Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T20:16:49.186Z Has data issue: false hasContentIssue false

27 - Iron Storage Disorders

from SECTION IV - METABOLIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

Alex S. Knisely M.D.
Affiliation:
Professor of Pathology, Institute of Liver Studies, King's College Hospital, London, England
Michael R. Narkewicz M.D.
Affiliation:
Professor of Pediatrics, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Medical Director, Pediatric Liver Center, Children's Hospital, Denver, Colorado
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

IRON OVERLOAD DISORDERS

Hereditary Hemochromatosis (OMIM 235200)

Iron overload states can be classified as primary or secondary. There are many disorders that can lead to iron overload (Table 27.1). This chapter focuses on hereditary hemochromatosis (HHC), juvenile hemochromatosis (JHC), and secondary iron overload (primarily transfusion associated) in the pediatric patient and on neonatal hemochromatosis. For a discussion of the rarer entities, the reader is referred to several recent reviews [1, 2].

Physiology and Pathophysiology of Iron Overload

Iron is one of the more tightly regulated nutrients in the body. Humans have no significant excretory pathway for iron. Thus, body iron stores are normally controlled at the level of absorption, matching absorption to physiologic requirements. Under normal circumstances, only about 1 mg of elemental iron is absorbed per day (Figure 27.1), in balance with gastrointestinal losses. Intestinal iron absorption is increased by low body iron stores (storage regulation) [3], increased erythropoiesis (erythropoietic regulation) [3], anemias associated with ineffective erythropoiesis (thalassemias, congenital dyserythropoietic anemias, and sideroblastic anemia), and acute hypoxia. Both dietary iron intake (dietary regulation) and systemic inflammation can temporarily decrease iron absorption and availability, even in the presence of iron deficiency [4–6].

Duodenal crypt cells sense body iron status and are programmed for iron absorption as they mature. Duodenal and proximal jejunal enterocytes are responsible for iron absorption. Low gastric pH helps dissolve iron, which is then enzymatically reduced to the ferrous form by ferrireductase [7].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wallace, D F, Summerville, L, Lusby, P E, Subramaniam, V N. First phenotypic description of transferrin receptor 2 knockout mouse, and the role of hepcidin. Gut 2005;54:980–6.CrossRefGoogle ScholarPubMed
Pietrangelo, A. Non-HFE hemochromatosis. Semin Liver Dis 2005;25:450–60.CrossRefGoogle ScholarPubMed
Finch, C. Regulators of iron balance in humans. Blood 1994;84:1697–702.Google ScholarPubMed
Sturrock, A, Alexander, J, Lamb, J. Characterization of a transferrin-independent uptake system for iron in HeLa cells. J Biol Chem 1990;265:3139–45.Google ScholarPubMed
Ganz, T, Nemeth, E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol 2006;290:G199–203.CrossRefGoogle ScholarPubMed
Nicolas, G, Chauvet, C, Viatte, L. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 2002;110:1037–44.CrossRefGoogle Scholar
Riedel, H D, Remus, A J, Fitscher, B A, Stremmel, W. Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes. Biochem J 1995;309(pt 3):745–8.CrossRefGoogle Scholar
Gunshin, H, Mackenzie, B, Berger, U V. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997;388:482–8.CrossRefGoogle ScholarPubMed
Nemeth, E, Tuttle, M S, Powelson, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004;306:2090–3.CrossRefGoogle ScholarPubMed
Donovan, A, Lima, C A, Pinkus, J L. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 2005;1:191–200.CrossRefGoogle ScholarPubMed
Vaulont, S, Lou, D Q, Viatte, L, Kahn, A. Of mice and men: the iron age. J Clin Invest 2005;115:2079–82.CrossRefGoogle ScholarPubMed
Roetto, A, Papanikolaou, G, Politou, M. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 2003;33:21–2.CrossRefGoogle ScholarPubMed
Nicolas, G, Bennoun, M, Devaux, I. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 2001;98:8780–5.CrossRefGoogle ScholarPubMed
Njajou, O T, Vaessen, N, Joosse, M. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet 2001;28:213–14.CrossRefGoogle ScholarPubMed
Ahmad, K A, Ahmann, J R, Migas, M C. Decreased liver hepcidin expression in the Hfe knockout mouse. Blood Cells Mol Dis 2002;29:361–6.CrossRefGoogle ScholarPubMed
Gehrke, S G, Kulaksiz, H, Herrmann, T. Expression of hepcidin in hereditary hemochromatosis: evidence for a regulation in response to the serum transferrin saturation and to non-transferrin-bound iron. Blood 2003;102:371–6.CrossRefGoogle ScholarPubMed
Nemeth, E, Roetto, A, Garozzo, G. Hepcidin is decreased in TFR2 hemochromatosis. Blood 2005;105:1803–6.CrossRefGoogle ScholarPubMed
Bridle, K R, Frazer, D M, Wilkins, S J. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 2003;361:669–73.CrossRefGoogle ScholarPubMed
Papanikolaou, G, Tzilianos, M, Christakis, J I. Hepcidin in iron overload disorders. Blood 2005;105:4103–5.CrossRefGoogle ScholarPubMed
Rouault, T, Klausner, R. Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul 1997;35:1–19.CrossRefGoogle ScholarPubMed
Bacon, B R, Powell, L W, Adams, P C. Molecular medicine and hemochromatosis: at the crossroads. Gastroenterology 1999;116:193–207.CrossRefGoogle ScholarPubMed
Fleming, M D, Trenor, CC 3rd, Su, M A. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 1997;16:383–6.CrossRefGoogle ScholarPubMed
Kawabata, H, Yang, R, Hirama, T. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 1999;274:20826–32.CrossRefGoogle ScholarPubMed
Fleming, R E, Migas, M C, Holden, C C. Transferrin receptor 2: continued expression in mouse liver in the face of iron overload and in hereditary hemochromatosis. Proc Natl Acad Sci U S A 2000;97:2214–19.CrossRefGoogle ScholarPubMed
Cox, T M, Peters, T J. Uptake of iron by duodenal biopsy specimens from patients with iron-deficiency anaemia and primary haemochromatosis. Lancet 1978;1:123–4.CrossRefGoogle ScholarPubMed
Cox, T M, Peters, T J. In vitro studies of duodenal iron uptake in patients with primary and secondary iron storage disease. Q J Med 1980;49:249–57.Google ScholarPubMed
Niederkofler, V, Salie, R, Arber, S. Hemojuvelin is essential for dietary iron sensing, and its mutation leads to severe iron overload. J Clin Invest 2005;115:2180–6.CrossRefGoogle ScholarPubMed
Huang, F W, Pinkus, J L, Pinkus, G S. A mouse model of juvenile hemochromatosis. J Clin Invest 2005;115:2187–91.CrossRefGoogle ScholarPubMed
Simon, M, Bourel, M, Fauchet, R, Genetet, B. Association of HLA-A3 and HLA-B14 antigens with idiopathic haemochromatosis. Gut 1976;17:332–4.CrossRefGoogle ScholarPubMed
Feder, J N, Gnirke, A, Thomas, W. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996;13:399–408.CrossRefGoogle ScholarPubMed
Beutler, E. Genetic irony beyond haemochromatosis: clinical effects of HLA-H mutations. Lancet 1997;349:296–7.CrossRefGoogle ScholarPubMed
Sham, R L, Ou, C Y, Cappuccio, J. Correlation between genotype and phenotype in hereditary hemochromatosis: analysis of 61 cases. Blood Cells Mol Dis 1997;23:314–20.CrossRefGoogle ScholarPubMed
Ramrakhiani, S, Bacon, B R. Hemochromatosis: advances in molecular genetics and clinical diagnosis. J Clin Gastroenterol 1998;27:41–6.CrossRefGoogle ScholarPubMed
Shaheen, N J, Bacon, B R, Grimm, I S. Clinical characteristics of hereditary hemochromatosis patients who lack the C282Y mutation. Hepatology 1998;28:526–9.CrossRefGoogle ScholarPubMed
Barton, J C, Sawada-Hirai, R, Rothenberg, B E, Acton, R T. Two novel missense mutations of the HFE gene (I105T and G93R) and identification of the S65C mutation in Alabama hemochromatosis probands. Blood Cells Mol Dis 1999;25:147–55.CrossRefGoogle ScholarPubMed
Mura, C, Raguenes, O, Ferec, C. HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood 1999;93:2502–5.Google ScholarPubMed
Wallace, D F, Dooley, J S, Walker, A P. A novel mutation of HFE explains the classical phenotype of genetic hemochromatosis in a C282Y heterozygote. Gastroenterology 1999;116:1409–12.CrossRefGoogle Scholar
Feder, J N, Tsuchihashi, Z, Irrinki, A. The hemochromatosis founder mutation in HLA-H disrupts beta2-microglobulin interaction and cell surface expression. J Biol Chem 1997;272:14025–8.CrossRefGoogle ScholarPubMed
Waheed, A, Parkkila, S, Zhou, X Y. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with beta2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc Natl Acad Sci U S A 1997;94:12384–9.CrossRefGoogle Scholar
Feder, J N, Penny, D M, Irrinki, A. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc Natl Acad Sci U S A 1998;95:1472–7.CrossRefGoogle ScholarPubMed
Lin, L, Goldberg, Y P, Ganz, T. Competitive regulation of hepcidin mRNA by soluble and cell-associated hemojuvelin. Blood 2005;106:2884–9.CrossRefGoogle ScholarPubMed
Sousa, M, Reimao, R, Lacerda, R. Iron overload in beta 2-microglobulin-deficient mice. Immunol Lett 1994;39:105–11.Google ScholarPubMed
Rothenberg, B E, Voland, J R. Beta2 knockout mice develop parenchymal iron overload: a putative role for class I genes of the major histocompatibility complex in iron metabolism. Proc Natl Acad Sci U S A 1996;93:1529–34.CrossRefGoogle ScholarPubMed
Zhou, X Y, Tomatsu, S, Fleming, R E. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc Natl Acad Sci U S A 1998;95:2492–7.CrossRefGoogle ScholarPubMed
Herrmann, T, Muckenthaler, M, Hoeven, F. Iron overload in adult Hfe-deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin. J Mol Med 2004;82:39–48.CrossRefGoogle ScholarPubMed
Phatak, P D, Sham, R L, Raubertas, R F. Prevalence of hereditary hemochromatosis in 16031 primary care patients. Ann Intern Med 1998;129:954–61.CrossRefGoogle ScholarPubMed
Olynyk, J K, Cullen, D J, Aquilia, S. A population-based study of the clinical expression of the hemochromatosis gene. N Engl J Med 1999;341:718–24.CrossRefGoogle ScholarPubMed
Monaghan, K G, Rybicki, B A, Shurafa, M, Feldman, G L. Mutation analysis of the HFE gene associated with hereditary hemochromatosis in African Americans. Am J Hematol 1998;58:213–17.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Pietrangelo, A, Montosi, G, Totaro, A. Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene. N Engl J Med 1999;341:725–32.CrossRefGoogle ScholarPubMed
Baer, D M, Simons, J L, Staples, R L. Hemochromatosis screening in asymptomatic ambulatory men 30 years of age and older. Am J Med 1995;98:464–8.CrossRefGoogle ScholarPubMed
Edwards, C Q, Griffen, L M, Goldgar, D. Prevalence of hemochromatosis among 11,065 presumably healthy blood donors. N Engl J Med 1988;318:1355–62.CrossRefGoogle ScholarPubMed
Trousseau, A. Glycosurie, diabete, sucre. In: Clinique medicale de l'Hôtel-Dieu de Paris. Paris: Balliere, 1865:663.Google Scholar
Adams, P C, Deugnier, Y, Moirand, R, Brissot, P. The relationship between iron overload, clinical symptoms, and age in 410 patients with genetic hemochromatosis. Hepatology 1997;25:162–6.CrossRefGoogle ScholarPubMed
Powell, L W, Dixon, J L, Hewett, D G. Role of early case detection by screening relatives of patients with HFE-associated hereditary haemochromatosis. Best Pract Res Clin Haematol 2005;18:221–34.CrossRefGoogle ScholarPubMed
Tavill, A S. Diagnosis and management of hemochromatosis. Hepatology 2001;33:1321–8.CrossRefGoogle ScholarPubMed
O'Neil, J, Powell, L. Clinical aspects of hemochromatosis. Semin Liver Dis 2005;25:381–91.CrossRefGoogle ScholarPubMed
Franchini, M, Veneri, D. Hereditary hemochromatosis. Hematology 2005;10:145–9.CrossRefGoogle ScholarPubMed
Waalen, J, Felitti, V, Gelbart, T. Prevalence of hemochromatosis-related symptoms among individuals with mutations in the HFE gene. Mayo Clin Proc 2002;77:522–30.CrossRefGoogle ScholarPubMed
Waalen, J, Nordestgaard, B G, Beutler, E. The penetrance of hereditary hemochromatosis. Best Pract Res Clin Haematol 2005;18:203–20.CrossRefGoogle ScholarPubMed
Camaschella, C. Juvenile haemochromatosis. Baillieres Clin Gastroenterol 1998;12:227–35.CrossRefGoogle ScholarPubMed
Camaschella, C, Roetto, A, Cicilano, M. Juvenile and adult hemochromatosis are distinct genetic disorders. Eur J Hum Genet 1997;5:371–5.Google ScholarPubMed
Adams, P C, Kertesz, A E, Valberg, L S. Screening for hemochromatosis in children of homozygotes: prevalence and cost-effectiveness. Hepatology 1995;22:1720–7.Google ScholarPubMed
Datz, C, Haas, T, Rinner, H. Heterozygosity for the C282Y mutation in the hemochromatosis gene is associated with increased serum iron, transferrin saturation, and hemoglobin in young women: a protective role against iron deficiency?Clin Chem 1998;44:2429–32.Google ScholarPubMed
Distante, S, Berg, J P, Lande, K. High prevalence of the hemochromatosis-associated Cys282Tyr HFE gene mutation in a healthy Norwegian population in the city of Oslo, and its phenotypic expression. Scand J Gastroenterol 1999;34:529–34.Google Scholar
McLaren, C E, McLachlan, G J, Halliday, J W. Distribution of transferrin saturation in an Australian population: relevance to the early diagnosis of hemochromatosis. Gastroenterology 1998;114:543–9.CrossRefGoogle Scholar
Rossi, E, Olynyk, J K, Cullen, D J. Compound heterozygous hemochromatosis genotype predicts increased iron and erythrocyte indices in women. Clin Chem 2000;46:162–6.Google ScholarPubMed
Grove, J, Daly, A K, Burt, A D. Heterozygotes for HFE mutations have no increased risk of advanced alcoholic liver disease. Gut 1998;43:262–6.CrossRefGoogle ScholarPubMed
Bonkovsky, H L, Jawaid, Q, Tortorelli, K. Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol 1999;31:421–9.CrossRefGoogle ScholarPubMed
Bonkovsky, H L, Poh-Fitzpatrick, M, Pimstone, N. Porphyria cutanea tarda, hepatitis C, and HFE gene mutations in North America. Hepatology 1998;27:1661–9.CrossRefGoogle ScholarPubMed
Roberts, A G, Whatley, S D, Morgan, R R. Increased frequency of the haemochromatosis Cys282Tyr mutation in sporadic porphyria cutanea tarda. Lancet 1997;349:321–3.CrossRefGoogle ScholarPubMed
Kaikov, Y, Wadsworth, L D, Hassall, E. Primary hemochromatosis in children: report of three newly diagnosed cases and review of the pediatric literature. Pediatrics 1992;90(1 pt 1):37–42.Google Scholar
Adams, P C, Chakrabarti, S. Genotypic/phenotypic correlations in genetic hemochromatosis: evolution of diagnostic criteria. Gastroenterology 1998;114:319–23.CrossRefGoogle ScholarPubMed
Kowdley, K V, Trainer, T D, Saltzman, J R. Utility of hepatic iron index in American patients with hereditary hemochromatosis: a multicenter study. Gastroenterology 1997;113:1270–7.CrossRefGoogle ScholarPubMed
Powell, L W, Summers, K M, Board, P G. Expression of hemochromatosis in homozygous subjects. Implications for early diagnosis and prevention. Gastroenterology 1990;98:1625–32.CrossRefGoogle Scholar
Escobar, G J, Heyman, M B, Smith, W B, Thaler, M M. Primary hemochromatosis in childhood. Pediatrics 1987;80:549–54.Google ScholarPubMed
Brittenham, G M, Badman, D G. Noninvasive measurement of iron: report of an NIDDK workshop. Blood 2003;101:15–19.CrossRefGoogle ScholarPubMed
Martin, D R, Semelka, R C. Magnetic resonance imaging of the liver: review of techniques and approach to common diseases. Semin Ultrasound CT MR 2005;26:116–31.CrossRefGoogle ScholarPubMed
Pomerantz, S, Siegelman, E S. MR imaging of iron depositional disease. Magn Reson Imaging Clin N Am 2002;10:105–20, vi.CrossRefGoogle ScholarPubMed
Barton, J C, Rothenberg, B E, Bertoli, L F, Acton, R T. Diagnosis of hemochromatosis in family members of probands: a comparison of phenotyping and HFE genotyping. Genet Med 1999;1:89–93.CrossRefGoogle ScholarPubMed
Adams, P C. Implications of genotyping of spouses to limit investigation of children in genetic hemochromatosis. Clin Genet 1998;53:176–8.CrossRefGoogle ScholarPubMed
Guyader, D, Jacquelinet, C, Moirand, R. Noninvasive prediction of fibrosis in C282Y homozygous hemochromatosis. Gastroenterology 1998;115:929–36.CrossRefGoogle ScholarPubMed
Niederau, C, Fischer, R, Sonnenberg, A. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 1985;313:1256–62.CrossRefGoogle ScholarPubMed
Burke, W, Thomson, E, Khoury, M J. Hereditary hemochromatosis: gene discovery and its implications for population-based screening. JAMA 1998;280:172–8.CrossRefGoogle ScholarPubMed
Qaseem, A, Aronson, M, Fitterman, N. Screening for hereditary hemochromatosis: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2005;143:517–21.CrossRefGoogle ScholarPubMed
Barton, J C, McDonnell, S M, Adams, P C. Management of hemochromatosis. Hemochromatosis Management Working Group. Ann Intern Med 1998;129:932–9.CrossRefGoogle ScholarPubMed
Roetto, A, Totaro, A, Cazzola, M. Juvenile hemochromatosis locus maps to chromosome 1q. Am J Hum Genet 1999;64:1388–93.CrossRefGoogle ScholarPubMed
Cazzola, M, Ascari, E, Barosi, G. Juvenile idiopathic haemochromatosis: a life-threatening disorder presenting as hypogonadotropic hypogonadism. Hum Genet 1983;65:149–54.CrossRefGoogle ScholarPubMed
Kelly, A L, Rhodes, D A, Roland, J M. Hereditary juvenile haemochromatosis: a genetically heterogeneous lifethreatening iron-storage disease. Q J Med 1998;91:607–18.CrossRefGoogle Scholar
Lamon, J M, Marynick, S P, Roseblatt, R, Donnelly, S. Idiopathic hemochromatosis in a young female. A case study and review of the syndrome in young people. Gastroenterology 1979;76:178–83.Google Scholar
Cazzola, M, Cerani, P, Rovati, A. Juvenile genetic hemochromatosis is clinically and genetically distinct from the classical HLA-related disorder. Blood 1998;92:2979–81.Google ScholarPubMed
Gehrke, S G, Pietrangelo, A, Kascak, M. HJV gene mutations in European patients with juvenile hemochromatosis. Clin Genet 2005;67:425–8.CrossRefGoogle ScholarPubMed
Lanzara, C, Roetto, A, Daraio, F. Spectrum of hemojuvelin gene mutations in 1q-linked juvenile hemochromatosis. Blood 2004;103:4317–21.CrossRefGoogle ScholarPubMed
Papanikolaou, G, Samuels, M E, Ludwig, E H. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 2004;36:77–82.CrossRefGoogle ScholarPubMed
Pietrangelo, A, Caleffi, A, Henrion, J. Juvenile hemochromatosis associated with pathogenic mutations of adult hemochromatosis genes. Gastroenterology 2005;128:470–9.CrossRefGoogle ScholarPubMed
Andrews, N C. Disorders of iron metabolism. N Engl J Med 1999;341:1986–95.CrossRefGoogle ScholarPubMed
Pippard, M J, Callender, S T, Warner, G T, Weatherall, D J. Iron absorption and loading in beta-thalassaemia intermedia. Lancet 1979;2:819–21.CrossRefGoogle ScholarPubMed
Pootrakul, P, Kitcharoen, K, Yansukon, P. The effect of erythroid hyperplasia on iron balance. Blood 1988;71:1124–9.Google ScholarPubMed
Risdon, R A, Flynn, D M, Barry, M. The relation between liver iron concentration and liver damage in transfusional iron overload in thalassaemia and the effect of chelation therapy. Gut 1973;14:421.Google ScholarPubMed
Wolfe, L, Olivieri, N, Sallan, D. Prevention of cardiac disease by subcutaneous deferoxamine in patients with thalassemia major. N Engl J Med 1985;312:1600–3.CrossRefGoogle ScholarPubMed
Zurlo, M G, Stefano, P, Borgna-Pignatti, C. Survival and causes of death in thalassaemia major. Lancet 1989;2:27–30.CrossRefGoogle ScholarPubMed
Jean, G, Terzoli, S, Mauri, R. Cirrhosis associated with multiple transfusions in thalassaemia. Arch Dis Child 1984;59:67–70.CrossRefGoogle ScholarPubMed
Thakerngpol, K, Fucharoen, S, Boonyaphipat, P. Liver injury due to iron overload in thalassemia: histopathologic and ultrastructural studies. Biometals 1996;9:177–83.CrossRefGoogle ScholarPubMed
Low, L C. Growth, puberty and endocrine function in beta-thalassaemia major. J Pediatr Endocrinol Metab 1997;10:175–84.CrossRefGoogle ScholarPubMed
Lombardo, T, Ferro, G, Frontini, V, Percolla, S. High-dose intravenous desferrioxamine (DFO) delivery in four thalassemic patients allergic to subcutaneous DFO administration. Am J Hematol 1996;51:90–2.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Lombardo, T, Tamburino, C, Bartoloni, G. Cardiac iron overload in thalassemic patients: an endomyocardial biopsy study. Ann Hematol 1995;71:135–41.CrossRefGoogle Scholar
Nielsen, P, Fischer, R, Engelhardt, R. Liver iron stores in patients with secondary haemosiderosis under iron chelation therapy with deferoxamine or deferiprone. Br J Haematol 1995;91:827–33.CrossRefGoogle ScholarPubMed
Alexopoulou, E, Stripeli, F, Baras, P. R2 relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. J Magn Reson Imaging 2006;23:163–70.CrossRefGoogle ScholarPubMed
Carneiro, A A, Fernandes, J P, Araujo, D B. Liver iron concentration evaluated by two magnetic methods: magnetic resonance imaging and magnetic susceptometry. Magn Reson Med 2005;54:122–8.CrossRefGoogle ScholarPubMed
Wood, J C, Enriquez, C, Ghugre, N. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460–5.CrossRefGoogle Scholar
St Pierre, T G, Clark, P R, Chua-anusorn, W. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005;105:855–61.CrossRefGoogle ScholarPubMed
Carneiro, A A, Vilela, G R, Fernandes, J B. In vivo tissue characterization using magnetic techniques. Neurol Clin Neurophysiol 2004;2004:85.Google ScholarPubMed
Olivieri, N F, Brittenham, G M. Iron-chelating therapy and the treatment of thalassemia. Blood 1997;89:739–61.Google ScholarPubMed
Brittenham, G M, Griffith, P M, Nienhuis, A W. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med 1994;331:567–73.CrossRefGoogle ScholarPubMed
Gabutti, V, Borgna-Pignatti, C. Clinical manifestations and therapy of transfusional haemosiderosis. Baillieres Clin Haematol 1994;7:919–40.CrossRefGoogle ScholarPubMed
Cabibbo, S, Fidone, C, Garozzo, G. Chronic red blood cell exchange to prevent clinical complications in sickle cell disease. Transfus Apher Sci 2005;32:315–21.CrossRefGoogle ScholarPubMed
Barman Balfour, J A, Foster, R H. Deferiprone: a review of its clinical potential in iron overload in beta-thalassaemia major and other transfusion-dependent diseases. Drugs 1999;58:553–78.CrossRefGoogle ScholarPubMed
Piga, A, Roggero, S, Vinciguerra, T. Deferiprone: new insight. Ann N Y Acad Sci 2005;1054:169–74.CrossRefGoogle ScholarPubMed
Kontoghiorghes, G J, Eracleous, E, Economides, C, Kolnagou, A. Advances in iron overload therapies. prospects for effective use of deferiprone (L1), deferoxamine, the new experimental chelators ICL670, GT56–252, L1NA11 and their combinations. Curr Med Chem 2005;12:2663–81.CrossRefGoogle Scholar
Taher, A, Sheikh-Taha, M, Sharara, A. Safety and effectiveness of 100 mg/kg/day deferiprone in patients with thalassemia major: a two-year study. Acta Haematol 2005;114:146–9.CrossRefGoogle ScholarPubMed
Victor Hoffbrand, A. Deferiprone therapy for transfusional iron overload. Best Pract Res Clin Haematol 2005;18:299–317.CrossRefGoogle ScholarPubMed
Olivieri, N F, Brittenham, G M, Matsui, D. Iron-chelation therapy with oral deferipronein patients with thalassemia major. N Engl J Med 1995;332:918–22.CrossRefGoogle ScholarPubMed
Olivieri, N F, Brittenham, G M, McLaren, C E. Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major. N Engl J Med 1998;339:417–23.CrossRefGoogle ScholarPubMed
Tondury, P, Zimmermann, A, Nielsen, P, Hirt, A. Liver iron and fibrosis during long-term treatment with deferiprone in Swiss thalassaemic patients. Br J Haematol 1998;101:413–15.CrossRefGoogle ScholarPubMed
Wanless, I R, Sweeney, G, Dhillon, A P. Lack of progressive hepatic fibrosis during long-term therapy with deferiprone in subjects with transfusion-dependent beta-thalassemia. Blood 2002;100:1566–9.CrossRefGoogle ScholarPubMed
Dallman, P R, Siimes, M A, Stekel, A. Iron deficiency in infancy and childhood. Am J Clin Nutr 1980;33:86–118.CrossRefGoogle ScholarPubMed
Visapaa, I, Fellman, V, Vesa, J. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 2002;71:863–76.CrossRefGoogle ScholarPubMed
Verloes, A, Lombet, J, Lambert, Y. Tricho-hepato-enteric syndrome: further delineation of a distinct syndrome with neonatal hemochromatosis phenotype, intractable diarrhea, and hair anomalies. Am J Med Genet 1997;68:391–5.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Cottier, H. [A hemochromatosis similar disease in newborn.] Schweiz Med Wochenschr 1957;87:39–43.Google ScholarPubMed
Thaler, M M. Fatal neonatal cirrhosis: entity or end result? A comparative study of 24 cases. Pediatrics 1964;33:721–34.Google ScholarPubMed
Witzleben, C L, Uri, A. Perinatal hemochromatosis: entity or end result?Hum Pathol 1989;20:335–40.CrossRefGoogle ScholarPubMed
Knisely, A S, Mieli-Vergani, G, Whitington, P F. Neonatal hemochromatosis. Gastroenterol Clin North Am 2003;32:877–89, vi–vii.CrossRefGoogle ScholarPubMed
Whitington, P F. Fetal and infantile hemochromatosis. Hepatology 2006;43:654–60.CrossRefGoogle ScholarPubMed
Mostoufizadeh, M, Lack, E E, Gang, D L. Postmortem manifestations of echovirus 11 sepsis in five newborn infants. Hum Pathol 1983;14:818–23.CrossRefGoogle ScholarPubMed
Ventura, K C, Hawkins, H, Smith, M B, Walker, D H. Fatal neonatal echovirus 6 infection: autopsy case report and review of the literature. Mod Pathol 2001;14:85–90.CrossRefGoogle ScholarPubMed
Silver, M M, Beverley, D W, Valberg, L S. Perinatal hemochromatosis. Clinical, morphologic, and quantitative iron studies. Am J Pathol 1987;128:538–54.Google ScholarPubMed
Shneider, B L, Setchell, K D, Whitington, P F. Delta 4-3-oxosteroid 5 beta-reductase deficiency causing neonatal liver failure and hemochromatosis. J Pediatr 1994;124:234–8.CrossRefGoogle ScholarPubMed
Clayton, P T. Delta 4-3-oxosteroid 5 beta-reductase deficiency and neonatal hemochromatosis. J Pediatr 1994;125(5 pt 1):845–6.CrossRefGoogle Scholar
Siafakas, C G, Jonas, M M, Perez-Atayde, A R. Abnormal bile acid metabolism and neonatal hemochromatosis: a subset with poor prognosis. J Pediatr Gastroenterol Nutr 1997;25:321–6.CrossRefGoogle ScholarPubMed
Parizhskaya, M, Reyes, J, Jaffe, R. Hemophagocytic syndrome presenting as acute hepatic failure in two infants: clinical overlap with neonatal hemochromatosis. Pediatr Dev Pathol 1999;2:360–6.CrossRefGoogle ScholarPubMed
Ruchelli, E D, Uri, A, Dimmick, J E. Severe perinatal liver disease and Down syndrome: an apparent relationship. Hum Pathol 1991;22:1274–80.CrossRefGoogle Scholar
Rand, E B, McClenathan, D T, Whitington, P F. Neonatal hemochromatosis: report of successful orthotopic liver transplantation. J Pediatr Gastroenterol Nutr 1992;15:325–9.CrossRefGoogle ScholarPubMed
Hayes, A M, Jaramillo, D, Levy, H L, Knisely, A S. Neonatal hemochromatosis: diagnosis with MR imaging. AJR Am J Roentgenol 1992;159:623–5.CrossRefGoogle ScholarPubMed
Smith, S R, Shneider, B L, Magid, M. Minor salivary gland biopsy in neonatal hemochromatosis. Arch Otolaryngol Head Neck Surg 2004;130:760–3.CrossRefGoogle ScholarPubMed
Morris, S, Akima, S, Dahlstrom, J E. Renal tubular dysgenesis and neonatal hemochromatosis without pulmonary hypoplasia. Pediatr Nephrol 2004;19:341–4.Google ScholarPubMed
Gilmour, S M, Hughes-Benzie, R, Silver, M M, Roberts, E A. Le foie vide: a unique case of neonatal liver failure. J Pediatr Gastroenterol Nutr 1996;23:618–23.CrossRefGoogle ScholarPubMed
Bowen, A 3rd, Sane, S S, Knisely, A S. Patent ductus venosus in neonatal hemochromatosis: US and pathologic findings. Pediatr Radiol 2001;31:B21.Google Scholar
Colletti, R B, Clemmons, J J. Familial neonatal hemochromatosis with survival. J Pediatr Gastroenterol Nutr 1988;7:39–45.CrossRefGoogle ScholarPubMed
Rodrigues, F, Kallas, M, Nash, R. Neonatal hemochromatosis–medical treatment vs. transplantation: the king's experience. Liver Transpl 2005;11:1417–24.CrossRefGoogle ScholarPubMed
Sigurdsson, L, Reyes, J, Kocoshis, S A. Neonatal hemochromatosis: outcomes of pharmacologic and surgical therapies. J Pediatr Gastroenterol Nutr 1998;26:85–9.CrossRefGoogle ScholarPubMed
Flynn, D M, Mohan, N, McKiernan, P. Progress in treatment and outcome for children with neonatal hemochromatosis. Arch Dis Child Fetal Neonatal Ed 2003;88:F124–7.CrossRefGoogle Scholar
Egawa, H, Berquist, W, Garcia-Kennedy, R. Rapid development of hepatocellular siderosis after liver transplantation for neonatal hemochromatosis. Transplantation 1996;62:1511–13.CrossRefGoogle ScholarPubMed
Whitington, P F, Hibbard, J U. High-dose immunoglobulin during pregnancy for recurrent neonatal haemochromatosis. Lancet 2004;364:1690–8.CrossRefGoogle ScholarPubMed
Whitington, P F, Malladi, P. Neonatal hemochromatosis: is it an alloimmune disease?J Pediatr Gastroenterol Nutr 2005;40:544–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Iron Storage Disorders
    • By Alex S. Knisely, M.D., Professor of Pathology, Institute of Liver Studies, King's College Hospital, London, England, Michael R. Narkewicz, M.D., Professor of Pediatrics, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Medical Director, Pediatric Liver Center, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Iron Storage Disorders
    • By Alex S. Knisely, M.D., Professor of Pathology, Institute of Liver Studies, King's College Hospital, London, England, Michael R. Narkewicz, M.D., Professor of Pediatrics, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Medical Director, Pediatric Liver Center, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Iron Storage Disorders
    • By Alex S. Knisely, M.D., Professor of Pathology, Institute of Liver Studies, King's College Hospital, London, England, Michael R. Narkewicz, M.D., Professor of Pediatrics, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Medical Director, Pediatric Liver Center, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.029
Available formats
×