J E. Early-infantile galactosialidosis with multiple brain infarctions: morphological, neuropathological and neurochemical findings. Acta Neuropathol (Berl) 1997;93:24–33.CrossRefGoogle ScholarPubMed
Patel, M S, Callahan, J W, Zhang, S. Early-infantile galactosialidosis: prenatal presentation and postnatal follow-up. Am J Med Genet 1999;85:38–47.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Jackman, H L, Tan, F L, Tamei, H. A peptidase in human platelets that deamidates tachykinins. Probable identity with the lysosomal “protective protein.” J Biol Chem 1990;265:11265–72.Google ScholarPubMed
Jackman, H L, Morris, P W, Deddish, P A. Inactivation of endothelin I by deamidase (lysosomal protective protein). J Biol Chem 1992;267:2872–5.Google Scholar
Kleijer, W J, Geilen, G C, Janse, H C. Cathepsin A deficiency in galactosialidosis: studies of patients and carriers in 16 families. Pediatr Res 1996;39:1067–71.CrossRefGoogle ScholarPubMed
Galjart, N J, Morreau, H, Willemsen, R. Human lysosomal protective protein has cathepsin A-like activity distinct from its protective function. J Biol Chem 1991;266:14754–62.Google ScholarPubMed
Hirschhorn, R, Reuser, A J J. Glycogen storage disease type II: acid α-glucosidase (acid maltase) deficiency. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001;3389–420.Google Scholar
Raben, N, Plotz, P, Byrne, B J. Acid α-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr Mol Med 2002;2:145–66.CrossRefGoogle Scholar
Hout, H M, Hop, W, Diggelen, O P. The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature. Pediatrics 2003;112:332–40.CrossRefGoogle ScholarPubMed
Kishnani, P S, Howell, R R. Pompe disease in infants and children. J Pediatr 2004;144:S35–43.CrossRefGoogle ScholarPubMed
Martin, J J, Barsy, T, Hoof, F, Palladini, G. Pompe's disease: an inborn lysosomal disorder with storage of glycogen. A study of brain and striated muscle. Acta Neuropathol (Berl) 1973;23:229–44.CrossRefGoogle ScholarPubMed
Slonim, A E, Bulone, L, Ritz, S. Identification of two subtypes of infantile acid maltase deficiency. J Pediatr 2000;137:283–5.CrossRefGoogle ScholarPubMed
Hagemans, M L, Winkel, L P, Doorn, P A. Clinical manifestation and natural course of late-onset Pompe's disease in 54 Dutch patients. Brain 2005;128:671–7.CrossRefGoogle ScholarPubMed
Di Fiore, M T, Manfredi, R, Marri, L. Elevation of transaminases as an early sign of late-onset glycogenosis type II. Eur J Pediatr 1993;152:784.CrossRefGoogle ScholarPubMed
Bruni, C B, Paluello, F M. A biochemical and ultrastructural study of liver, muscle, heart and kidney in type II glycogenosis. Virchows Arch B Cell Pathol 1970;4:196–207.Google ScholarPubMed
Watson, J G, Gardner-Medwin, D, Goldfinch, M E, Pearson, A D. Bone marrow transplantation for glycogen storage disease type II (Pompe's disease). N Engl J Med 1986;314:385.Google Scholar
Klinge, L, Straub, V, Neudorf, U. Safety and efficacy of recombinant acid α-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul Disord 2005;15:24–31.CrossRefGoogle ScholarPubMed
Klinge, L, Straub, V, Neudorf, U, Voit, T. Enzyme replacement therapy in classical infantile Pompe disease: results of a ten-month follow-up study. Neuropediatrics 2005;36:6–11.CrossRefGoogle ScholarPubMed
Hout, H, Reuser, A J, Vulto, A G. Recombinant human α-glucosidase from rabbit milk in Pompe patients. Lancet 2000;356:397–8.CrossRefGoogle ScholarPubMed
Hout, J M, Reuser, A J, Klerk, J B. Enzyme therapy for Pompe disease with recombinant human α-glucosidase from rabbit milk. J Inherit Metab Dis 2001;24:266–74.CrossRefGoogle ScholarPubMed
Winkel, L P, Hout, J M, Kamphoven, J H. Enzyme replacement therapy in late-onset Pompe's disease: a three-year follow-up. Ann Neurol 2004;55:495–502.CrossRefGoogle ScholarPubMed
Amalfitano, A, Bengur, A R, Morse, R P. Recombinant human acid α-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001;3:132–8.Google ScholarPubMed
Pagani, F, Pariyarath, R, Garcia, R. New lysosomal acid lipase gene mutants explain the phenotype of Wolman disease and cholesteryl ester storage disease. J Lipid Res 1998;39:1382–8.Google ScholarPubMed
Assmann, G, Seedorf, U. Acid lipase deficiency: Wolman disease and cholesteryl ester storage disease. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3551–72.Google Scholar
Grabowski, G A, Bove, K, Du, H. Lysosomal acid lipase deficiencies: Wolman disease and cholesteryl ester storage disease. In: Walker, W A, Goulet, O J, KleinmanRE, et al RE, et al. Pediatric gastrointestinal disease: pathophysiology, diagnosis and management. Hamilton, Ontario: BC Decker, 2004:1429–39.Google Scholar
Boldrini, R, Devito, R, Biselli, R. Wolman disease and cholesteryl ester storage disease diagnosed by histological and ultrastructural examination of intestinal and liver biopsy. Pathol Res Pract 2004;200:231–40.CrossRefGoogle ScholarPubMed
Drebber, U, Andersen, M, Kasper, H U. Severe chronic diarrhea and weight loss in cholesteryl ester storage disease: a case report. World J Gastroenterol 2005;11:2364–6.CrossRefGoogle ScholarPubMed
Lough, J, Fawcett, J, Wiegensberg, B. Wolman's disease. An electron microscopic, histochemical, and biochemical study. Arch Pathol 1970;89:103–10.Google ScholarPubMed
Bambirra, E A, Tafuri, W L, Borges, H H. Wolman's disease: a clinicopathologic, electron microscopic, and histochemical study. South Med J 1982;75:595–6.CrossRefGoogle ScholarPubMed
Browne, M, Somers, G, Savoia, H, Kukuruzovic, R. Wolman's disease in an infant. Br J Haematol 2003;122:522.CrossRefGoogle ScholarPubMed
Guazzi, G C, Martin, J J, Philippart, M. Wolman's disease. Eur Neurol 1968;1:334–62.CrossRefGoogle ScholarPubMed
Marshall, W C, Ockenden, B G, Fosbrooke, A S, Cumings, J N. Wolman's disease. A rare lipidosis with adrenal calcification. Arch Dis Child 1969;44:331–41.CrossRefGoogle ScholarPubMed
Mitsudo, S, Zucker, P. Case 4. Wolman's disease. Pediatr Pathol 1989;9:193–8.CrossRefGoogle ScholarPubMed
Wallis, K, Gross, M, Kohn, R, Zaidman, J. A case of Wolman's disease. Helv Paediatr Acta 1971;26:98–111.Google ScholarPubMed
Beaudet, A L, Ferry, G D, Nichols, B L, Rosenberg, H S. Cholesterol ester storage disease: clinical, biochemical, and pathological studies. J Pediatr 1977;90:910–14.CrossRefGoogle ScholarPubMed
Lohse, P, Maas, S, Sewell, A C. Molecular defects underlying Wolman disease appear to be more heterogeneous than those resulting in cholesteryl ester storage disease. J Lipid Res 1999;40:221–8.Google ScholarPubMed
Brown, M S, Kovanen, P T, Goldstein, J L. Regulation of plasma cholesterol by lipoprotein receptors. Science 1981;212:628–35.CrossRefGoogle ScholarPubMed
Krivit, W, Freese, D, Chan, K W, Kulkarni, R. Wolman's disease: a review of treatment with bone marrow transplantation and considerations for the future. Bone Marrow Transplant 1992;10(suppl 1):97–101.Google Scholar
Krivit, W, Peters, C, Dusenbery, K. Wolman disease successfully treated by bone marrow transplantation. Bone Marrow Transplant 2000;26:567–70.CrossRefGoogle ScholarPubMed
Arterburn, J N, Lee, W M, Wood, R P. Orthotopic liver transplantation for cholesteryl ester storage disease. J Clin Gastroenterol 1991;13:482–5.CrossRefGoogle ScholarPubMed
Di Bisceglie, A M, Ishak, K G, Rabin, L, Hoeg, J M. Cholesteryl ester storage disease: hepatopathology and effects of therapy with lovastatin. Hepatology 1990;11:764–72.CrossRefGoogle ScholarPubMed
Ginsberg, H N, Le, N A, Short, M P. Suppression of apolipoprotein B production during treatment of cholesteryl ester storage disease with lovastatin. Implications for regulation of apolipoprotein B synthesis. J Clin Invest 1987;80:1692–7.CrossRefGoogle ScholarPubMed
Leone, L, Ippoliti, P, Antonicelli, R. Use of simvastatin plus cholestyramine in the treatment of lysosomal acid lipase deficiency. J Pediatr 1991;119:1008–9.CrossRefGoogle ScholarPubMed
Tarantino, M D, McNamara, D J, Granstrom, P. Lovastatin therapy for cholesterol ester storage disease in two sisters. J Pediatr 1991;118:131–5.CrossRefGoogle ScholarPubMed
Du, H, Schiavi, S, Levine, M. Enzyme therapy for lysosomal acid lipase deficiency in the mouse. Hum Mol Genet 2001;10:1639–48.CrossRefGoogle ScholarPubMed
Du, H, Heur, M, Witte, D P. Lysosomal acid lipase deficiency: correction of lipid storage by adenovirus-mediated gene transfer in mice. Hum Gene Ther 2002;13:1361–72.CrossRefGoogle ScholarPubMed
Neufeld, E B, Muenzer, J. The mucopolysaccharidoses. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3421–51.Google Scholar
Kakkis, E D, Muenzer, J, Tiller, G E. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med 2001;344:182–8.CrossRefGoogle ScholarPubMed
Harmatz, P, Whitley, C B, Waber, L. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J Pediatr 2004;144:574–80.CrossRefGoogle Scholar
Parfrey, N A, Hutchins, G M. Hepatic fibrosis in the mucopolysaccharidoses. Am J Med 1986;81:825–9.CrossRefGoogle ScholarPubMed
Resnick, J M, Krivit, W, Snover, D C. Pathology of the liver in mucopolysaccharidosis: light and electron microscopic assessment before and after bone marrow transplantation. Bone Marrow Transplant 1992;10:273–80.Google ScholarPubMed
Resnick, J M, Whitley, C B, Leonard, A S. Light and electron microscopic features of the liver in mucopolysaccharidosis. Hum Pathol 1994;25:276–86.CrossRefGoogle ScholarPubMed
Muenzer, J. The mucopolysaccharidoses: a heterogeneous group of disorders with variable pediatric presentations. J Pediatr 2004;144:S27–34.CrossRefGoogle ScholarPubMed
Herskhovitz, E, Young, E, Rainer, J. Bone marrow transplantation for Maroteaux-Lamy syndrome (MPS VI): long-term follow-up. J Inherit Metab Dis 1999;22:50–62.CrossRefGoogle ScholarPubMed
Peters, C, Balthazor, M, Shapiro, E G. Outcome of unrelated donor bone marrow transplantation in 40 children with Hurler syndrome. Blood 1996;87:4894–902.Google ScholarPubMed
Peters, C, Shapiro, E G, Anderson, J. Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. The Storage Disease Collaborative Study Group. Blood 1998;91:2601–8.Google ScholarPubMed
Sivakumur, P, Wraith, J E. Bone marrow transplantation in mucopolysaccharidosis type IIIA: a comparison of an early treated patient with his untreated sibling. J Inherit Metab Dis 1999;22:849–50.CrossRefGoogle ScholarPubMed
Yamada, Y, Kato, K, Sukegawa, K. Treatment of MPS VII (Sly disease) by allogeneic BMT in a female with homozygous A619V mutation. Bone Marrow Transplant 1998;21:629–34.CrossRefGoogle Scholar
Wraith, J E, Clarke, L A, Beck, M. Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human α-L-iduronidase (laronidase). J Pediatr 2004;144:581–8.CrossRefGoogle Scholar
Kornfeld, S, Sly, W S. I-cell disease and pseudo-Hurler polydystrophy: disorders of lysosomal enzyme phosphorylation and localization. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001;3469–82.Google Scholar
Raas-Rothschild, A, Cormier-Daire, V, Bao, M. Molecular basis of variant pseudo-Hurler polydystrophy (mucolipidosis IIIC). J Clin Invest 2000;105:673–81.CrossRefGoogle Scholar
Canfield, W M, Bao, M, Pan, J. Mucolipidosis II and mucolipidosis IIIA are caused by mutations in the GlcNAc-phosphotransferace a/B gene on chromosome 12. Am J Hum Genet 1998;63:A15.Google Scholar
Tiede, S, Muschol, N, Reutter, G. Missense mutations in N-acetylglucosamine-1-phosphotransferase α/β subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. Am J Med Genet A 2005;137:235–40.CrossRefGoogle Scholar
Hochman, J A, Treem, W R, Dougherty, F, Bentley, R C. Mucolipidosis II (I-cell disease) presenting as neonatal cholestasis. J Inherit Metab Dis 2001;24:603–4.CrossRefGoogle ScholarPubMed
Leroy, J G, Spranger, J W, Feingold, M. I-cell disease: a clinical picture. J Pediatr 1971;79:360–5.CrossRefGoogle ScholarPubMed
Sprigz, R A, Doughty, R A, Spackman, T J. Neonatal presentation of I-cell disease. J Pediatr 1978;93:954–8.CrossRefGoogle ScholarPubMed
Burin, M G, Scholz, A P, Gus, R. Investigation of lysosomal storage diseases in nonimmune hydrops fetalis. Prenat Diagn 2004;24:653–7.CrossRefGoogle ScholarPubMed
Tylki-Szymanska, A, Czartoryska, B, Groener, J E, Lugowska, A. Clinical variability in mucolipidosis III (pseudo-Hurler polydystrophy). Am J Med Genet 2002;108:214–18.CrossRefGoogle Scholar
Kelly, T E, Thomas, G H, Taylor, H A. Mucolipidosis III (pseudo-Hurler polydystrophy): Clinical and laboratory studies in a series of 12 patients. Johns Hopkins Med J 1975;137:156–75.Google Scholar
Kenyon, K R, Sensenbrenner, J A, Wyllie, R G. Hepatic ultrastructure and histochemistry in mucolipidosis II (I-cell disease). Pediatr Res 1973;7:560–8.CrossRefGoogle Scholar
Grewal, S, Shapiro, E, Braunlin, E. Continued neurocognitive development and prevention of cardiopulmonary complications after successful BMT for I-cell disease: a long-term follow-up report. Bone Marrow Transplant 2003;32:957–60.CrossRefGoogle ScholarPubMed
Hopwood, J J, Ballabio, A. Multiple sulfatase deficiency and the nature of the sulfatase family. In: Scriver, C R, Beaudet, A L, ValleD, et al D, et al. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, 2001:3725–32.Google Scholar
Blanco-Aguirre, M E, Kofman-Alfaro, S H, Rivera-Vega, M R. Unusual clinical presentation in two cases of multiple sulfatase deficiency. Pediatr Dermatol 2001;18:388–92.CrossRefGoogle ScholarPubMed
Burch, M, Fensom, A H, Jackson, M. Multiple sulphatase deficiency presenting at birth. Clin Genet 1986;30:409–15.CrossRefGoogle ScholarPubMed
Burk, R D, Valle, D, Thomas, G H. Early manifestations of multiple sulfatase deficiency. J Pediatr 1984;104:574–8.CrossRefGoogle ScholarPubMed
Diaz-Font, A, Santamaria, R, Cozar, M. Clinical and mutational characterization of three patients with multiple sulfatase deficiency: report of a new splicing mutation. Mol Genet Metab 2005;86:206–11.CrossRefGoogle ScholarPubMed
Macaulay, R J, Lowry, N J, Casey, R E. Pathologic findings of multiple sulfatase deficiency reflect the pattern of enzyme deficiencies. Pediatr Neurol 1998;19:372–6.CrossRefGoogle ScholarPubMed
Vamos, E, Liebaers, I, Bousard, N. Multiple sulphatase deficiency with early onset. J Inherit Metab Dis 1981;4:103–4.CrossRefGoogle ScholarPubMed
Diez-Roux, G, Ballabio, A. Sulfatases and human disease. Annu Rev Genomics Hum Genet 2005;6:355–79.CrossRefGoogle ScholarPubMed
Dierks, T, Schmidt, B, Borissenko, L V. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(α)-formylglycine generating enzyme. Cell 2003;113:435–44.CrossRefGoogle Scholar
Cosma, M P, Pepe, S, Annunziata, I. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 2003;113:445–56.CrossRefGoogle ScholarPubMed
Schmidt, B, Selmer, T, Ingendoh, A, Figura, K. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 1995;82:271–8.CrossRefGoogle ScholarPubMed
Dierks, T, Lecca, M R, Schlotterhose, P. Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J 1999;18:2084–91.CrossRefGoogle ScholarPubMed
Muenzer, J, Wraith, J E, Beck, M. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med 2006;8:465–73.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Liver in Lysosomal Storage Diseases
    • By T. Andrew Burrow, M.D., Resident, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Resident, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Kevin E. Bove, M.D., Professor of Pathology and Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Pediatric Pathologist, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Gregory A. Grabowski, M.D., Professor, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Director, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.032
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Liver in Lysosomal Storage Diseases
    • By T. Andrew Burrow, M.D., Resident, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Resident, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Kevin E. Bove, M.D., Professor of Pathology and Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Pediatric Pathologist, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Gregory A. Grabowski, M.D., Professor, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Director, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.032
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Liver in Lysosomal Storage Diseases
    • By T. Andrew Burrow, M.D., Resident, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Resident, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Kevin E. Bove, M.D., Professor of Pathology and Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Pediatric Pathologist, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, Gregory A. Grabowski, M.D., Professor, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Director, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.032
Available formats
×