Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T02:55:40.767Z Has data issue: false hasContentIssue false

20 - Drug-Induced Liver Disease

from SECTION III - HEPATITIS AND IMMUNE DISORDERS

Published online by Cambridge University Press:  18 December 2009

Eve A. Roberts M.D., F.R.C.P.C.
Affiliation:
Professor, Department of Paediatrics, Medicine, and Pharmacology, University of Toronto, Toronto, Ontario, Canada; Staff Physician, Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

Drug-induced liver disease is generally regarded as rare in children. Large inpatient [1] and outpatient surveys [2] have generally failed to detect drug hepatotoxicity as a major problem in children, although adverse drug reactions (not necessarily hepatotoxic) are somewhat more frequent in the under-5-year-old group and in children of any age with cancer. A recent study examined deaths from adverse drug reactions in children and found that approximately one sixth of such deaths involved acute liver failure, usually associated with antiepileptic or antineoplastic drugs [3]. Drug hepatotoxicity is now recognized as an important cause of acute liver failure in children as in adults [4]. Why childhood drug hepatotoxicity is otherwise relatively uncommon is not clear. Failure to diagnose and report drug hepatotoxicity in children is a likely explanation. Another important consideration is that most children take relatively few medications, and in particular they rarely take the cardiovascular, antihypertensive, or antidepressant medications commonly associated with hepatotoxicity in adults. Most children have a lean body mass, and most do not use ethanol chronically or smoke cigarettes. Thus, children are usually free of many of the factors predisposing to drug hepatotoxicity in adults. Hepatic drug metabolism in children may be sufficiently different from that in adults to shield against drug hepatotoxicity. Indeed, old age is a risk factor for more severe hepatotoxic reactions, perhaps because the aging liver metabolizes some drugs more slowly. Adult women are somewhat more prone to certain drug hepatotoxicities than men.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mitchell, A A, Lacouture, P G, Sheehan, J E. Adverse drug reactions in children leading to hospital admission. Pediatrics 1988;82:24–9.Google ScholarPubMed
Woods, C G, Rylance, M E, Cullen, R E. Adverse reactions to drugs in children. Br Med J 1987;294:689–90.CrossRefGoogle ScholarPubMed
Clarkson, A, Choonara, I. Surveillance for fatal suspected adverse drug reactions in the UK. Arch Dis Child 2002;87:462–7.CrossRefGoogle ScholarPubMed
Squires, R H Jr., Shneider, B L, Bucuvalas, J. Acute liver failure in children: the first 348 patients in the pediatric acute liver failure study group. J Pediatr 2006;148:652–8.CrossRefGoogle ScholarPubMed
Zimmerman, H J. Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. 1st ed. New York: Appleton-Century-Crofts, 1978.Google Scholar
Farrell, G C. Drug induced liver disease. New York: Churchill Livingstone, 1994.Google Scholar
Kaplowitz, N, DeLeve, L. Drug hepatotoxicity. New York: Marcel Dekker, 2002.Google Scholar
Ingelman-Sundberg, M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 2004;369:89–104.CrossRefGoogle ScholarPubMed
Guengerich, F P. Characterization of human microsomal cytochrome P-450 enzymes. Annu Rev Pharmacol Toxicol 1989;29:241–64.CrossRefGoogle ScholarPubMed
Wrighton, S A, Stevens, J C. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992;22:1–21.CrossRefGoogle ScholarPubMed
Whitlock, J P J. Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 1999;39:103–25.CrossRefGoogle ScholarPubMed
Tirona, R G, Kim, R B. Nuclear receptors and drug disposition gene regulation. J Pharm Sci 2005;94:1169–86.CrossRefGoogle ScholarPubMed
Chen, Y, Kissling, G, Negishi, M. The nuclear receptors constitutive androstane receptor and pregnane X receptor cross-talk with hepatic nuclear factor 4alpha to synergistically activate the human CYP2C9 promoter. J Pharmacol Exp Ther 2005;314:1125–33.CrossRefGoogle ScholarPubMed
Weinshilboum, R. Inheritance and drug response. N Engl J Med 2003;348:529–37.CrossRefGoogle ScholarPubMed
Cascorbi, I. Genetic basis of toxic reactions to drugs and chemicals. Toxicol Lett 2006;162:16–28.CrossRefGoogle ScholarPubMed
Lennard, M S. Genetic polymorphism of sparteine/debrisoquine oxidation: a reappraisal. Pharmacol Toxicol 1990;67:273–83.CrossRefGoogle ScholarPubMed
Cholerton, S, Daly, A K, Idle, J R. The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol Sci 1992;13:434–9.CrossRefGoogle ScholarPubMed
Murray, M. P450 enzymes. Inhibition mechanisms, genetic regulation and effects of liver disease. Clin Pharmacokinet 1992;23:132–46.CrossRefGoogle ScholarPubMed
Butler, M A, Lang, N P, Young, J F. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics 1992;2:116–27.CrossRefGoogle ScholarPubMed
Grant, D M, Moerike, K, Eichelbaum, M. Acetylation pharmacogenetics. The slow acetylator phenotype is caused by decreased or absent arylamine N-acetyltransferase in human liver. J Clin Invest 1990;85:968–72.CrossRefGoogle ScholarPubMed
Blum, M, Grant, D M, McBride, W. Human N-acetyltransferase genes: Isolation, chromosomal localization, and functional expression. DNA Cell Biol 1990;9:193–203.CrossRefGoogle ScholarPubMed
Glauser, T A, Kerremans, A L, Weinshilboum, R M. Human hepatic microsomal thiol methyltransferase. Assay conditions, biochemical properties, and correlation studies. Drug Metab Dispos 1992;20:247–55.Google ScholarPubMed
Burchell, B, Soars, M, Monaghan, G. Drug-mediated toxicity caused by genetic deficiency of UDP-glucuronosyltransferases. Toxicol Lett 2000;112–113:333–40.CrossRefGoogle ScholarPubMed
Stoner, E, Starkman, H, Wellner, D. Biochemical studies of a patient with hereditary hepatorenal tyrosinemia: evidence of a glutathione deficiency. Pediatr Res 1984;18:1332–6.CrossRefGoogle ScholarPubMed
Moldeus, P, Quanguan, J. Importance of the glutathione cycle in drug metabolism. Pharmacol Ther 1987;33:37–40.CrossRefGoogle ScholarPubMed
Reed, D J. Glutathione: Toxicological implications. Annu Rev Pharmacol Toxicol 1990;30:603–31.CrossRefGoogle ScholarPubMed
Oesch, F. Significance of various enzymes in the control of reactive metabolites. Arch Toxicol 1987;60:174–8.CrossRefGoogle ScholarPubMed
Hines, R N, McCarver, D G. The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 2002;300:355–60.CrossRefGoogle ScholarPubMed
Ikeda, T, Altieri, M, Chen, Y-T. Characterization of cytochrome P2−450 (20S) mRNA: association with the P1−450 genomca gene and differential response to the inducers 3-methylcholanthrene and isosafrole. Eur J Biochem 1983;134:13–18.CrossRefGoogle Scholar
Giachelli, C M, Omiecinski, C J. Developmental regulation of cytochrome P-450 genes in the rat. Mol Pharmacol 1987;31:477–84.Google ScholarPubMed
Corada, M, Bortolottie, A, Barzago, M M. Pharmacokinetic profile of theophylline in isolated perfused liver of rabbits at different ages. Development of drug-metabolizing activity during ontogenesis. Drug Metab Dispos 1992;20:826–31.Google ScholarPubMed
Cresteil, T, Beaune, P H, Kremers, P. Immunoquantitation of epoxide hydrolase and cytochrome P-450 isozynes in fetal and adult human liver microsomes. Eur J Biochem 1985;151:345–50.CrossRefGoogle Scholar
Shimada, T, Misono, K S, Gungerich, F P. Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a probable genetic polymorphism in oxidative drug metabolism. Purification and characterization of two similar forms involved in the reaction. J Biol Chem 1986;261:909–21.Google Scholar
Ratanasavanh, D, Beaune, P, Morel, F. Intralobular distribution and quantitation of cytochrome P-450 enzymes in human liver as a function of age. Hepatology 1991;13:1142–51.CrossRefGoogle ScholarPubMed
Treluyer, J M, Gueret, G, Cheron, G. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 1997;7:441–52.CrossRefGoogle ScholarPubMed
Koukouritaki, S B, Manro, J R, Marsh, S A. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 2004;308:965–74.CrossRefGoogle ScholarPubMed
Treluyer, J-M, Jacqz-Aigran, E, Alvarez, F. Expression of CYP2D6 in developing human liver. Eur J Biochem 1991;202:583–8.CrossRefGoogle ScholarPubMed
Sonnier, M, Cresteil, T. Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem 1998;251:893–8.CrossRefGoogle ScholarPubMed
Wrighton, S A, Molowa, D T, Guzelian, P S. Identification of a cytochrome P-450 in human fetal liver related to glucocorticoid-inducible cytochrome P-450HLp in the adult. Biochem Pharmacol 1988;37:3053–5.CrossRefGoogle ScholarPubMed
Wrighton, S A, VandenBranden, M. Isolation and characterization of human fetal liver cytochrome P450HLp2: a third member of the P450III gene family. Arch Biochem Biophys 1989;268:144–51.CrossRefGoogle ScholarPubMed
Lacroix, D, Sonnier, M, Moncion, A. Expression of CYP3A in the human liver – evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 1997;247:625–34.CrossRefGoogle ScholarPubMed
Vyhlidal, C A, Gaedigk, R, Leeder, J S. Nuclear receptor expression in fetal and pediatric liver: correlation with CYP3A expression. Drug Metab Dispos 2006;34:131–7.CrossRefGoogle ScholarPubMed
Johnsrud, E K, Koukouritaki, S B, Divakaran, K. Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther 2003;307:402–7.CrossRefGoogle ScholarPubMed
Aldridge, A, Aranda, J V, Neims, A H. Caffeine metabolism in the newborn. Clin Pharmacol Ther 1979;25:447–53.CrossRefGoogle ScholarPubMed
Pons, G, Carrier, O, Richard, M-O. Developmental changes of caffeine elimination in infancy. Dev Pharamcol Ther 1988;11:258–64.CrossRefGoogle ScholarPubMed
Aranda, J V, Sitar, D S, Parsons, W D. Pharmacokinetic aspects of theophylline in premature newborns. N Engl J Med 1976;295:413–16.CrossRefGoogle ScholarPubMed
Painter, M J, Pippinger, C, MacDonald, H. Phenobarbital and diphenylhydantoin levels in neonates with seizures. J Pediatr 1978;92:315–19.CrossRefGoogle ScholarPubMed
Loughnan, P M, Greenwald, A, Purton, W W. Pharmacokinetic observations of phenytoin disposition in the newborn and young infant. Arch Dis Child 1977;52:302–9.CrossRefGoogle ScholarPubMed
Jaeger-Roman, E, Rating, D, Platzek, T. Development of N-demethylase activity measured with the 13C-aminopyrine breath test. Eur J Pediatr 1982;139:129–34.CrossRefGoogle Scholar
Treluyer, J M, Rey, E, Sonnier, M. Evidence of impaired cisapride metabolism in neonates. Br J Clin Pharmacol 2001;52:419–25.CrossRefGoogle ScholarPubMed
Tateishi, T, Nakura, H, Asoh, M. A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci 1997;61:2567–74.CrossRefGoogle ScholarPubMed
Aranda, J V, Collinge, J M, Zinman, R. Maturation of caffeine elimination in infancy. Arch Dis Child 1979;54:946–9.CrossRefGoogle ScholarPubMed
Lambert, G H, Schoeller, D A, Kotake, A N. The effect of age, gender, and sexual maturationon the caffeine breath test. Dev Pharmacol Ther 1986;9:375–88.CrossRefGoogle ScholarPubMed
Miller, R P, Roberts, R J, Fischer, L F. Acetaminophen elimination kinetics in neonates, children and adults. Clin Pharmacol Ther 1976;19:284–94.CrossRefGoogle Scholar
Ilio, Di C, Boccio, Del G, Casalone, E. Activities of enzymes associated with the metabolism of glutathione in fetal rat liver and placenta. Biol Neonate 1986;49:96–101.CrossRefGoogle Scholar
Langley, S C, Kelly, F J. Differing response of the glutathione system to fasting in neonatal and adult guinea pigs. Biochem Pharmacol 1992;44:1489–94.CrossRefGoogle ScholarPubMed
Hales, B F, Neims, A H. Developmental aspects of glutathione S-transferase B (ligandin) in rat liver. Biochem J 1976;160:231–6.CrossRefGoogle Scholar
Ballatori, N, CLarkson, T W. Developmental changes in the biliary excretion of methylmercury and glutathione. Science 1982;216:61–2.CrossRefGoogle ScholarPubMed
Zoltan, G, Stein, A F, Klaassen, C D. Age-dependent biliary excretion of glutathione-related thiols in rats: role of gamma-glutamyltranspeptidase. Am J Physiol 1987;16:G86–92.Google Scholar
Loeper, J, Descatoire, V, Maurice, M. Cytochromes P-450 in human hepatocyte plasma membrane: Recognition by several autoantibodies. Gastroenterology 1993;104:203–16.CrossRefGoogle ScholarPubMed
Benichou, C. Criteria of drug induced liver disorders: report of an international consensus meeting. J Hepatol 1990;11:272–6.Google ScholarPubMed
Jaeschke, H, Gores, G J, Cederbaum, A I. Mechanisms of hepatotoxicity. Toxicol Sci 2002;65:166–76.CrossRefGoogle ScholarPubMed
James, L P, Farrar, H C, Darville, T L. Elevation of serum interleukin 8 levels in acetaminophen overdose in children and adolescents. Clin Pharmacol Ther 2001;70:280–6.CrossRefGoogle ScholarPubMed
Ju, C, Reilly, T P, Bourdi, M. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 2002;15:1504–13.CrossRefGoogle ScholarPubMed
Aithal, G P, Ramsay, L, Daly, A K. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology 2004;39:1430–40.CrossRefGoogle ScholarPubMed
Makin, A J, Wendon, J, Williams, R. A 7-year experience of severe acetaminophen-induced hepatotoxicity (1987–1993). Gastroenterology 1995;109:1907–16.CrossRefGoogle Scholar
Smilkstein, M J, Knapp, G L, Kulig, K W. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. N Engl J Med 1988;319:1557–62.CrossRefGoogle ScholarPubMed
Harrison, P M, Keays, R, Bray, G P. Improved outcome of paracetamol-induced fulminant hepatic failure by late administration of acetylcysteine. Lancet 1990;335:1572–3.CrossRefGoogle ScholarPubMed
Keays, R, Harrison, P M, Wendon, J A. Intravenous acetylcysteine in paracetamol induced fulminant hepatic failure: a prospective controlled trial. BMJ 1991;303:1026–9.CrossRefGoogle ScholarPubMed
Mutimer, D J, Ayres, R C S, Neuberger, J M. Serious paracetamol poisoning and the results of liver transplantation. Gut 1994;35:809–14.CrossRefGoogle ScholarPubMed
Heubi, J E, Barbacci, M B, Zimmerman, H J. Therapeutic misadventures with acetaminophen: hepatoxicity after multiple doses in children. J Pediatr 1998;132:22–7.CrossRefGoogle ScholarPubMed
Rivera-Penera, T, Gugig, R, Davis, J. Outcome of acetaminophen overdose in pediatric patients and factors contributing to hepatotoxicity. J Pediatr 1997;130:300–4.CrossRefGoogle ScholarPubMed
Anderson, B D, Shepherd, J G, Klein-Schwartz, W. Outcome of acetaminophen overdose. J Pediatr 1998;132:1080.Google ScholarPubMed
Pershad, J, Nichols, M, King, W. “The silent killer”: chronic acetaminophen toxicity in a toddler. Pediatr Emerg Care 1999;15:43–6.CrossRefGoogle Scholar
Shaoul, R, Novikov, J, Maor, I. Silent acetaminophen-induced hepatotoxicity in febrile children: does this entity exist?Acta Paediatr 2004;93:618–22.CrossRefGoogle ScholarPubMed
Roberts, D W, Bucci, T J, Benson, R W. Immunohistochemical localization and quantification of the 3-(cystein-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity. Am J Pathol 1991;138:359–71.Google ScholarPubMed
Webster, P A, Roberts, D W, Benson, R W. Acetaminophen toxicity in children: diagnostic confirmation using a specific antigenic biomarker. J Clin Pharmacol 1996;36:397–402.CrossRefGoogle ScholarPubMed
Mitchell, J R, Jollow, D J, Potter, W Z. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 1973;187:185–94.Google ScholarPubMed
Jollow, D J, Mitchell, J R, Potter, W Z. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 1973;187:195–202.Google ScholarPubMed
Potter, W Z, Davis, D C, Mitchell, J R. Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther 1973;187:203–10.Google Scholar
Mitchell, J R, Jollow, D J, Potter, W Z. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 1973;187:211–17.Google ScholarPubMed
Thummel, K E, Lee, C A, Kunze, K L. Oxidation of acetaminophen to N-acetyl-p-aminobenzoquinone imine by human CYP3A4. Biochem Pharmacol 1993;45:1563–9.CrossRefGoogle ScholarPubMed
Miner, D J, Kissinger, P T. Evidence for the involvement of Nacetyl-p-quinoneimine in acetaminophen metabolism. Biochem Pharmacol 1979;28:3285–90.CrossRefGoogle ScholarPubMed
Jaeschke, H, Knight, T R, Bajt, M L. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 2003;144:279–88.CrossRefGoogle ScholarPubMed
Goldring, C E, Kitteringham, N R, Elsby, R. Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology 2004;39:1267–76.CrossRefGoogle ScholarPubMed
Corcoran, G B, Racz, W J, Smith, C V. Effects of N-acetylcysteine on acetaminophen covalent binding and hepatic necrosis in mice. J Pharmacol Exp Ther 1985;232:864–72.Google ScholarPubMed
Harrison, P M, Wendon, J A, Gimson, A E S. Improvement by acetylcysteine of hemodynamics and oxygen transport in fulminant hepatic failure. New Engl J Med 1991;324:1852–7.CrossRefGoogle ScholarPubMed
Peterson, R G, Rumack, B H. Age as a variable in acetaminophen overdose. Arch Intern Med 1981;141:390–3.CrossRefGoogle ScholarPubMed
Meredith, T J, Newman, B, Goulding, R. Paracetamol poisoning in children. Br Med J 1978;2:478–9.CrossRefGoogle ScholarPubMed
Rumack, B H. Acetaminophen overdose in young children. Treatment and effects of alcohol and other additional ingestants in 417 cases. Am J Dis Child 1984;138:428–33.CrossRefGoogle ScholarPubMed
Peterson, R G, Rumack, B H. Pharmacokinetics of acetaminophen in children. Pediatrics 1978;62:877–9.Google ScholarPubMed
Lederman, S, Fysh, W J, Tredger, M. Neonatal paracetamol poisoning: treatment by exchange transfusion. Arch Dis Child 1983;58:631–3.CrossRefGoogle ScholarPubMed
Roberts, I, Robinson, M J, Mughal, M Z. Paracetamol metabolites in the neonate following maternal overdose. Br J Clin Pharmacol 1984;18:201–6.CrossRefGoogle ScholarPubMed
Rollins, D E, Bahr, C, Glaumann, H. Acetaminophen: Potentially toxic metabolites formed by human fetal and adult liver microsomes and isolated fetal liver cells. Science 1979;205:1414–16.CrossRefGoogle Scholar
Arena, J M, Rourk, M H Jr. , Sibrack CD. Acetaminophen: Report of an unusual poisoning. Pediatrics 1978;61:68–72.Google ScholarPubMed
Lieh-Lai, M W, Sarnaik, A P, Newton, J F. Metabolism and pharmacokinetics of acetaminophen in a severely poisoned young child. J Pediatr 1984;105:125–8.CrossRefGoogle Scholar
Hickson, G B, Altemeier, W A, Martin, E D. Parental administration of chemical agents: a cause of apparent life threatening events. J Pediatr 1989;83:772–6.Google ScholarPubMed
Tonge, R P, Kelly, E J, Bruschi, S A. Role of CYP1A2 in the hepatotoxicity of acetaminophen: investigations using Cyp1a2 null mice. Toxicol Appl Pharmacol 1998;153:102–8.CrossRefGoogle ScholarPubMed
Seeff, L B, Cuccherini, B A, Zimmerman, H J. Acetaminophen hepatotoxicity in alcoholics. A therapeutic misadventure. Ann Intern Med 1986;104:399–404.CrossRefGoogle ScholarPubMed
Raucy, J L, Lasker, J M, Lieber, C S. Acetaminophen activation by human liver cytochromes P450IIE1 and P4501A2. Arch Biochem Biophys 1989;271:270–83.CrossRefGoogle Scholar
Sarich, T, Kalhorn, T, Magee, S. The effect of omeprazole pretreatment on acetaminophen metabolism in rapid and slow metabolizers of S-mephenytoin. Clin Pharmacol Ther 1997;62:21–8.CrossRefGoogle ScholarPubMed
Brackett, C C, Bloch, J D. Phenytoin as a possible cause of acetaminophen hepatotoxicity: case report and review of the literature. Pharmacotherapy 2000;20:229–33.CrossRefGoogle ScholarPubMed
Zwiener, R J, Kurt, T L, Day, L C. Potentiation of acetaminophen hepatotoxicity in a child with mercury poisoning. J Pediatr Gastroenterol Nutr 1994;19:242–5.CrossRefGoogle Scholar
Shriner, K, Goetz, M B. Severe hepatotoxicity in a patient receiving both acetaminophen and zidovudine. Am J Med 1992;93:94–6.CrossRefGoogle Scholar
Suchin, S M, Wolf, D C, Lee, Y. Potentiation of acetaminophen hepatotoxicity by phenytoin, leading to liver transplantation. Dig Dis Sci 2005;50:1836–8.CrossRefGoogle ScholarPubMed
Kostrubsky, S E, Sinclair, J F, Strom, S C. Phenobarbital and phenytoin increased acetaminophen hepatotoxicity due to inhibition of UDP-glucuronosyltransferases in cultured human hepatocytes. Toxicol Sci 2005;87:146–55.CrossRefGoogle ScholarPubMed
Mutlib, A E, Goosen, T C, Bauman, J N. Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol 2006;19:701–9.CrossRefGoogle ScholarPubMed
Morais, S M F, Wells, P G. Deficiency in bilirubin UDP-glucuronyl transferase as a genetic determinant of acetaminophen toxicity. J Pharmacol Exp Ther 1988;247:323–31.Google ScholarPubMed
Bruun, L S, Elkjaer, S, Bitsch-Larsen, D. Hepatic failure in a child after acetaminophen and sevoflurane exposure. Anesth Analg 2001;92:1446–8.CrossRefGoogle Scholar
Poucell, S, Ireton, J, Valencia-Mayoral, P. Amiodarone-associated phospholipidosis of the liver. Light, immunohistochemical and electron microscopic studies. Gastroenterology 1984;86:926–36.Google ScholarPubMed
Shepherd, N A, Dawson, A M, Crocker, P R. Granular cells as a marker of early amiodarone hepatotoxicity: a pathological and analytical study. J Clin Pathol 1987;40:418–23.CrossRefGoogle ScholarPubMed
Lewis, J H, Ranard, R C, Caruso, A. Amiodarone hepatotoxicity: prevalence and clinicopatholic correlations among 104 patients. Hepatology 1989;9:679–85.CrossRefGoogle Scholar
Somani, P, Bandyopadhyay, S, Klaunig, J E. Amiodarone- and desethylamiodarone-induced myelinoid inclusion bodies and toxicity in cultured rat hepatocytes. Hepatology 1990;11:81–92.CrossRefGoogle ScholarPubMed
Geneve, J, Zafrani, E S, Dhumeaux, D. Amiodarone induced liver disease. J Hepatol 1989;9:130–3.CrossRefGoogle ScholarPubMed
Chang, C C, Petrelli, M, Tomashefski, J F Jr. , et al. Severe intrahepatic cholestasis caused by amiodarone toxicity after withdrawal of the drug: a case report and review of the literature. Arch Pathol Lab Med 1999;123:251–6.Google ScholarPubMed
Yagupsky, P, Gazala, E, Sofer, S. Fatal hepatic failure and encephalopathy associated with amiodarone therapy. J Pediatr 1985;107:967–70.CrossRefGoogle ScholarPubMed
Pollak, P T, Sharma, A D, Carruthers, S G. Relation of amiodarone hepatic and pulmonary toxicity to serum drug concentrations and superoxide dismutase activity. Am J Cardiol 1990;65:1185–91.CrossRefGoogle ScholarPubMed
Bravo, A E, Drewe, J, Schlienger, R G. Hepatotoxicity during rapid intravenous loading with amiodarone: description of three cases and review of the literature. Crit Care Med 2005;33:128–34; discussion 245–6.CrossRefGoogle Scholar
Menard, D B, Gisselbrecht, C, Marty, H. Antineoplastic agents and the liver. Gastroenterology 1980;78:142–64.Google ScholarPubMed
Perry, M C. Hepatotoxicity of chemotherapeutic agents. Sem Oncol 1982;9:65–74.Google ScholarPubMed
Sznol, M, Ohnuma, T, Holland, J F. Hepatic toxicity of drugs used for hematologic neoplasia. Sem Liver Dis 1987;7:237–56.CrossRefGoogle ScholarPubMed
Shanholtz, C. Acute life-threatening toxicity of cancer treatment. Crit Care Clin 2001;17:483–502.CrossRefGoogle ScholarPubMed
Pratibha, R, Sameer, R, Rataboli, P V. Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats. Eur J Pharmacol 2006;532:290–3.CrossRefGoogle ScholarPubMed
Lu, Y, Cederbaum, A I. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci 2006;89:515–23.CrossRefGoogle ScholarPubMed
Honjo, I, Suou, T, Hirayama, C. Hepatotoxicity of cyclophosphamide in man: pharmacokinetic analysis. Res Commun Chem Pathol Pharmacol 1988;61:149–65.Google ScholarPubMed
Berkovitch, M, Matsui, D, Zipursky, A. Hepatotoxicity of 6-mercaptopurine in childhood acute lymphocytic leukemia: pharmacokinetic characteristics. Med Pediatr Oncol 1996;26:85–9.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Hazar, V, Kutluk, T, Akyuz, C. Veno-occlusive disease-like hepatotoxicity in two children receiving chemotherapy for Wilms' tumor and clear cell sarcoma of kidney. Pediatr Hematol Oncol 1998;15:85–9.CrossRefGoogle ScholarPubMed
Ludwig, R, Weirich, A, Abel, U. Hepatotoxicity in patients treated according to the nephroblastoma trial and study SIOP-9/GPOH. Med Pediatr Oncol 1999;33:462–9.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Flentje, M, Weirich, A, Potter, R. Hepatotoxicity in irradiated nephroblastoma patients during postoperative treatment according to SIOP9/GPOH. Radiother Oncol 1994;31:222–8.CrossRefGoogle ScholarPubMed
Bisogno, G, Kraker, J, Weirich, A. Veno-occlusive disease of the liver in children treated for Wilms tumor. Med Pediatr Oncol 1997;29:245–51.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Topley, J, Benson, J, Squier, M V. Hepatotoxicity in the treatment of acute lymphoblastic leukemia. Med Pediatr Oncol 1979;7:393–9.CrossRefGoogle Scholar
Pratt, C B, Johnson, W W. Duration and severity of fatty metamorphosis of the liver following L-asparaginase therapy. Cancer 1971;28:361–4.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Sahoo, S, Hart, J. Histopathological features of L-asparaginase-induced liver disease. Semin Liver Dis 2003;23:295–9.Google ScholarPubMed
Hruban, R H, Sternberg, S S, Meyers, P. Fatal thrombocytopenia and liver failure associated with carboplatin therapy. Cancer Invest 1991;9:263–8.CrossRefGoogle ScholarPubMed
Penta, J S, Hoff, D D, Muggia, F M. Hepatotoxicity of combination chemotherapy for acute myelocytic leukemia. Ann Intern Med 1977;87:247–8.CrossRefGoogle ScholarPubMed
Rollins, B J. Hepatic veno-occlusive disease. Am J Med 1986;81:297–306.CrossRefGoogle ScholarPubMed
D'Antiga, L, Baker, A, Pritchard, J. Veno-occlusive disease with multi-organ involvement following actinomycin-D. Eur J Cancer 2001;37:1141–8.CrossRefGoogle ScholarPubMed
Barker, C C, Anderson, R A, Sauve, R S. GI complications in pediatric patients post-BMT. Bone Marrow Transplant 2005;36:51–8.CrossRefGoogle ScholarPubMed
Sulis, M L, Bessmertny, O, Granowetter, L. Veno-occlusive disease in pediatric patients receiving actinomycin D and vincristine only for the treatment of rhabdomyosarcoma. J Pediatr Hematol Oncol 2004;26:843–6.Google ScholarPubMed
Elli, M, Pinarli, F G, Dagdemir, A. Veno-occlusive disease of the liver in a child after chemotherapy for brain tumor. Pediatr Blood Cancer 2006;46:521–3.CrossRefGoogle Scholar
Berk, P D, Popper, H, Krueger, G F. Veno-occlusive disease of the liver after allogeneic bone marrow transplantation. Possible association with graft-versus-host disease. Ann Intern Med 1979;90:158–64.CrossRefGoogle ScholarPubMed
Beschorner, W E, Pino, J, Boitnott, J K. Pathology of the liver with bone marrow transplantation. Effects of busulfan, carmustine, acute graft-versus-host disease, and cytomegalovirus infection. Am J Pathol 1980;99:369–86.Google ScholarPubMed
Fajardo, L F, Colby, T V. Pathogenesis of veno-occlusive disease after radiation. Arch Pathol Lab Med 1980;104:584–8.Google ScholarPubMed
McDonald, G B, Sharma, P, Matthews, D E. The clinical course of 53 patients with veno-occlusive disease of the liver after marrow transplantation. Transplantation 1985;39:603–8.CrossRefGoogle Scholar
Essell, J H, Thompson, J M, Harman, G S. Marked increase in veno-occlusive disease of the liver associated with methotrexate use for graft-versus-host disease prophylaxis in patients receiving busulfan/cyclophosphamide. Blood 1992;79:2784–8.Google ScholarPubMed
McDonald, G B, Slattery, J T, Bouvier, M E. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003;101:2043–8.CrossRefGoogle ScholarPubMed
El-Sayed, M H, El-Haddad, A, Fahmy, O A. Liver disease is a major cause of mortality following allogeneic bone-marrow transplantation. Eur J Gastroenterol Hepatol 2004;16:1347–54.CrossRefGoogle ScholarPubMed
Srivastava, A, Poonkuzhali, B, Shaji, R V. Glutathione Stransferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood 2004;104:1574–7.CrossRefGoogle Scholar
Stoneham, S, Lennard, L, Coen, P. Veno-occlusive disease in patients receiving thiopurines during maintenance therapy for childhood acute lymphoblastic leukaemia. Br J Haematol 2003;123:100–2.CrossRefGoogle ScholarPubMed
Reiss, U, Cowan, M, McMillan, A. Hepatic venoocclusive disease in blood and bone marrow transplantation in children and young adults: incidence, risk factors, and outcome in a cohort of 241 patients. J Pediatr Hematol Oncol 2002;24:746–50.CrossRefGoogle Scholar
Ravikumara, M, Hill, F G, Wilson, D C. 6-Thioguanine-related chronic hepatotoxicity and variceal haemorrhage in children treated for acute lymphoblastic leukaemia-a dual-centre experience. J Pediatr Gastroenterol Nutr 2006;42:535–8.CrossRefGoogle ScholarPubMed
Corbacioglu, S, Greil, J, Peters, C. Defibrotide in the treatment of children with veno-occlusive disease (VOD): a retrospective multicentre study demonstrates therapeutic efficacy upon early intervention. Bone Marrow Transplant 2004;33:189–95.CrossRefGoogle ScholarPubMed
Shin-Nakai, N, Ishida, H, Yoshihara, T. Control of hepatic veno-occlusive disease with an antithrombin-III concentrate-based therapy. Pediatr Int 2006;48:85–7.CrossRefGoogle ScholarPubMed
Ringden, O, Remberger, M, Lehmann, S. N-acetylcysteine for hepatic veno-occlusive disease after allogeneic stem cell transplantation. Bone Marrow Transplant 2000;25:993–6.CrossRefGoogle ScholarPubMed
Shulman, H M, Gown, A M, Nugent, D J. Hepatic veno-occlusive disease after bone marrow transplantation. Immunohistochemical identification of the material within occluded central venules. Am J Pathol 1987;127:549–58.Google ScholarPubMed
Shulman, H M, Fisher, L B, Schoch, H G. Veno-occlusive disease pf the liver after marrow transplantation: histological correlates of clinical signs and symptoms. Hepatology 1994;19:1171–81.CrossRefGoogle Scholar
DeLeve, L D. Dacarbazine toxicity in murine liver cells: a model of hepatic endothelial injury and glutathione defense. J Pharmacol Exp Ther 1994;268:1261–70.Google ScholarPubMed
DeLeve, L D. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 1996;24:830–7.CrossRefGoogle ScholarPubMed
DeLeve, L D, McCuskey, R S, Wang, X. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology 1999;29:1779–91.CrossRefGoogle ScholarPubMed
Wang, X, Kanel, G C, DeLeve, L D. Support of sinusoidal endothelial cell glutathione prevents hepatic veno-occlusive disease in the rat. Hepatology 2000;31:428–34.CrossRefGoogle ScholarPubMed
DeLeve, L D, Wang, X, Kanel, G C. Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome. Hepatology 2003;38:900–8.CrossRefGoogle ScholarPubMed
Iguchi, A, Kobayashi, R, Yoshida, M. Vascular endothelial growth factor (VEGF) is one of the cytokines causative and predictive of hepatic veno-occlusive disease (VOD) in stem cell transplantation. Bone Marrow Transplant 2001;27:1173–80.CrossRefGoogle Scholar
Geller, S A, Dubinsky, M C, Poordad, F F. Early hepatic nodular hyperplasia and submicroscopic fibrosis associated with 6-thioguanine therapy in inflammatory bowel disease. Am J Surg Pathol 2004;28:1204–11.CrossRefGoogle ScholarPubMed
Benson, G D. Hepatotoxicity following the therapeutic use of antipyretic analgesics. Am J Med 1983;75:85–93.CrossRefGoogle ScholarPubMed
Freeland, G R, Northington, R S, Hedrich, D A. Hepatic safety of two analgesics used over the counter: ibuprofen and aspirin. Clin Pharmacol Ther 1988;43:473–9.CrossRefGoogle ScholarPubMed
Parke, D V. Activation mechanisms to chemical toxicity. Arch Toxicol 1987;60:5–15.CrossRefGoogle ScholarPubMed
Chen, T C, Ng, K F, Jeng, L B. Aspirin-related hepatotoxicity in a child after liver transplant. Dig Dis Sci 2001;46:486–8.CrossRefGoogle Scholar
Doughty, R, Giesecke, L, Athreya, B. Salicylate therapy in juvenile rheumatoid arthritis. Am J Dis Child 1980;134:461–3.CrossRefGoogle ScholarPubMed
Barron, K S, Person, D A, Brewer, E J. The toxicity of non-steroidal anti-inflammatory drugs in juvenile rheumatoid arthritis. J Rheumatol 1982;9:149–55.Google Scholar
Hamdan, J A, Manasra, K, Ahmed, M. Salicylate-induced hepatitis in rheumatic fever. Am J Dis Child 1985;139:453–5.Google ScholarPubMed
Ulshen, M H, Grand, R J, Crain, J D. Hepatotoxicity with encephalopathy associated with aspirin therapy in rheumatoid arthritis. J Pediatr 1978;93:1034–7.CrossRefGoogle Scholar
Petty, B G, Zahka, K G, Bernstein, M T. Aspirin hepatitis associated with encephalopathy. J Pediatr 1978;93:881–2.CrossRefGoogle ScholarPubMed
DePinho, R A, Goldberg, C S, Lefkowitch, J H. Azathioprine and the liver. Evidence favoring idiosyncratic, mixed cholestatic-hepatocellular injury in humans. Gastroenterology 1984;86:162–5.Google ScholarPubMed
Jeurissen, M E, Boerbooms, A M, Putte, L B. Azathioprine induced fever, chills, rash, and hepatotoxicity in rheumatoid arthritis. Ann Rheum Dis 1990;49:25–7.CrossRefGoogle ScholarPubMed
Sterneck, M, Wiesner, R, Ascher, N. Azathioprine hepatotoxicity after liver transplantation. Hepatology 1991;14:806–10.CrossRefGoogle ScholarPubMed
Duvoux, C, Kracht, M, Lang, P. Hyperplasie nodulaire régénérative du foie associée à la prise d'azathioprine. Gastroenterol Clin Biol 1991;15:968–73.Google Scholar
Seiderer, J, Zech, C J, Diebold, J. Nodular regenerative hyperplasia: a reversible entity associated with azathioprine therapy. Eur J Gastroenterol Hepatol 2006;18:553–5.CrossRefGoogle ScholarPubMed
Lennard, L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992;43:329–39.CrossRefGoogle ScholarPubMed
Fraser, A G, Orchard, T R, Robinson, E M. Long-term risk of malignancy after treatment of inflammatory bowel disease with azathioprine. Aliment Pharmacol Ther 2002;16:1225–32.CrossRefGoogle ScholarPubMed
Navarro, J T, Ribera, J M, Mate, J L. Hepatosplenic T-gammadelta lymphoma in a patient with Crohn's disease treated with azathioprine. Leuk Lymphoma 2003;44:531–3.CrossRefGoogle Scholar
Mitchell, M C, Boitnott, J K, Arregui, A. Granulomatous hepatitis associated with carbamazepine therapy. Am J Med 1981;71:733–5.CrossRefGoogle ScholarPubMed
Williams, S J, Ruppin, D C, Grierson, J M. Carbamazepine hepatitis: the clinicopathological spectrum. J Gastroenterol Hepatol 1986;1:159–68.CrossRefGoogle Scholar
Ramos, A M, Gayotto, L C, Clemente, C M. Reversible vanishing bile duct syndrome induced by carbamazepine. Eur J Gastroenterol Hepatol 2002;14:1019–22.CrossRefGoogle ScholarPubMed
Lewis, I J, Rosenbloom, L. Glandular fever-like syndrome, pulmonary eosinophilia and asthma associated with carbamazepine. Postgrad Med J 1982;58:100–1.CrossRefGoogle ScholarPubMed
Brain, C, MacArdle, B, Levin, S. Idiosyncratic reactions to carbamazepine mimicking viral infection in children. Br Med J 1984;289:354.CrossRefGoogle ScholarPubMed
Shear, N H, Spielberg, S P. Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk. J Clin Invest 1988;82:1826–32.CrossRefGoogle Scholar
Zucker, P, Daum, F, Cohen, M I. Fatal carbamazepine hepatitis. J Pediatr 1977;91:667–8.CrossRefGoogle ScholarPubMed
Smith, D W, Cullity, G J, Silberstein, E P. Fatal hepatic necrosis associated with multiple anticonvulsant therapy. Aust N Z J Med 1988;18:575–81.CrossRefGoogle ScholarPubMed
Hadzic, N, Portmann, B, Davies, E T. Acute liver failure induced by carbamazepine. Arch Dis Child 1990;65:315–17.CrossRefGoogle ScholarPubMed
Morales-Diaz, M, Pinilla-Roa, E, Ruiz, I. Suspected carbamazepine-induced hepatotoxicity. Pharmacotherapy 1999;19:252–5.CrossRefGoogle ScholarPubMed
Sierra, N M, Garcia, B, Marco, J. Cross hypersensitivity syndrome between phenytoin and carbamazepine. Pharm World Sci 2005;27:170–4.CrossRefGoogle ScholarPubMed
Perino, L E, Warren, G H, Levine, J S. Cocaine-induced hepatotoxicity in humans. Gastroenterology 1987;93:176–80.CrossRefGoogle ScholarPubMed
Wanless, I R, Dore, S, Gopinath, G. Histopathology of cocaine hepatotoxicity. Report of four cases. Gastroenterology 1990;98:497–501.CrossRefGoogle Scholar
Gottfried, M R, Kloss, M W, Graham, D. Ultrastructure of experimental cocaine hepatotoxicity. Hepatology 1986;6:299–304.CrossRefGoogle ScholarPubMed
Boelsterli, U A, Goldlin, C. Biomechanisms of cocaine-induced hepatocyte injury mediated by the formation of reactive metabolites. Arch Toxicol 1991;65:351–60.CrossRefGoogle ScholarPubMed
Pellinen, P, Honkakoshi, P, Stenback, F. Cocaine N-demethylation and the metabolism-related hepatotoxicity can be prevented by cytochrome P450 3A inhibitors. Eur J Pharmacol 1994;270:35–43.Google ScholarPubMed
Jover, R, Ponsoda, X, Gomez-Lechon, M J. Potentiation of cocaine hepatotoxicity by ethanol in human hepatocytes. Toxicol Appl Pharmacol 1991;107:526–34.CrossRefGoogle ScholarPubMed
Ponsoda, X, Jover, R, Castell, J V. Potentiation of cocaine hepatotoxicity in human hepatocytes by ethanol. Toxicol In Vitro 1992;6:155–8.CrossRefGoogle ScholarPubMed
Labib, R, Turkall, R, Abdel-Rahman, M S. Endotoxin potentiates cocaine-mediated hepatotoxicity by nitric oxide and reactive oxygen species. Int J Toxicol 2003;22:305–16.CrossRefGoogle ScholarPubMed
Kronbach, T, Fischer, V, Meyer, U A. Cyclosporine metabolism in human liver: Identification of a cytochrome P-450 III gene family as the major cyclosporine-metabolizing enzyme explains interaction of cyclosporine with other drugs. Clin Pharmacol Ther 1988;43:630–5.CrossRefGoogle Scholar
Combalbert, J, Fabre, I, Fabre, G. Metbolism of cyclosporin A IV. Purification and identification of the rifampin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of the P450IIIA gene subfamily. Drug Metab Dispos 1989;17:197–207.Google Scholar
Kassianides, C, Nussenblatt, R, Palestine, A G. Liver injury from cyclosporine A. Dig Dis Sci 1990;35:693–7.CrossRefGoogle ScholarPubMed
Stone, B G, Udani, M, Sanghvi, A. Cyclosporin A-induced cholestasis. The mechanism in a rat model. Gastroenterology 1987;93:344–51.CrossRefGoogle Scholar
Kuhongviriyapan, V, Stacey, N H. Inhibition of taurocholate transport by cyclosporin A in cultured rat hepatocytes. J Pharmacol Exp Ther 1988;247:685–9.Google Scholar
Stieger, B, Fattinger, K, Madon, J. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000;118:422–30.CrossRefGoogle ScholarPubMed
Bramow, S, Ott, P, Nielsen, Thomsen F. Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (Rapamycin). Pharmacol Toxicol 2001;89:133–9.CrossRefGoogle Scholar
Yasumiba, S, Tazuma, S, Ochi, H. Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats. Biochem J 2001;354:591–6.CrossRefGoogle ScholarPubMed
Freeman, D J, Martele, R, Carruthers, S G. Cyclosporin-erythromycin interaction in normal subjects. Br J Clin Pharmacol 1987;23:776–8.Google ScholarPubMed
Henry, J A, Jeffreys, K J, Dawling, S. Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet 1992;340:384–7.CrossRefGoogle Scholar
Ellis, A J, Wendon, J A, Portmann, B. Acute liver damage and ecstasy ingestion. Gut 1996;38:454–8.CrossRefGoogle ScholarPubMed
Brauer, R B, Heidecke, C D, Nathrath, W. Liver transplantation for the treatment of fulminant hepatic failure induced by the ingestion of ecstasy. Transpl Int 1997;10:229–33.CrossRefGoogle ScholarPubMed
Andreu, V, Mas, A, Bruguera, M. Ecstasy: a common cause of severe acute hepatotoxicity. J Hepatol 1998;29:394–7.CrossRefGoogle ScholarPubMed
Greene, S L, Dargan, P I, O'Connor, N. Multiple toxicity from 3,4-methylenedioxymethamphetamine (“ecstasy”). Am J Emerg Med 2003;21:121–4.CrossRefGoogle Scholar
Smith, I D, Simpson, K J, Garden, O J. Non-paracetamol drug-induced fulminant hepatic failure among adults in Scotland. Eur J Gastroenterol Hepatol 2005;17:161–7.CrossRefGoogle ScholarPubMed
Ramamoorthy, Y, Yu, A-M, Suh, N. Reduced +/–3,4-methylenedioxymethampetamine (“Ecstasy”) metabolism with cytochrome P450 2D6 inhibitors and pharmacogenetic variants in vitro. Biochem Pharmacol 2002;63:2111–19.CrossRefGoogle Scholar
Heydari, A, Yeo, K R, Lennard, M S. Mechanism-based inactivation of CYP2D6 by methylenedioxymethamphetamine. Drug Metab Dispos 2004;32:1213–17.CrossRefGoogle ScholarPubMed
Zafrani, E S, Ishak, K G, Rudzki, C. Cholestatic and hepatocellular injury associated with erythromycin esters. Report of nine cases. Dig Dis Sci 1979;24:385–96.CrossRefGoogle ScholarPubMed
Keeffe, E B, Reis, T C, Berland, J E. Hepatotoxicity to both erythromycin estolate and erythromycin ethylsuccinate. Dig Dis Sci 1982;27:701–4.CrossRefGoogle ScholarPubMed
Phillips, K G. Hepatotoxicity of erythromycin ethylsuccinate in a child. Can Med Assoc J 1983;129:411–12.Google Scholar
Funck-Brentano, C, Pessayre, D, Benhamou, J P. Hépatites dues a divers dérives de l'érythromycine. Clin Biol (Paris) 1983;7:362–9.Google Scholar
Diehl, A M, Latham, P, Boitnott, J K. Cholestatic hepatitis from erythromycin ethylsuccinate. Am J Med 1984;76:931–4.CrossRefGoogle ScholarPubMed
Principi, N, Esposito, S. Comparative tolerability of erythromy- cin and newer macrolide antibacterials in paediatric patients. Drug Saf 1999;20:25–41.CrossRefGoogle Scholar
Villa, P, Begue, J M, Guillouzo, A. Erythromycin toxicity in primary cultures of rat hepatocytes. Xenobiotica 1985;15:767–73.CrossRefGoogle ScholarPubMed
Sorensen, E M B, Acosta, A. Erythromycin toxicity in primary cultures of rat hepatocytes. Toxicol Lett 1985;27:73–82.CrossRefGoogle ScholarPubMed
Gaeta, G B, Utili, R, Adinolfi, L E. Characterization of the effects of erythromycin estolate and erythromycin base on the excretory function of the isolated rat liver. Toxicol Appl Pharmacol 1985;80:185–92.CrossRefGoogle ScholarPubMed
Giannattasio, A, D'Ambrosi, M, Volpicelli, M. Steroid therapy for a case of severe drug-induced cholestasis. Ann Pharmacother 2006;40:1196–9.CrossRefGoogle ScholarPubMed
Brown, B A, Wallace, R J, Griffith, D E. Clarithromycin-induced hepatotoxicity. Clin Infect Dis 1995;20:1073–4.CrossRefGoogle ScholarPubMed
Fox, J C, Szyjkowski, R S, Sanderson, S O. Progressive cholestatic liver disease associated with clarithromycin treatment. J Clin Pharmacol 2002;42:676–80.CrossRefGoogle ScholarPubMed
Clay, K D, Hanson, J S, Pope, S D. Brief communication: severe hepatotoxicity of telithromycin: three case reports and literature review. Ann Intern Med 2006;144:415–20.CrossRefGoogle ScholarPubMed
Pai, M P, Graci, D M, Amsden, G W. Macrolide drug interactions: an update. Ann Pharmacother 2000;34:495–513.CrossRefGoogle ScholarPubMed
Polasek, T M, Miners, J O. Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate. Eur J Clin Pharmacol 2006;62:203–8.CrossRefGoogle ScholarPubMed
Schreiber, A J, Simon, F R. Estrogen-induced cholestasis: clues to pathogenesis and treatment. Hepatology 1983;3:607–13.CrossRefGoogle ScholarPubMed
Lewis, J H, Tice, H L, Zimmerman, H J. Budd-Chiari syndrome associated with oral contraceptive steroids. Review of treatment of 47 cases. Dig Dis Sci 1983;28:673–83.CrossRefGoogle ScholarPubMed
Lockhat, D, Katz, S S, Lisbona, R. Oral contraceptives and liver disease. Can Med Assoc J 1981;124:993–9.Google ScholarPubMed
Valla, D, Le, M G, Poynard, T. Risk of hepatic vein thrombosis in relation to recent use of oral contraceptives. A case control study. Gastroenterology 1986;90:807–11.CrossRefGoogle ScholarPubMed
Barnet, B, Joffe, A. Hepatic vein thrombosis in a teenager: a case report. J Adolesc Health 1991;12:60–2.CrossRefGoogle Scholar
Edmonson, H A, Henderson, B, Benton, B. Liver cell adenomas associated with the use of oral contraceptives. N Engl J Med 1976;294:470–2.CrossRefGoogle Scholar
Neuberger, J, Nunnerley, H B, Davis, M. Oral-contraceptive-associated liver tumours: Occurrence of malignancy and difficulties in diagnosis. Lancet 1980;i:273–6.CrossRefGoogle Scholar
Tesluk, H, Lawrie, H. Hepatocellular adenoma. Its transformation to carcinoma in a user of oral contraceptives. Arch Pathol Lab Med 1981;105:296–9.Google Scholar
Pellock, J M. Felbamate. Epilepsia 1999;40 Suppl 5:S57–62.CrossRefGoogle ScholarPubMed
Kapetanovic, I M, Torchin, C D, Thompson, C D. Potentially reactive cyclic carbamate metabolite of the antiepileptic drug felbamate produced by human liver tissue in vitro. Drug Metab Dispos 1998;26:1089–95.Google ScholarPubMed
Popovic, M, Nierkens, S, Pieters, R. Investigating the role of 2-phenylpropenal in felbamate-induced idiosyncratic drug reactions. Chem Res Toxicol 2004;17:1568–76.CrossRefGoogle ScholarPubMed
Dieckhaus, C M, Roller, S G, Santos, W L. Role of glutathione S-transferases A1-1, M1-1, and P1-1 in the detoxification of 2-phenylpropenal, a reactive felbamate metabolite. Chem Res Toxicol 2001;14:511–16.CrossRefGoogle ScholarPubMed
Hachad, H, Ragueneau-Majlessi, I, Levy, R H. New antiepileptic drugs: review on drug interactions. Ther Drug Monit 2002;24:91–103.CrossRefGoogle ScholarPubMed
Gaertner, I, Altendorf, K, Batra, A. Relevance of liver enzyme elevations with four different neuroleptics: a retrospective review of 7,263 treatment courses. J Clin Psychopharmacol 2001;21:215–22.CrossRefGoogle ScholarPubMed
Dincsoy, H P, Saelinger, D A. Haloperidol-induced chronic cholestatic liver disease. Gastroenterology 1982;83:694–700.Google ScholarPubMed
Wark, H J. Postoperative jaundice in children. Anaesthesia 1983;38:237–42.Google ScholarPubMed
Warner, L O, Beach, T P, Gariss, J P. Halothane and children: The first quarter century. Anesth Analg 1984;63:838–40.CrossRefGoogle ScholarPubMed
Farrell, G, Prendergast, D, Murray, M. Halothane hepatitis: detection of a constitutional susceptibility factor. N Engl J Med 1985;313:1310–14.CrossRefGoogle ScholarPubMed
Lo, S K, Wendon, J, Mieli-Vergani, G. Halothane-induced acute liver failure: continuing occurrence and use of liver transplantation. Eur J Gastroenterol Hepatol 1998;10:635–9.Google ScholarPubMed
Kenna, J G, Neuberger, J, Mieli-Vergani, G. Halothane hepatitis in children. Br Med J 1987;294:1209–11.CrossRefGoogle ScholarPubMed
Hassall, E, Israel, D M, Gunasekaran, T. Halothane hepatitis in children. J Pediatr Gastroenterol Nutr 1990;11:553–7.CrossRefGoogle ScholarPubMed
Psacharopoulos, H J, Mowat, A P, Davies, M. Fulminant hepatic failure in childhood: An analysis of 31 cases. Arch Dis Child 1980;55:252–8.CrossRefGoogle ScholarPubMed
Inman, W H V, Mushin, W W. Jaundice after repeated exposure to halothane: A further analysis of reports to the Committee of Safety of Medicines. Br Med J 1978;2:1455–6.CrossRefGoogle Scholar
Campbell, R L, Small, E W, Lesesne, H R. Fatal hepatic necrosis after halothane anesthesia in a boy with juvenile rheumatoid arthritis: a case report. Anesth Analg 1977;56:589–93.CrossRefGoogle Scholar
DeGroot, H, Noll, T. Halothane hepatotoxicity: Relation between metabolic activation, pyrexia, covalent binding, lipid peroxidation and liver cell damage. Hepatology 1983;3:601–6.Google Scholar
Farrell, G C. Mechanism of halothane-induced liver injury: is it immune or metabolic idiosyncrasy?J Gastroenterol Hepatol 1988;3:465–82.CrossRefGoogle Scholar
Pohl, L R, Satoh, H, Christ, D D. The immunologic and metabolic basis of drug hypersensitivities. Annu Rev Pharmacol Toxicol 1988;28:367–87.CrossRefGoogle ScholarPubMed
Spracklin, D K, Thummel, K E, Kharasch, E D. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4. Drug Metab Dispos 1996 1996;24:976–83.Google ScholarPubMed
Spracklin, D K, Hankins, D C, Fisher, J M. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. J Pharmacol Exp Ther 1997;281:400–11.Google ScholarPubMed
Vergani, D, Mieli-Vergani, G, Alberti, A. Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane-associated hepatitis. N Engl J Med 1980;303:66–71.CrossRefGoogle ScholarPubMed
Neuberger, J, Mieli-Vergani, G, Tredger, J M. Oxidative metabolism of halothane in the production of altered hepatocyte membrane antigens in acute halothane-induced hepatic necrosis. Gut 1981;22:669–72.CrossRefGoogle ScholarPubMed
Satoh, H, Fukada, Y, Anderson, D K. Immunological studies on the mechanism of halothane-induced hepatotoxicity: immunohistochemical evidence of trifluoroacetylated hepatocytes. J Pharmacol Exp Ther 1985;233:857–62.Google ScholarPubMed
Kenna, J G, Satoh, H, Christ, D D. Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J Pharmacol Exp Ther 1988;245:1103–9.Google ScholarPubMed
Kenna, J G, Neuberger, J, Williams, R. Evidence for expression in human liver of halothane-induced neoantigens recognized by antibodies in sera from patients with halothane hepatitis. Hepatology 1988;8:1635–41.CrossRefGoogle ScholarPubMed
Satoh, H, Martin, B M, Schulick, A H. Human enti-endoplasmic reticulum antibodies in sera of patients with halothane-induced hepatitis are directed against a trifluoroacetylated carboxylesterase. Proc Natl Acad Sci U S A 1989;86:322–6.CrossRefGoogle ScholarPubMed
Christen, U, Buergin, M, Gut, J. Halothane metabolism: Kupffer cells carry and partially process triflouroacetylated protein adducts. Biochem Biophys Res Commun 1991;175:256–62.CrossRefGoogle ScholarPubMed
Kenna, J G, Martin, J L, Satoh, H. Factors affecting the expression of trifluoracteylated liver microsomal protein neoantigens in rats treated with halothane. Drug Metab Dispos 1990;18:788–93.Google ScholarPubMed
Yeong, M L, Swinburn, B, Kennedy, M. Hepatic veno-occlusive disease associated with comfrey ingestion. J Gastroenterol Hepatol 1990;5:211–14.CrossRefGoogle ScholarPubMed
Rode, D. Comfrey toxicity revisited. Trends Pharmacol Sci 2002;23:497–9.CrossRefGoogle ScholarPubMed
Laliberte, L, Villeneuve, J P. Hepatitis after the use of germander, a herbal remedy. CMAJ 1996;154:1689–92.Google ScholarPubMed
Larrey, D, Vial, T, Pauwels, A. Hepatitis after germander (Teucrium chamaedrys) administration: another instance of herbal medicine hepatotoxicity. Ann Intern Med 1992;117:129–32.CrossRefGoogle ScholarPubMed
Lekehal, M, Pessayre, D, Lereau, J M. Hepatotoxicity of the herbal medicine germander: metabolic activation of its furano diterpenoids by cytochrome P450 3A Depletes cytoskeleton-associated protein thiols and forms plasma membrane blebs in rat hepatocytes. Hepatology 1996;24:212–18.CrossRefGoogle ScholarPubMed
Fau, D, Lekehal, M, Farrell, G. Diterpenoids from germander, an herbal medicine, induce apoptosis in isolated rat hepatocytes. Gastroenterology 1997;113:1334–46.CrossRefGoogle ScholarPubMed
Clouatre, D L. Kava kava: examining new reports of toxicity. Toxicol Lett 2004;150:85–96.CrossRefGoogle ScholarPubMed
Campo, J V, McNabb, J, Perel, J M. Kava-induced fulminant hepatic failure. J Am Acad Child Adolesc Psychiatry 2002;41:631–2.CrossRefGoogle ScholarPubMed
Whitton, P A, Lau, A, Salisbury, A. Kava lactones and the kava-kava controversy. Phytochemistry 2003;64:673–9.CrossRefGoogle ScholarPubMed
Anke, J, Ramzan, I. Pharmacokinetic and pharmacodynamic drug interactions with Kava (Piper methysticum Forst. f.). J Ethnopharmacol 2004;93:153–60.CrossRefGoogle Scholar
Batchelor, W B, Heathcote, J, Wanless, I R. Chaparral-induced hepatic injury. Am J Gastroenterol 1995;90:831–3.Google ScholarPubMed
Sheikh, N M, Philen, R M, Love, L A. Chaparral-associated hepatotoxicity. Arch Intern Med 1997;157:913–19.CrossRefGoogle ScholarPubMed
Woolf, G M, Petrovic, L M, Rojter, S E. Acute hepatitis associated with the Chinese herbal product jin bu huan. Ann Intern Med 1994;121:729–35.CrossRefGoogle ScholarPubMed
Horowitz, R S, Feldhaus, K, Dart, R C. The clinical spectrum of Jin Bu Huan toxicity. Arch Intern Med 1996;156:899–903.CrossRefGoogle ScholarPubMed
Skoulidis, F, Alexander, G J, Davies, S E. Ma huang associated acute liver failure requiring liver transplantation. Eur J Gastroenterol Hepatol 2005;17:581–4.CrossRefGoogle ScholarPubMed
Webb, N, Hardikar, W, Cranswick, N E. Probable herbal medication induced fulminant hepatic failure. J Paediatr Child Health 2005;41:530–1.CrossRefGoogle Scholar
Zuckerman, M, Steenkamp, V, Stewart, M J. Hepatic veno-occlusive disease as a result of a traditional remedy: confirmation of toxic pyrrolizidine alkaloids as the cause, using an in vitro technique. J Clin Pathol 2002;55:676–9.CrossRefGoogle ScholarPubMed
Maddrey, W C, Boitnott, J K. Isoniazid hepatitis. Ann Intern Med 1973;79:1–12.CrossRefGoogle ScholarPubMed
Zimmerman, H J. Update of hepatotoxicity due to classes of drugs in common clinical use: non-steroidal drugs, anti-inflammatory drugs, antibiotics, antihypertensives, and cardiac and psychotropic drugs. Sem Liver Dis 1990;10:322–38.CrossRefGoogle Scholar
Rudoy, R, Stuemky, J, Poley, R. Isoniazid administration and liver injury. Am J Dis Child 1973;125:733–6.Google ScholarPubMed
Casteels-Van Daele, M, Igodt-Ameye, L, Corbell, L. Hepatotoxicity of rifampicin and isoniazid in children. J Pediatr 1975;86:739–41.CrossRefGoogle ScholarPubMed
Vanderhoof, J A, Ament, M E. Fatal hepatic necrosis due to isoniazid chemoprophylaxis in a 15 year-old girl. J Pediatr 1976;88:867–8.CrossRefGoogle Scholar
Litt, I F, Cohen, M I, McNamara, H. Isoniazid hepatitis in adolescents. J Pediatr 1976;89:133–5.CrossRefGoogle ScholarPubMed
Walker, S H, Park-Hah, J O. Possible isoniazid-induced hepatotoxicity in a two-year-old child. J Pediatr 1977;91:344–5.CrossRefGoogle Scholar
Pessayre, D, Bentata, M, Degott, C. Isoniazid-rifampin fulminant hepatitis. A possible consequence of the enhancement of isoniazid hepatotoxicity by enzyme induction. Gastroenterology 1977;72:284–9.Google ScholarPubMed
Gal, A A, Klatt, E C. Fatal isoniazid hepatitis in a child. Pediatr Infec Dis 1986;5:490–1.CrossRefGoogle Scholar
Beaudry, P, Brickman, H, Wise, M. Liver enzyme disturbances during isoniazid chemoprophylaxis in children. Am Rev Resp Dis 1974;110:581–4.Google ScholarPubMed
Spyridis, P, Sinantios, C, Papadea, I. Isoniazid liver injury during chemoprophylaxis in children. Arch Dis Child 1979;54:65–7.CrossRefGoogle ScholarPubMed
Mitchell, J, Zimmerman, H, Ishak, K. Isoniazid liver injury: clinical spectrum, pathology and probable pathogenesis. Ann Intern Med 1976;84:181–96.CrossRefGoogle ScholarPubMed
Palusci, V J, O'Hare, D, Lawrence, R M. Hepatotoxicity and transaminase measurement during isoniazid chemoprophylaxis in children. Pediatr Infect Dis J 1995;14:144–8.Google ScholarPubMed
Tsagaropoulou-Stinga, H, Mataki-Emmanouilidou, T, Karadi-Kavalioti, S. Hepatotoxic reactions in children with severe tuberculosis treated with isoniazid-rifampin. Pediatr Infect Dis 1985;4:270–3.CrossRefGoogle ScholarPubMed
Martinez-Roig, A, Cami, J, Llorens-Teroi, J. Acetylation phenotype and hepatotoxicity in the treatment of tuberculosis of children. Pediatrics 1986;77:912–15.Google ScholarPubMed
Berkowitz, F E, Henderson, S L, Fajman, N. Acute liver failure caused by isoniazid in a child receiving carbamazepine. Int J Tuberc Lung Dis 1998;2:603–6.Google Scholar
Campos-Franco, J, Gonzalez-Quintela, A, Alende-Sixto, M R. Isoniazid-induced hyperacute liver failure in a young patient receiving carbamazepine. Eur J Intern Med 2004;15:396–7.CrossRefGoogle Scholar
O'Brien, R J, Long, M W, Cross, F S. Hepatotoxicity from isoniazid and rifampin among children treated for tuberculosis. Pediatrics 1983;72:491–9.Google ScholarPubMed
Huang, Y S, Chern, H D, Su, W J. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 2003;37:924–30.CrossRefGoogle ScholarPubMed
Huang, Y S, Chern, H D, Su, W J. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002;35:883–9.CrossRefGoogle ScholarPubMed
Vuilleumier, N, Rossier, M F, Chiappe, A. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol 2006;62:423–9.CrossRefGoogle ScholarPubMed
Desta, Z, Soukhova, N V, Flockhart, D A. Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother 2001;45:382–92.CrossRefGoogle ScholarPubMed
Lewis, J H, Zimmerman, H J, Benson, G D. Hepatic injury associated with ketoconazole therapy. Analysis of 33 cases. Gastroenterology 1984;86:503–13.Google ScholarPubMed
Bercoff, E, Bernuau, J, Degott, C. Ketoconazole-induced fulminant hepatitis. Gut 1985;26:636–8.CrossRefGoogle ScholarPubMed
Stricker, B H C, Blok, A P R, Bronkhurst, F B. Ketoconazole-associated hepatic injury. A clinicopathological study of 55 cases. J Hepatol 1986;3:399–406.CrossRefGoogle ScholarPubMed
Lake-Bakaar, G, Scheuer, P J, Sherlock, S. Hepatic reactions associated with ketoconazole in the United Kingdom. Br Med J 1987;294:419–22.CrossRefGoogle ScholarPubMed
Adriaenssens, B, Roskams, T, Steger, P. Hepatotoxicity related to itraconazole: report of three cases. Acta Clin Belg 2001;56:364–9.CrossRefGoogle ScholarPubMed
Schlienger, R, Knowles, S, Shear, N. Lamotrogine-associated anticonvulsant hypersensitivty syndrome. Neurology 1998;51:1172–5.CrossRefGoogle Scholar
Brown, T S, Appel, J E, Kasteler, J S. Hypersensitivity reaction in a child due to lamotrigine. Pediatr Dermatol 1999;16:46–9.CrossRefGoogle Scholar
Fayad, M, Choueiri, R, Mikati, M. Potential hepatotoxicity of lamotrigine. Pediatr Neurol 2000;22:49–52.CrossRefGoogle ScholarPubMed
Overstreet, K, Costanza, C, Behling, C. Fatal progressive hepatic necrosis associated with lamotrigine treatment: a case report and literature review. Dig Dis Sci 2002;47:1921–5.CrossRefGoogle ScholarPubMed
Maggs, J L, Naisbitt, D J, Tettey, J N. Metabolism of lamotrigine to a reactive arene oxide intermediate. Chem Res Toxicol 2000;13:1075–81.CrossRefGoogle ScholarPubMed
Anderson, G D. Children versus adults: pharmacokinetic and adverse-effect differences. Epilepsia 2002;43 Suppl 3:53–9.CrossRefGoogle ScholarPubMed
Zidd, A G, Hack, J B. Pediatric ingestion of lamotrigine. Pediatr Neurol 2004;31:71–2.CrossRefGoogle ScholarPubMed
Tolman, K G, Clegg, D O, Lee, R G. Methotrexate and the liver. J Rheumatol 1985;12 Suppl 12:29–34.Google ScholarPubMed
Kerkhof, P C M, Hoegnagels, W H L, Haelst, UJGM. Methotrexate maintenance therapy and liver damage in psoriasis. Clin Exp Dermatol 1985;10:194–200.CrossRefGoogle ScholarPubMed
Kremer, J M, Lee, R G, Tolman, K G. Liver histology in rheumatoid arthritis patients receiving long-term methotrexate therapy. A prospective study with baseline and sequential biopsy samples. Arthritis Rheum 1989;32:121–7.CrossRefGoogle ScholarPubMed
Gilbert, S C, Klintmalm, G, Mentor, A. Methotrexate-induced cirrhosis requiring liver transplantation in three patients with psoriasis: a word of caution in light of the expanding use of this “steroid sparing” agent. Arch Intern Med 1990;150:889–91.CrossRefGoogle ScholarPubMed
Langman, G, Hall, P M, Todd, G. Role of non-alcoholic steatohepatitis in methotrexate-induced liver injury. J Gastroenterol Hepatol 2001;16:1395–401.CrossRefGoogle ScholarPubMed
Newman, M, Auerbach, R, Feiner, H. The role of liver biopsies in psoriatic patients receiving long-term methotrexate treatment. Arch Dermatol 1989;125:1218–24.CrossRefGoogle ScholarPubMed
Kremer, J M, Alarcón, G S, Lightfoot, R W J. Methotrexate for rheumatoid arthritis. Suggested guidelines for monitoring liver toxicity. Arthritis Rheum 1994;37:316–28.CrossRefGoogle ScholarPubMed
Kremer, J M, Furst, D E, Weinblatt, M E. Significant changes in serum AST across hepatic histological grades: prospective analysis of 3 cohorts receiving methotrxate therapy for rheumatoid arthritis. J Rheumatol 1996;23:489–61.Google Scholar
Zachariae, H, Kragbulle, K, Sugaard, H. Methotrexate induced liver cirrhosis. Br J Dermatol 1980;102:407–12.CrossRefGoogle ScholarPubMed
Shergy, W J, Polisson, R P, Caldwell, D S. Methotrexate-associated hepatotoxicity: Retrospective analysis of 210 patients with rheumatoid arthritis. Am J Med 1988;85:771–4.CrossRefGoogle ScholarPubMed
Hashkes, P J, Balistreri, W F, Bove, K E. The long-term effect of methotrexate therapy on the liver in patients with juvenile rheumatoid arthritis. Arthritis Rheum 1997;40:2226–34.CrossRefGoogle ScholarPubMed
Hashkes, P J, Balistreri, W F, Bove, K E. The relationship of hepatotoxic risk factors and liver histology in methotrexate therapy for juvenile rheumatoid arthritis. J Pediatr 1999;134:47–52.CrossRefGoogle ScholarPubMed
Graham, L D, Myones, B L, Rivas-Chacon, R F. Morbidity associated with long-term methotrexate therapy in juvenile rheumatoid arthritis. J Pediatr 1992;120:468–73.CrossRefGoogle ScholarPubMed
Kugathasam, S, Newman, A J, Dahms, B B. Liver biopsy findings in patients with juvenile rheumatoid arthritis receiving long-term, weekly methotrexate therapy. J Pediatr 1996;128:149–51.CrossRefGoogle Scholar
Keim, D, Ragsdale, C, Heidelberger, K. Hepatic fibrosis with the use of methotrexate for juvenile rheumatoid arthritis. J Rheumatol 1990;17:846–8.Google ScholarPubMed
Te, H S, Schiano, T D, Kuan, S F. Hepatic effects of long-term methotrexate use in the treatment of inflammatory bowel disease. Am J Gastroenterol 2000;95:3150–6.CrossRefGoogle ScholarPubMed
Perez, C, Sutow, W W, Wang, Y M. Evaluation of overall toxicity of high-dosage methotrexate reigmens. Med Pediatr Oncol 1979;6:219–28.CrossRefGoogle Scholar
Locasciulli, A, Mura, R, Fraschini, D. High-dose methotrexate administration and acute liver damage in children treated for acute lymphoblastic leukemia. A prospective study. Haematologica 1992;77:49–53.Google ScholarPubMed
Harb, J M, Werlin, S L, Camitta, B M. Hepatic ultrastructure in leukemic children treated with methotrexate and 6-mercaptopurine. Am J Pediatr Hematol Oncol 1983;5:323–31.CrossRefGoogle ScholarPubMed
McIntosh, S, Davidson, D L, O'Brien, R T. Methotrexate hepatotoxicity in children with leukemia. J Pediatr 1977;90:1019–21.CrossRefGoogle ScholarPubMed
Ng, C, Xiao, Y D, Lum, B L. Quantitative structure-activity relationships of methotrexate and methotrexate analogues transported by the rat multispecific resistance-associated protein 2 (rMrp2). Eur J Pharm Sci 2005;26:405–13.CrossRefGoogle Scholar
Malcolm, A, Heap, T R, Eckstein, R P. Minocycline-induced liver injury. Am J Gastroenterol 1996;91:1641–3.Google ScholarPubMed
Gough, A, Chapman, S, Wagstaff, K. Minocycline induced autoimmune hepatitis and systemic lupus erythematosus-like syndrome. BMJ 1996;312:169–72.CrossRefGoogle ScholarPubMed
Bhat, G, Jordan, J, Sokalski, S. Minocycline-induced hepatitis with autoimmune features and neutropenia. J Clin Gastroenterol 1998;27:74–5.CrossRefGoogle ScholarPubMed
Davies, M G, Kersey, P J W. Acute hepatitis and exfoliative dermatitis associated with minocycline. BMJ 1989;298:1523–4.CrossRefGoogle ScholarPubMed
Boudreaux, J P, Hayes, D H, Mizrahi, S. Fulminant hepatic failure, hepatorenal syndrome, and necrotizing pancreatitis after minocycline hepatotoxicity. Transplant Proc 1993;25:1873.Google ScholarPubMed
Traversa, G, Bianchi, C, Cas, Da R. Cohort study of hepatotoxicity associated with nimesulide and other non-steroidal anti-inflammatory drugs. BMJ 2003;327:18–22.CrossRefGoogle ScholarPubMed
Titchen, T, Cranswick, N, Beggs, S. Adverse drug reactions to nonsteroidal anti-inflammatory drugs, COX-2 inhibitors and paracetamol in a paediatric hospital. Br J Clin Pharmacol 2005;59:718–23.CrossRefGoogle Scholar
Whittaker, S J, Amar, J N, Wanless, I R. Sulindac hepatotoxicity. Gut 1982;23:875–7.CrossRefGoogle ScholarPubMed
Boelsterli, U A. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol Appl Pharmacol 2003;192:307–22.CrossRefGoogle ScholarPubMed
Merlani, G, Fox, M, Oehen, H P. Fatal hepatoxicity secondary to nimesulide. Eur J Clin Pharmacol 2001;57:321–6.CrossRefGoogle ScholarPubMed
Ong, M M, Wang, A S, Leow, K Y. Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2(+/−) mice. Free Radic Biol Med 2006;40:420–9.CrossRefGoogle ScholarPubMed
Pratt, D S, Dubois, R S. Hepatotoxicity due to pemoline (Cylert). A report of two cases. J Pediatr Gastroenterol Nutr 1990;10:239–41.CrossRefGoogle ScholarPubMed
Elitsur, Y. Pemoline (Cylert)-induced hepatotoxicity. J Pediatr Gastroenterol Nutr 1990;11:143–4.CrossRefGoogle ScholarPubMed
Adcock, K G, MacElroy, D E, Wolford, E T. Pemoline therapy resulting in liver transplantation. Ann Pharmacother 1998;32:422–5.CrossRefGoogle ScholarPubMed
Marotta, P J, Roberts, E A. Pemoline hepatotoxicity in children. J Pediatr 1998;132:894–7.CrossRefGoogle ScholarPubMed
Rosh, J R, Dellert, S F, Narkewicz, M. Four cases of severe hepatotoxicity associated with pemoline: possible autoimmune pathogenesis. Pediatrics 1998;101:921–3.CrossRefGoogle ScholarPubMed
Mehta, H, Murray, B, Iolodice, T A. Hepatic dysfunction due to intravenous abuse of methylphenidate hydrichloride. J Clin Gastroenterol 1984;6:149–51.CrossRefGoogle Scholar
Bruckstein, A H, Attia, A A. Oxacillin hepatitis. Am J Med 1978;64:519–22.CrossRefGoogle ScholarPubMed
Tauris, P, Jorgensen, N F, Petersen, C M. Prolonged severe cholestasis induced by oxacillin derivatives. A report on two cases. Acta Med Scand 1985;217:567–9.CrossRefGoogle ScholarPubMed
Kleinman, M S, Presberg, J E. Cholestatic hepatitis after dicloxacillin-sodium therapy. J Clin Gastroenterol 1986;8:77–8.CrossRefGoogle ScholarPubMed
Turner, I B, Eckstein, R P, Riley, J W. Prolonged hepatic cholestasis after flucloxacillin therapy. Med J Aust 1989;151:701–5.Google ScholarPubMed
Miros, M, Kerlin, P, Walker, N. Flucloxacillin induced delayed cholestatic hepatitis. Aust N Z J Med 1990;20:251–3.CrossRefGoogle ScholarPubMed
Gresser, U. Amoxicillin-clavulanic acid therapy may be associated with severe side effects – review of the literature. Eur J Med Res 2001;6:139–49.Google ScholarPubMed
Reddy, K R, Brillant, P, Schiff, E R. Amoxicillin-clavulinate potassium-associated cholestasis. Gastroenterology 1989;96:1135–41.CrossRefGoogle Scholar
Larrey, D, Vial, T, Babany, G. Hepatitis associated with amoxycillin-clavulanic acid combination report of 15 cases. Gut 1992;33:368–71.CrossRefGoogle ScholarPubMed
Stricker, B H, Broek, J W, Keuning, J. Cholestatic hepatitis due to antibacterial combination of amoxicillin and clavulanic acid (augmentin). Dig Dis Sci 1989;34:1576–80.CrossRefGoogle Scholar
Fontana, R J, Shakil, A O, Greenson, J K. Acute liver failure due to amoxicillin and amoxicillin/clavulanate. Dig Dis Sci 2005;50:1785–90.CrossRefGoogle ScholarPubMed
O'Donohue, J, Oien, K A, Donaldson, P. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 2000;47:717–20.CrossRefGoogle ScholarPubMed
Degott, C, Feldmann, G, Larrey, D. Drug-induced prolonged cholestasis in adults: a histological semiquantitative study demonstrating progressive ductopenia. Hepatology 1992;15:244–51.CrossRefGoogle ScholarPubMed
Chawla, A, Kahn, E, Yunis, E J. Rapidly progressive cholstasis: an unusual reaction to amoxicillin/clavulinic acid in a child. J Pediatr 2000;136:121–3.CrossRefGoogle Scholar
Shapiro, P A, Antonioli, D A, Peppercorn, M A. Barbiturate-induced submassive hepatic necrosis. Am J Gastroenterol 1980;74:270–3.Google ScholarPubMed
Roberts, E A, Spielberg, S P, Goldbach, M. Phenobarbital hepatotoxicity in an 8-month-old infant. J Hepatol 1990;10:235–9.CrossRefGoogle Scholar
Li, A M, Nelson, E A, Hon, E K. Hepatic failure in a child with anti-epileptic hypersensitivity syndrome. J Paediatr Child Health 2005;41:218–20.CrossRefGoogle Scholar
Spielberg, S P, Gordon, G B, Blake, D A. Anticonvulsant toxicity in vitro: possible role of arene oxides. J Pharmacol Exp Ther 1981;217:386–9.Google ScholarPubMed
Powers, N G, Carson, S H. Idiosyncratic reactions to phenytoin. Clin Pediatr 1987;26:120–4.CrossRefGoogle ScholarPubMed
Bessmertny, O, Hatton, R C, Gonzalez-Peralta, R P. Antiepileptic hypersensitivity syndrome in children. Ann Pharmacother 2001;35:533–8.CrossRefGoogle ScholarPubMed
Mullick, F G, Ishak, K G. Hepatic injury associated with diphenylhydantoin therapy. Am J Clin Pathol 1980;74:442–52.CrossRefGoogle ScholarPubMed
Spielberg, S P, Gordon, G B, Blake, D A. Predisposition to phenytoin hepatotoxicity assessed in vitro. N Engl J Med 1981;305:722–7.CrossRefGoogle ScholarPubMed
Kahn, H D, Faguet, G B, Agee, J F. Drug-induced liver injury. In vitro demonstration of hypersensitivity to both phenytoin and phenobarbital. Arch Intern Med 1984;144:1677–9.CrossRefGoogle ScholarPubMed
Jonas, M M, Edison, M S. Propylthiouracil hepatotoxicity: Two pediatric cases and review of the literature. J Pediatr Gastroenterol Nutr 1988;7:776–9.CrossRefGoogle ScholarPubMed
Kirkland, J L. Propylthiouracil-induced hepatic failure and encephalopathy in a child. Ann Pharmacother 1990;24:470–1.Google Scholar
Levy, M. Propylthiouracil hepatotoxicity. A review and case presentation. Clin Pediatr 1993;32:25–9.CrossRefGoogle ScholarPubMed
Williams, K V, Nayak, S, Becker, D. Fifty years of experience with propylthiouracil-associated hepatotoxicity: what have we learned?J Clin Endocrinol Metab 1997;82:1721–33.Google ScholarPubMed
Maggiore, G, Larizza, D, Lorini, R. PTU hepatotoxicity mimicking autoimmune chronic active hepatitis in a girl. J Pediatr Gastroenterol Nutr 1989;8:547–8.CrossRefGoogle Scholar
Aydemir, S, Ustundag, Y, Bayraktaroglu, T. Fulminant hepatic failure associated with propylthiouracil: a case report with treatment emphasis on the use of plasmapheresis. J Clin Apher 2005;20:235–8.CrossRefGoogle ScholarPubMed
Safani, M M, Tatro, D S, Rudd, P. Fatal propylthiouracil-induced hepatitis. Arch Intern Med 1982;142:838–9.CrossRefGoogle ScholarPubMed
Homberg, J-C, Abuaf, N, Bernard, O. Chronic active hepatitis associated with antiliver/kidney microsome antibody type 1: A second type of “autoimmune” hepatitis. Hepatology 1987;7:1333–9.CrossRefGoogle ScholarPubMed
Hayashida, C Y, Duarte, A J, Sato, A E. Neonatal hepatitis and lymphocyte sensitization by placental transfer of propylthiouracil. J Endocrinol Invest 1990;13:937–41.CrossRefGoogle ScholarPubMed
Jacques, E A, Buschmann, R J, Layden, T J. The histopathologic progression of vitamin A-induced hepatic injury. Gastroenterology 1979;76:599–602.Google ScholarPubMed
Roenigk, H H Jr. Liver toxicity of retinoid therapy. J Am Acad Dermatol 1988;19:199–208.CrossRefGoogle ScholarPubMed
Fallon, M B, Boyer, J L. Hepatic toxicity of vitamin A and synthetic retinoids. J Gastroenterol Hepatol 1990;5:334–42.CrossRefGoogle ScholarPubMed
Shear, N H, Spielberg, S P, Grant, D M. Differences in metabolism of sulfonamides predisposing to idiosyncratic toxicity. Ann Intern Med 1986;105:179–84.CrossRefGoogle ScholarPubMed
Zitelli, B J, Alexander, J, Taylor, S. Fatal hepatic necrosis due to pyrimethamine-sulfadoxine (Fansidar). Ann Intern Med 1987;106:393–5.CrossRefGoogle Scholar
Sotolongo, R P, Neefe, L I, Rudzki, C. Hypersensitivity reaction to sulfasalazine with severe hepatotoxicity. Gastroenterology 1978;75:95–9.Google ScholarPubMed
Losek, J H, Werlin, S L. Sulfasalazine hepatotoxicity. Am J Dis Child 1981;135:1070–2.Google ScholarPubMed
Ribe, J, Benkov, K J, Thung, S N. Fatal massive hepatic necrosis: a probable hypersensitivity reaction to sulfasalazine. Am J Gastroenterol 1986;81:205–8.Google ScholarPubMed
Gremse, D A, Bancroft, J, Moyer, S A. Sulfasalazine hypersensitivity with hepatotoxicity, thrombocytopenia, and erythroid hypoplasia. J Pediatr Gastroenterol Nutr 1989;9:261–3.CrossRefGoogle ScholarPubMed
Besnard, M, Debray, D, Durand, P. [Fulminant hepatitis in two children treated with sulfasalazine for Crohn disease]. Arch Pediatr 1999;6:643–6. [Article in French.]Google Scholar
Karpman, E, Kurzrock, E A. Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. J Urol 2004;172:448–53.CrossRefGoogle ScholarPubMed
Ghishan, F K. Trimethoprim-sulfamethoxazole-induced intrahepatic cholestasis. Clin Pediatr 1983;22:212–14.CrossRefGoogle ScholarPubMed
Bucaretchi, F, Vicente, D C, Pereira, R M. Dapsone hypersensitivity syndrome in an adolescent during treatment during of leprosy. Rev Inst Med Trop Sao Paulo 2004;46:331–4.CrossRefGoogle Scholar
Rieder, M J, Uetrecht, J, Shear, N H. Diagnosis of sulfonamide hypersensitivity reactions by in-vitro “rechallenge” with hydroxylamine metabolites. Ann Intern Med 1989;110:286–9.Google ScholarPubMed
Cribb, A E, Spielberg, S P. Hepatic microsomal metabolism of sulfamethoxazole to the hydroxylamine. Drug Metab Dispos 1990;18:784–7.Google ScholarPubMed
Cribb, A E, Spielberg, S P. Sulfamethoxazole is metabolized to the hydroxylamine in humans. Clin Pharmacol Ther 1992;51:522–6.CrossRefGoogle ScholarPubMed
Shear, N H, Spielberg, S P. In vitro evaluation of a toxic metabolite of sulfadiazine. Can J Physiol Pharmacol 1985;63:1370–2.CrossRefGoogle ScholarPubMed
Rieder, M J, Uetrecht, J, Shear, N H. Synthesis and in vitro toxicity of hydroxylamine metqbolites of sulfonamides. J Pharmacol Exp Ther 1988;244:724–8.Google ScholarPubMed
Cribb, A E, Miller, M, Tesoro, A. Peroxidase-dependent oxidation of sulfonamides by monocytes and neutrophils from humans and dogs. Mol Pharmacol 1990;38:744–51.Google Scholar
Sztajnkrycer, M D. Valproic acid toxicity: overview and management. J Toxiocl Clin Toxicol 2002;40:789–801.CrossRefGoogle ScholarPubMed
Powell-Jackson, P R, Tredger, J M, Williams, R. Hepatotoxicity to sodium valproate: a review. Gut 1984;25:673–81.CrossRefGoogle ScholarPubMed
Suchy, F J, Balistreri, W F, Buchino, J. Acute hepatic failure associated with the use of sodium valproate. Report of two fatal cases. N Engl J Med 1979;300:962–6.CrossRefGoogle Scholar
Gerber, N, Dickinson, R G, Harland, R C. Reye-like syndrome associated with valproic acid therapy. J Pediatr 1979;95:142–4.CrossRefGoogle ScholarPubMed
Zimmerman, H J, Ishak, K G. Valproate-induced hepatic injury: Analysis of 23 fatal cases. Hepatology 1982;2:591–7.CrossRefGoogle ScholarPubMed
Dreifuss, F E, Santilli, N, Langer, D H. Valproic acid hepatic fatalities. Neurology 1987;37:379–85.CrossRefGoogle ScholarPubMed
Scheffner, D, Konig, S T, Rauterberg-Ruland, I. Fatal liver failure in 16 children with valproate therapy. Epilepsia 1988;29:530–42.CrossRefGoogle ScholarPubMed
Koenig, S A, Siemes, H, Blaker, F. Severe hepatotoxicity during valproate therapy: an update and report of eight new fatalities. Epilepsia 1994;35:1005–15.CrossRefGoogle Scholar
Green, S H. Sodium valproate and routine liver function tests. Arch Dis Child 1984;59:813–14.CrossRefGoogle ScholarPubMed
Bryant, A E 3rd, Dreifuss, F E. Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology 1996;46:465–9.CrossRefGoogle ScholarPubMed
McCall, M, Bourgeois, J A. Valproic acid-induced hyperammonemia: a case report. J Clin Psychopharmacol 2004;24:521–6.CrossRefGoogle ScholarPubMed
Gerstner, T, Buesing, D, Longin, E. Valproic acid induced encephalopathy – 19 new cases in Germany from 1994 to 2003 – a side effect associated to VPA-therapy not only in young children. Seizure 2006;15:443–8.CrossRefGoogle Scholar
Huang, Y L, Hong, H S, Wang, Z W. Fatal sodium valproate-induced hypersensitivity syndrome with lichenoid dermatitis and fulminant hepatitis. J Am Acad Dermatol 2003;49:316–19.CrossRefGoogle ScholarPubMed
Partin, J S, Suchy, F J, Bates, S R. An ultrastructural analysis of sodium valproate associated hepatopathy. Gastroenterology 1983;84:1389.Google Scholar
Eadie, M J, Hooper, W D, Dickinson, R G. Valproate-associated hepatotoxicity and its biochemical mechanisms. Med Toxicol Adverse Drug Exper 1988;3:85–106.Google ScholarPubMed
Li, X, Norwood, D L, Mao, L-F. Mitochondrial metabolism of valproic acid. Biochemistry 1991;30:388–94.Google ScholarPubMed
Rettenmeier, A W, Gordon, W P, Prickett, K S. Metabolic fate of valproic acid in the rhesus monkey. Formation of a toxic metabolite, 2-n-propyl-4-pentenoic acid. Drug Metab Dispos 1986;14:443–53.Google ScholarPubMed
Kochen, W, Schneider, A, Ritz, A. Abnormal metabolism of valproic acid in fatal hepatic failure. Eur J Pediatr 1983;14:30–5.CrossRefGoogle Scholar
Kesterson, J W, Granneman, G R, Machinist, J M. The hepatotoxicity of valproate in rats. I. Toxicologic, biochemical and histopathologic studies. Hepatology 1984;4:1143–52.CrossRefGoogle Scholar
Granneman, G R, Wang, S I, Kesterson, J W. The hepatotoxicity of valproic acid and its metabolites in rats. II. Intermediary and valproic acid metabolism. Hepatology 1984;4:1153–8.CrossRefGoogle ScholarPubMed
Bjorge, S M, Baillie, T A. Inhibition of medium-chain fatty acid beta-oxidation in vitro by valproic acid and its unsaturated metabolite, 2-n-propyl-4-pentenoic acid. Biochem Biophys Res Commun 1985;132:245–52.CrossRefGoogle ScholarPubMed
Gopaul, S, Farrell, K, Abbott, F. Effects of age and polytherapy, risk factors of valproic acid (VPA) hepatotoxicity, on the excretion of thiol conjugates of (E)-2,4-diene VPA in people with epilepsy taking VPA. Epilepsia 2003;44:322–8.CrossRefGoogle Scholar
Böhles, H, Richter, K, Wagner-Thiessen, E. Decreased serum carnitine in valproate induced Reye syndrome. Eur J Pediatr 1982;139:185–6.CrossRefGoogle ScholarPubMed
Eadie, M J, McKinnon, G E, Dunstan, P R. Valproate metabolism during hepatotoxicity associated with the drug. Quart J Med 1990;77:1229–40.CrossRefGoogle ScholarPubMed
Kossak, B D, Schmidt-Sommerfeld, E, Schoeller, D A. Impaired fatty acid oxidation in children on valproic acid and the effect of L-carnitine. Neurology 1993;43:2362–8.CrossRefGoogle ScholarPubMed
Keulen, F P, Kochen, W. Hepatotoxität unter Valproinsaure Behandlung. Klin Pädiatrie 1985;197:431–6.CrossRefGoogle Scholar
Dickinson, R G, Bassett, M L, Searle, J. Valproate hepatotoxicity: a review and report of two instances in adults. Clin Exp Neurol 1985;21:79–91.Google ScholarPubMed
Tong, V, Teng, X W, Chang, T K. Valproic acid I: time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol Sci 2005;86:427–35.CrossRefGoogle ScholarPubMed
Tong, V, Teng, X W, Chang, T K. Valproic acid II: effects on oxidative stress, mitochondrial membrane potential, and cytotoxicity in glutathione-depleted rat hepatocytes. Toxicol Sci 2005;86:436–43.CrossRefGoogle ScholarPubMed
Qureshi, I A, Letarte, J, Tuchweber, B. Heptotoxicology of sodium valproate in ornithine transcarbamylase-deficient mice. Toxicol Lett 1985;25:297–306.CrossRefGoogle ScholarPubMed
Hjelm, M, Silva, L V K, Seakins, I W T. Evidence of inherited urea cycle defect in a case of fatal valproate toxicity. Br Med J 1986;292:23–4.CrossRefGoogle Scholar
Kay, J D S, Hilton-Jones, D, Hyman, N. Valproate toxicity and ornithine carbamoyltransferase deficiency. Lancet 1986;2:1283–4.CrossRefGoogle ScholarPubMed
Chabrol, B, Mancini, J, Chretien, D. Valproate-induced hepatic failure in a case of cytochrome c oxidase deficiency. Eur J Pediatr 1994;153:133–5.Google Scholar
Konig, S A, Schenk, M, Sick, C. Fatal liver failure associated with valproate therapy in a patient with Friedreich's disease: review of valproate hepatotoxicity in adults. Epilepsia 1999;40:1036–40.CrossRefGoogle Scholar
Schwabe, M J, Dobyns, W B, Burke, B. Valproate-induced liver failure in one of two siblings with Alpers disease. Pediatr Neurol 1997;16:337–43.CrossRefGoogle ScholarPubMed
Delarue, A, Paut, O, Guys, J M. Inappropriate liver transplantation in a child with Alpers-Huttenlocher syndrome misdiagnosed as valproate-induced acute liver failure. Pediatr Transplant 2000;4:67–71.CrossRefGoogle Scholar
Kayihan, N, Nennesmo, I, Ericzon, B G. Fatal deterioration of neurological disease after orthotopic liver transplantation for valproic acid-induced liver damage. Pediatr Transplant 2000;4:211–14.CrossRefGoogle Scholar
Rasmussen, M, Sanengen, T, Skullerud, K. Evidence that Alpers-Huttenlocher syndrome could be a mitochondrial disease. J Child Neurol 2000;15:473–7.CrossRefGoogle ScholarPubMed
Murphy, J V, Maquardt, K M, Shug, A L. Valproic acid associated abnormalities of carnitine metabolism. Lancet 1985;1:820–1.CrossRefGoogle ScholarPubMed
Matsuda, I, Ohtani, Y, Ninoniya, N. Renal handling of carnitine in children with carnitine deficiency and hyperammonemia associated with valproate therapy. J Pediatr 1986;109:131–4.CrossRefGoogle ScholarPubMed
Beghi, E, Bizzi, A, Codegoni, A M. Valproate, carnitine metabolism, and biochemical indicators of liver function. Epilepsia 1990;31:346–52.CrossRefGoogle ScholarPubMed
Millington, D S, Bohan, T P, Roe, C R. Valproylcarnitine: a novel drug metabolite identified by fast atom bombardment and thermospray liquid chromatography-mass spectroscopy. Clin Chim Acta 1985;145:69–76.CrossRefGoogle Scholar
Lheureux, P E, Penaloza, A, Zahir, S. Science review: carnitine in the treatment of valproic acid-induced toxicity – what is the evidence?Crit Care 2005;9:431–40.CrossRefGoogle ScholarPubMed
Bohan, T P, Helton, E, McDonald, I. Effect of L-carnitine treatment for valproate-induced hepatotoxicity. Neurology 2001;56:1405–9.CrossRefGoogle ScholarPubMed
Grauso-Eby, N L, Goldfarb, O, Feldman-Winter, L B. Acute pancreatitis in children from Valproic acid: case series and review. Pediatr Neurol 2003;28:145–8.CrossRefGoogle ScholarPubMed
Spitz, R D, Keren, D F, Boitnott, J R. Bridging hepatic necrosis: etiology and prognosis. Am J Dig Dis 1978;23:1076–8.CrossRefGoogle ScholarPubMed
Naranjo, C A, Busto, U, Sellers, E M. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981;30:239–45.CrossRefGoogle ScholarPubMed
Begaud, B, Evreux, J C, Jongland, W. Imputabilite des effets inattendus ou toxiques des medicaments. Therapie 1985;40:111–18.Google Scholar
Danan, G, Benichou, C. Causality assessment of adverse reactions to drugs – I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 1993;46:1323–30.CrossRefGoogle ScholarPubMed
Benichou, C, Danan, G, Flahault, A. Causality assessment of adverse reactions to drugs – II. An original model for validation of drug causality assessment methods: case reports with positive rechallenge. J Clin Epidemiol 1993;46:1331–6.CrossRefGoogle ScholarPubMed
Spielberg, S P. In vitro assessment of pharmacogenetic susceptibility to toxic drug metabolites in humans. Fed Proc 1984;43:2308–13.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Drug-Induced Liver Disease
    • By Eve A. Roberts, M.D., F.R.C.P.C., Professor, Department of Paediatrics, Medicine, and Pharmacology, University of Toronto, Toronto, Ontario, Canada; Staff Physician, Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Drug-Induced Liver Disease
    • By Eve A. Roberts, M.D., F.R.C.P.C., Professor, Department of Paediatrics, Medicine, and Pharmacology, University of Toronto, Toronto, Ontario, Canada; Staff Physician, Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Drug-Induced Liver Disease
    • By Eve A. Roberts, M.D., F.R.C.P.C., Professor, Department of Paediatrics, Medicine, and Pharmacology, University of Toronto, Toronto, Ontario, Canada; Staff Physician, Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.022
Available formats
×