Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:59:10.218Z Has data issue: false hasContentIssue false

6 - Cirrhosis and Chronic Liver Failure

from SECTION I - PATHOPHYSIOLOGY OF PEDIATRIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

Stephen Hardy M.D.
Affiliation:
Instructor, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Attending Physician, Department of Pediatric Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
Ronald E. Kleinman M.D.
Affiliation:
Professor, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Acting Physician-in-Chief, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

DEFINITION

Cirrhosis is a form of chronic liver injury that represents an end stage of virtually any progressive liver disease. In fact, the process of cirrhosis may be superimposed on the primary liver disease and obscure the nature of the original insult. There is considerable overlap between the clinical features of the various forms of cirrhosis. In 1977, the World Health Organization defined cirrhosis as a diffuse liver process characterized by fibrosis and the conversion of normal liver architecture into structurally abnormal nodules [1]. Cirrhosis represents a dynamic state reflecting the competing processes of cell injury (necrosis), response to injury (fibrosis), and regeneration (nodule formation). Isolated hepatic fibrosis or nodule formation alone does not represent cirrhosis. As cirrhosis advances, it results in distortion of liver architecture and compression of hepatic vascular and biliary structures. These critical architectural changes lead to irregular delivery of nutrients, oxygen, and metabolites to various areas of the liver and may perpetuate the cirrhotic process even after the original insult has been brought under control or has ceased (Table 6.1).

CLASSIFICATION

Many schemes for categorizing cirrhosis have been proposed, including classification based on gross morphology, microscopic histology, etiology, and clinical presentation. Because cirrhosis is, in its later stages, a self-perpetuating process, the gross and microscopic appearances of the liver only occasionally reveal the nature of the original pathogenic process. The morphologic classification divides cirrhosis into micronodular, macronodular, and mixed types of cirrhosis.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, P P, Ishak, K G, Nayak, N C. The morphology of cirrhosis: definition, nomenclature, and classification. Bull WHO 1977;55:521–40.Google ScholarPubMed
Ruben, E, Krus, S, Popper, H. Pathogenesis of postnecrotic cirrhosis in alcoholics. Arch Pathol 1962;73:288–99.Google Scholar
Fauerholdt, L, Schlichting, P, Christensen, E. Conversion of micronodular cirrhosis into macronodular cirrhosis. Hepatology 1983;3:928–31.CrossRefGoogle ScholarPubMed
Poppor H, Berk PD. Lessons from the study of cirrhosis and other fibrotic disease of the liver. In: Berk, P D, Wasserman, L R, eds. Myelofibrosis and the biology of connective tissue. New York: Alan R. Liss, 1984:405–24.Google Scholar
Popper H, Schaffner F. Chronic hepatitis: taxonomic, etiologic and therapeutic problems. In: Schaffner, F, Popper, H, eds. Progress in liver disease. Vol. 5. New York: Grune and Stratton, 1976:535.Google Scholar
Silverman A, Roy CC. Chronic active hepatitis. In: Roy, C C, Silverman, A, eds. Pediatric clinical gastroenterology. St. Louis: Mosby, 1983.Google Scholar
Maddrey, W L, Boitnott, J K. Drug induced chronic liver disease. Gastroenterology 1977;72:1348–53.Google ScholarPubMed
Geoffrey, L. Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 1987;252:1–9.Google Scholar
Martin, G R, Kleinman, H K. The extracellular matrix component in development and disease. Semin Liver Dis 1985;5:147–56.CrossRefGoogle Scholar
Biagini, G, Ballardini, G. Liver fibrosis and extracellular matrix. J Hepatol 1989;8:115–24.CrossRefGoogle ScholarPubMed
Hascall V. Proteoglycans: structure and function. In: Ginsberg, V, ed. Biology of carbohydrates. New York: John Wiley & Sons, 1981:1–49.Google Scholar
Hynes, R. Molecular biology of fibronectin. Annu Rev Cell Biol 1985;1:67–90.CrossRefGoogle ScholarPubMed
Clark, R. Potential roles of fibronectin in cutaneous wound repair. Arch Dermatol 1987;3:57–85.Google Scholar
Bitterman, P B, Wewers, M D, Rennard, S I. Modulation of alveolar macrophage-driven fibroblast proliferation by alternative macrophage mediators. J Clin Invest 1986;77:700–8.CrossRefGoogle ScholarPubMed
Aumanailley, M, Nurcombe, V, Edgar, D. The cellular interactions of laminin fragments: cell adhesion correlations with two fragment-specific high affinity binding sites. J Biol Chem 1987;262:11532–8.Google Scholar
Martin, G R, Timpl, R. Laminin and other basement membrane components. Annu Rev Cell Biol 1987;3:57–85.CrossRefGoogle ScholarPubMed
Bissell, D M, Stamatoglou, S C, Nermut, M V. Interactions of rat hepatocytes with type IV collagen, fibronectin and laminin matrices: distinct matrix-controlled models of attachment and spreading. Eur J Cell Biol 1986;40:72–8.Google Scholar
Hahn EG, Schuppan D. Ethanol and fibrogenesis in the liver. In: Seitz, H K, Kommerell, B, eds. Alcohol related disease in gastroenterology. Berlin: Springer Verlag, 1985:124–53.CrossRefGoogle Scholar
Hahn, E, Wick, G, Pencev, D, Timpl, R. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin and fibronectin. Gut 1980;21:63–71.CrossRefGoogle ScholarPubMed
Preaux, A M, Mallat, A, Nhieu, J T. Matrix metalloproteinase-2 activation in human hepatic fibrosis regulation by cell-matrix interactions. Hepatology 1999;30:944–50.CrossRefGoogle ScholarPubMed
Blaheta, R A, Kronenberger, B, Woitaschek, D. Dedifferentiation of human hepatocytes by extracellular matrix proteins in vitro: quantitative and qualitative investigation of cytokeratin 7, 8, 18, 19 and vimentin filaments. J Hepatol 1998;28:677–90.CrossRefGoogle Scholar
Bianchi, F B, Biagini, G, Ballardini, G. Basement membrane production by hepatocytes in chronic liver disease. Hepatology 1984;4:1167–72.CrossRefGoogle ScholarPubMed
Schaffner, F, Poper, H. Capillarization of hepatic sinusoids in man. Gastroenterology 1963;44:239–42.Google ScholarPubMed
Arthur, M J. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 2002;122:1525–8.CrossRefGoogle ScholarPubMed
Issa, R, Zhou, X, Constandinou, C M. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004;126:1795–808.CrossRefGoogle ScholarPubMed
Pares, A, Caballeria, J, Bruguera, M. Histological course of alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J Hepatol 1986;2:33–42.CrossRefGoogle ScholarPubMed
Dixon, J B, Bhathal, P S, Hughes, N R. Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss. Hepatology 2004;39:1647–54.CrossRefGoogle ScholarPubMed
Knodell, R G, Ishak, K G, Black, W C. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology 1981;1:431–5.CrossRefGoogle ScholarPubMed
Ishak, K, Baptista, A, Bianchi, L. Histological grading and staging of chronic hepatitis. J Hepatol 1995;22:696–9.CrossRefGoogle ScholarPubMed
Bedossa, P, Poynard, T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996;24:289–93.Google ScholarPubMed
Plebani, M, Burlina, A. Biochemical markers of hepatic fibrosis. Clin Biochem 1991;24:219–39.CrossRefGoogle ScholarPubMed
Niernela, O, Risteli, J, Blake, J E. Markers of fibrogenesis and basement membrane formation in alcoholic liver disease: relation to severity, presence of hepatitis, and alcohol intake. Gastroenterology 1990;98:1612–19.Google Scholar
Schneider, M, Voss, B, Hogemann, B. Evaluation of serum laminin pl, procollagen-III peptides, and n-acetyl-B-glucosaminidase for monitoring the activity of liver fibrosis. Hepatogasteroenterology 1989;36:506–10.Google Scholar
Gressner, A M, Tittor, W, Negwer, A. Serum concentrations of laminin and propeptide of type III collagen in relation to the portal venous pressure of fibrotic liver disease. Clin Chem Acta 1986;161:249–58.CrossRefGoogle Scholar
Gressner, A M, Tittor, W, Negwer, A. Serum concentrations of N-terminal propeptide of type III procollagen and laminin in the outflow of fibrotic livers. Hepatogasteroenterology 1986;33: 191–5.Google ScholarPubMed
Bahr, M J, Boker, K H, Horn, W. Serum laminin P1 levels do not reflect critically elevated portal pressure in patients with liver cirrhosis. Hepatogasteroenterology 1997;44:1200–5.Google Scholar
Korner, T, Kropf, J, Gressner, A M. Serum laminin and hyaluronan in liver cirrhosis: markers of progression with high prognastic value. J Hepatol 1996;25:684–8.CrossRefGoogle Scholar
Murawaki, Y, Kusakabe, Y, Hirayama, C. Serum lysyl oxidase activity in chronic liver disease in comparison with serum levels of prolyl hydroxylase and laminin. Hepatology 1991;14:1167–73.CrossRefGoogle ScholarPubMed
Misaki, M, Shima, T, Yano, Y. Basement membrane-related and type III procollagen-related antigens in serum of patients with chronic viral liver disease. Clin Chem 1990;36:522–4.Google ScholarPubMed
Ji, X, Li, S, Kong, X. Clinical significance of serum 7s collagen and type VI collagen levels for the diagnosis of hepatic fibrosis. Chin Med J (Engl) 1997;110:198–201.Google Scholar
Babbs, C, Smith, A, Hunt, L P. Type III procollagen peptide: a marker of disease activity and prognosis in primary biliary cirrhosis. Lancet 1988;1:1021–4.CrossRefGoogle ScholarPubMed
Oberti, F, Valsesia, E, Pilette, C. Noninvasive diagnosis of hepatic fibrosis or cirrhosis. Gastroenterology 1997;113:1609–16.CrossRefGoogle ScholarPubMed
Gregorio, G V, Portmann, B, Karani, J. Autoimmune hepatitis/sclerosing cholangitis overlap syndrome in childhood: a 16-year prospective study. Hepatology 2001;33:544–53.CrossRefGoogle ScholarPubMed
Saile, B, Matthes, N, Knittel, T. Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology 1999;30:196–202.CrossRefGoogle ScholarPubMed
Li, D, Friedman, S L. Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol 1999;14:618–33.CrossRefGoogle ScholarPubMed
Lieber, C S. New concepts of the pathogenesis of alcoholic liver disease lead to novel treatments. Curr Gastroenterol Rep 2004;6:60–5.CrossRefGoogle ScholarPubMed
Lieber, C S, Leo, M A, Cao, Q. Silymarin retards the progression of alcohol-induced hepatic fibrosis in baboons. J Clin Gastroenterol 2003;37:336–9.CrossRefGoogle ScholarPubMed
Tilg, H, Kaser, A. Treatment strategies in nonalcoholic fatty liver disease. Nat Clin Pract Gastroenterol Hepatol 2005;2:148–55.CrossRefGoogle ScholarPubMed
Yokohama, S, Yoneda, M, Haneda, M. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 2004;40:1222–5.CrossRefGoogle ScholarPubMed
Rimola, A, Londono, M C, Guevara, G. Beneficial effect of angiotensin-blocking agents on graft fibrosis in hepatitis C recurrence after liver transplantation. Transplantation 2004;78: 686–91.CrossRefGoogle ScholarPubMed
Sakaida, I, Terai, S, Yamamoto, N. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 2004;40:1304–11.CrossRefGoogle ScholarPubMed
Fausto, N, Mead, J. Regulation of liver growth: protooncogenes and transforming growth factors. Lab Invest 1989;60:4–13.Google ScholarPubMed
Smuckler, E A, James, J L. Irreversible cell injury [abstract]. Pharmacol Rev 1984;36:77S–91S.Google Scholar
Higgins, G M, Anderson, R M. Experimental pathology of the liver: 1. Restoration of the liver of the white rat following surgical removal. Arch Pathol 1931;12:186–202.Google Scholar
Andus, T, Bauer, J, Gerok, W. Effects of cytokines on the liver. Hepatology 1991;13:364–75.CrossRefGoogle ScholarPubMed
Waterfield, M. Epidermal growth factors and related molecules. Lancet 1989;i:1243–6.CrossRefGoogle Scholar
Skov-Olsen, P, Boesby, S, Kirkegaard, P. Influence of epidermal growth factor on liver regeneration after partial hepatectomy in rats. Hepatology 1988;8:992–6.CrossRefGoogle ScholarPubMed
Ekberg, S, Carlsson, L, Carlsson, B. Plasma growth hormone pattern regulates epidermal growth factor (EGF) receptor messenger ribonucleic acid levels and EGF binding in the rat liver. Endocrinology 1989;125:2158–66.CrossRefGoogle ScholarPubMed
Francavilla, A, Ove, P, Polimeno, L. Different response to epidermal growth factor of hepatocytes in cultures isolated from male or female rat liver: inhibitor effect of estrogen on binding and mitogenic effect of epidermal growth factor. Gastroenterology 1987;93:597–605.CrossRefGoogle ScholarPubMed
Napoli, J, Prentice, D, Niinami, C. Sequential increases in the intrahepatic expression of epidermal growth factor, basic fibroblast growth factor, and transforming growth factor beta in a bile duct ligated rat model of cirrhosis. Hepatology 1997;26:624–33.Google Scholar
Hashimoto, M, Kothary, P C, Eckhauser, F E, Raper, S E. Treatment of cirrhotic rats with epidermal growth factor and insulin accelerates liver DNA synthesis after partial hepatectomy. J Gastroenterol Hepatol 1998;13:1259–65.CrossRefGoogle ScholarPubMed
Nakayama, H, Tsubouchi, H, Gohda, E. Stimulation of DNA synthesis in adult rat hepatocytes in primary culture by sera from patients with fulminant hepatic failure. Biomed Res 1985;6:231–7.CrossRefGoogle Scholar
Tsubouchi, H, Hirono, S, Gohda, E. Clinical significance of human hepatocyte growth factor in blood from patients with fulminant hepatic failure. Hepatology 1989;9:875–81.CrossRefGoogle ScholarPubMed
Gohda, E, Tsubouchi, H, Nakayama, H. Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest 1988; 81:414–19.CrossRefGoogle ScholarPubMed
Tashiro, K, Hagiya, M, Nishizawa, T. Deduced primary structure of rat hepotocyte growth factor and expression of the mRNA in rat tissue. Proc Natl Acad Sci U S A 1990;87:3200–4.CrossRefGoogle Scholar
Gohda, E, Hayashi, Y, Kawaida, A. Hepatotrophic factor in blood of mice treated with carbon tetrachloride. Life Sci 1990;46:1801–8.Google ScholarPubMed
Tsubouchi, H, Hirono, S, Gohda, E. Human hepatocyte growth factor in blood of patients with fulminant hepatic failure: I. Clinical aspects. Dig Dis Sci 1991;36:780–4.CrossRefGoogle Scholar
Shimizu, I, Ichihara, A, Nakamura, T. Hepatocyte growth factor in ascites from patients with cirrhosis. J Biochem (Tokyo) 1991;109:14–18.CrossRefGoogle ScholarPubMed
Gauldie, J, Richards, C, Harnish, D. Interferon beta2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci U S A 1987;84:7251–5.CrossRefGoogle Scholar
Mead, J E, Fausto, N. Transforming growth factor a may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci U S A 1989;86:1558–62.CrossRefGoogle ScholarPubMed
Castilla, A, Prieto, J, Fausto, N. Transforming growth factors B1 and a in a chronic liver disease: effects of interferon alpha therapy. N Engl J Med 1991;324:933–40.CrossRefGoogle Scholar
Brenner, D A, Koch, K S, Leffert, H L. Transforming growth factor alpha stimulates proto-oncogene cejun expression and a mitogenic program in primary cultures of adult rat hepatocytes. DNA 1989;8:279–85.CrossRefGoogle Scholar
Harada, K, Shiota, G, Kawasaki, H. Transforming growth factor-alpha and epidermal growth factor receptor in chronic liver disease and hepatocellular carcinoma. Liver 1999;19:318–25.CrossRefGoogle ScholarPubMed
Wollenberg, G K, Semple, E, Quinn, B A, Hayes, M A. Inhibition of proliferation of normal preneoplastic and neoplastic rat hepatocytes by transforming growth factor-beta. Cancer Res 1987;46:6595–9.Google Scholar
Nakatsukasa, H, Evarts, R P, Hsia, C C. Transforming growth factor-beta 1 and type 1 procollagen transcripts during regeneration and early fibrosis of rat liver. Lab Invest 1990;63:171–80.Google ScholarPubMed
Nagy, P, Schaff, Z, Lapis, K. Immunohistochemical detection of transforming growth factor-beta 1 in fibrotic liver diseases. Hepatology 1991;14:269–73.CrossRefGoogle ScholarPubMed
Czaja, M, Weiner, F R, Flanders, K C. In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J Cell Biol 1989;108:2477–82.CrossRefGoogle ScholarPubMed
Armendariz-Borunda, J, Seyer, J M, Kang, A H. Regulation of TGF beta gene expression in rat liver intoxicated with carbon tetrachloride. FASEB J 1990;4:215–21.CrossRefGoogle ScholarPubMed
Roberts, A B, Sporn, M B, Assoian, R K. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 1986;83:4167–71.CrossRefGoogle ScholarPubMed
Gressner, A M, Weiskirchen, R, Breitkopf, K. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002;7:d793–807.CrossRefGoogle ScholarPubMed
Flanders, K C. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004;85:47–64.CrossRefGoogle ScholarPubMed
Burgess, W H, Maciag, T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989;58: 575–606.CrossRefGoogle ScholarPubMed
Presta, M, Statuto, M, Rusnati, M. Characterization of a Mr 25,000 basic fibroblast growth factor form in adult, regenerating, and fetal rat liver. Biochem Biophys Res Commun 1989;164:1182–9.CrossRefGoogle ScholarPubMed
Ikebuchi, K, Wong, G G, Clark, S C. Interleukin-6 enhancement of interleukin-3 dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci U S A 1987;84:9035–9.CrossRefGoogle ScholarPubMed
Sharon, N, Bird, G, Goka, J. Elevated plasma IL-6 and increased severity and mortality in alcoholic hepatitis. Clin Exp Immunol 1991;84:449–53.Google Scholar
West, M A, Billiar, T R, Curran, R D. Evidence that rat Kupffer cells stimulate and inhibit hepatocyte protein synthesis in vitro by different mechanisms. Gastroenterology 1989;96:1572–82.CrossRefGoogle ScholarPubMed
Goss, J, Mangino, M J, Flye, M W. Prostaglandin E2 production during hepatic regeneration downregulates Kupffer cell IL-6 production. Ann Surg 1992;215:253–60.CrossRefGoogle ScholarPubMed
Hayakawa, T, Kondo, T, Shibata, T. Serum insulin-like growth factor II in chronic liver disease. Dig Dis Sci 1989;34:338–42.CrossRefGoogle ScholarPubMed
Wu, J C, Daughaday, W H, Lee, S D. Radioimmunoassay of serum IGF-I and IGF-II in patients with chronic liver diseases and hepatocellular carcinoma with or without hypoglycemia. J Lab Clin Med 1988;112:589–94.Google ScholarPubMed
Assy, N, Hochberg, Z, Amit, T. Growth hormone-stimulated insulin-like growth factor I and IGF-binding protein-3 in liver cirrhosis. J Hepatol 1997;27:796–802.CrossRefGoogle ScholarPubMed
Caufriez, A, Reding, P, Urbain, D. Insulin-like growth factor I: a good indicator of functional hepatocellular capacity in alcoholic liver cirrhosis. J Endocrinol Invest 1991;14:317–21.CrossRefGoogle ScholarPubMed
Shaarawy, M, Fikry, M A, Massoud, B A, Lotfy, S. Insulin-like growth factor binding protein-3: a novel biomarker for the assessment of the synthetic capacity of hepatocytes in liver cirrhosis. J Clin Endocrinol Metab 1998;83:3316–19.CrossRefGoogle ScholarPubMed
Sherlock, S. Diseases of the liver and biliary system. Boston: Blackwell, 1985:339.Google Scholar
Haellen, J, Norden, J. Liver cirrhosis unsuspected during life. A series of 79 cases. J Chronic Dis 1964;17:951–8.CrossRefGoogle ScholarPubMed
Attali, P, Ink, O, Pelletier, G. Dupuytren's contracture, alcohol consumption, and chronic liver disease. Arch Intern Med 1987;147:1065–7.CrossRefGoogle ScholarPubMed
Phillips, M M, Ramsey, G R, Conn, H O. Portacaval an anastomosis and peptic ulcer: a nonassociation. Gastroenterology 1975;68:121–31.Google ScholarPubMed
Bouchier, I. Postmortem study of the frequency of gallstones in patients with cirrhosis of the liver. Gut 1969;10:705–10.CrossRefGoogle ScholarPubMed
Nicholas, P, Rinaudo, P A, Conn, H O. Increased incidence of cholelithiasis in Laénnec's cirrhosis. Gastroenterology 1972;63:112–21.Google ScholarPubMed
Vlahcevic, Z R, Yoshida, T, Juttijudata, P. Bile acid metabolism in cirrhosis: III. Biliary lipid secretion in patients with cirrhosis and its relevance to gallstone formation. Gastroenterology 1973;64:298–303.Google Scholar
Keren, G, Boichis, H, Zwas, T S, Frand, M. Pulmonary arterio-venous fistulae in hepatic cirrhosis. Arch Dis Child 1983;58:302–4.CrossRefGoogle ScholarPubMed
Hall, G H, Laidlaw, C D. Further experimental evidence implicating reduced ferritin as a cause of digital clubbing. Clin Sci 1963;24:121–6.Google ScholarPubMed
Tobin, C E, Zariquiey, M O. Arteriovenous shunts in the human lung. Proc Soc Exp Biol Med 1950;75:827–9.CrossRefGoogle ScholarPubMed
Sheehy, T W, Berman, A. The anemia of cirrhosis. J Lab Clin Med 1960;56:72–82.Google ScholarPubMed
Roberts, H R, Cederbaum, A I. The liver and blood coagulation: physiology and pathology. Gastroenterology 1972;63:297–320.Google ScholarPubMed
Pirovino, M, Linder, R, Boss, C. Cutaneous spider nevi in liver cirrhosis: capillary microscopical and hormonal investigations. Klin Wochenschr 1988;66:298–302.CrossRefGoogle ScholarPubMed
Erlinger S, Bircher J. Cirrhosis: clinical aspects. In: Bircher, J, Mcintyre, N, Rizzetto, M, Rodes, J, eds. Oxford textbook of clinical hepatology. Oxford: Oxford University Press, 1991:380.Google Scholar
Fitzpatrick, T, Johnson, R, Polano, M. Color atlas and synopsis of clinical dermatology: common and serious diseases. 2nd ed. New York: McGraw Hill, 1994.Google Scholar
Bannayan, G A, Hajdu, S I. Gynecomastia: clinicopathologic study of 351 cases. Am J Clin Pathol 1972;57:431–7.CrossRefGoogle ScholarPubMed
Thiel, D H, Gavaler, J S, Schade, R R. Liver disease and the hypothalamic pituitary gonadal axis. Semin Liver Dis 1985;5: 35–45.CrossRefGoogle ScholarPubMed
Horton, R, Tait, J F. Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of its conversion to testosterone. J Clin Invest 1966; 45:301–13.CrossRefGoogle Scholar
Burack, W R, Hollister, R M. Tuberculous peritonitis: a study of forty-seven proved cases encountered by a general medical unity in twenty-five years. Am J Med 1960;28:510–23.CrossRefGoogle Scholar
Rimola, A, Soto, R, Bory, F. Reticuloendothelial system phagocytic activity in cirrhosis and its relation to bacterial infections and prognosis. Hepatology 1984;4:53–8.CrossRefGoogle ScholarPubMed
Rajkovic, I A, Williams, R. Abnormalities of neutrophil phagocytosis, intracellular killing, and metabolic activity in alcoholic cirrhosis and hepatitis. Hepatology 1986;6:252–62.CrossRefGoogle ScholarPubMed
Hassner, A, Kletter, Y, Shlag, D. Impaired monocyte function in liver cirrhosis. Br J Med 1981;282:1262–3.CrossRefGoogle ScholarPubMed
Wyke, R J, Rajkovic, I A, Williams, R. Impaired opsonization by serum from patients with chronic liver disease. Clin Exp Immunol 1983;51:91–8.Google ScholarPubMed
Yousif-Kadaru, A G, Rajkovic, I A, Wyke, R J. Defects in serum attractant activity in different types of chronic liver diseases. Gut 1984;25:79–84.CrossRefGoogle Scholar
Kourilsky, O, Leroy, C, Peltier, A P. Complement and liver cell function in 53 patients with liver disease. Am J Med 1973;55: 574–678.CrossRefGoogle ScholarPubMed
Fox, R A, Dudley, F J, Sherlock, S. The serum concentration of the third component of complement beta-1C-beta-1A in liver disease. Gut 1971;12:574–8.CrossRefGoogle ScholarPubMed
Potter, B J, Trueman, A M, Jones, E A. Serum complement in chronic liver disease. Gut 1973;14:451–6.CrossRefGoogle ScholarPubMed
Deviere, J, Denys, C, Schandene, L. Decreased proliferation activity associated with activation markers in patients with alcoholic liver cirrhosis. Clin Exp Immunol 1988;72:377–82.Google Scholar
Rutenburg, A M, Sonnenblick, E, Koven, I. Comparative response of normal and cirrhotic rats to intravenously injected bacteria. Proc Soc Exp Biol 1959;101:279–81.CrossRefGoogle ScholarPubMed
Kerr, D N, Pearson, D T, Read, A E. Infection of the ascitic fluid in patients with cirrhosis. Gut 1963;4:394–8.CrossRefGoogle ScholarPubMed
Sokol, R. Medical management of the infant or child with chronic liver disease. Semin Liver Dis 1987;7:166–7.CrossRefGoogle ScholarPubMed
Sokol, R J, Stall, C. Anthropometric evaluation of children with chronic liver disease. Am J Clin Nutr 1990;52:203–8.CrossRefGoogle ScholarPubMed
Chin, S E, Shepherd, R W, Thomas, B J. The nature of malnutrition in children with end-stage liver disease awaiting orthotopic liver transplantation. Am J Clin Nutr 1992;56:164–8.CrossRefGoogle ScholarPubMed
Kaufman, S S, Murray, N D, Wood, R P. Nutritional support for the infant with extrahepatic biliary atresia. J Pediatr 1987;110:679–86.CrossRefGoogle ScholarPubMed
Reichling, J J, Kaplan, M M. Clinical use of serum enzymes in liver disease. Dig Dis Sci 1988;33:1601–14.CrossRefGoogle ScholarPubMed
St Louis P. Biochemical studies: liver and intestine. In: Walker, W A, Durie, P R, Hamilton, J R., eds. Pediatric gastroenterology and nutrition. Philadelphia: BC Decker, 1991;1363–73.Google Scholar
Kaplan, M. Alkaline phosphatase. Gastroenterology 1972;62:452–68.Google ScholarPubMed
Astin, T. Systemic reaction to bromsulphthalein. Br Med J 1965;2:1433.CrossRefGoogle ScholarPubMed
Balistreri, W F, Setchell, K. Newer liver function tests. Front Gastro Res 1989;16:220–45.CrossRefGoogle Scholar
Schoeller, D A, Schneider, J F, Solomons, N W. Clinical diagnosis with the stable isotope 13C in CO2 breath tests: methodology and fundamental considerations. J Lab Clin Med 1977;90:412–21.Google ScholarPubMed
Schneider, J F, Baker, A L, Haines, N W. Aminopyrine N-demethylation: a prognostic test of liver function in patients with alcoholic liver disease. Gastroenterology 1980;79:1145–50.Google ScholarPubMed
Renner, E, Wietholtz, H, Huguenin, P. Caffeine: a model compound for measuring liver function. Hepatology 1984;4: 38–46.CrossRefGoogle ScholarPubMed
Jost, G, Wahllander, A, Mandach, U. Overnight salivary caffeine clearance: a liver function test suitable for routine use. Hepatology 1987;7:338–44.CrossRefGoogle ScholarPubMed
Post, J, Patek, A. Serum proteins in cirrhosis of the liver. Arch Intern Med 1942;169:67–82.CrossRefGoogle Scholar
Hasch, E, Jarnum, S, Tygstrup, N. Albumin synthesis rate as a measure of liver function in patients with cirrhosis. Acta Med Scand 1967;182:83–92.CrossRefGoogle Scholar
Rothschild, M A, Oratz, M, Zimmon, D. Albumin synthesis in cirrhotic subjects with ascites studied with carbonate 14-C. J Clin Invest 1969;48:344–50.CrossRefGoogle Scholar
Haider, M, Haider, S Q. Assessment of protein-calorie malnutrition. Clin Chem 1984;30:1286–99.Google ScholarPubMed
Dymock, I W, Tucker, J S, Woolf, I L. Coagulation studies as a prognostic index in acute liver failure. Br J Haematol 1975; 29:385–95.CrossRefGoogle ScholarPubMed
Bernuau, J, Goudeau, A, Poynard, T. Multivariate analysis of prognostic factors in fulminant hepatitis B. Hepatology 1986;6:648–51.CrossRefGoogle ScholarPubMed
Biland, L, Duckert, F, Prisender, S. Qualitative estimation of coagulation factors in liver disease: the diagnostic and prognostic value of factor XIII, factor V, and plasminogens. Thromb Haemost 1978;39:646–56.Google Scholar
Schlichting, P, Christensen, E, Andersen, P K. Prognostic factors in cirrhosis identified by Cox's regression model. Hepatology 1983;6:889–95.Google Scholar
Malatack, J J, Schaid, D J, Urbach, A H. Choosing a pediatric recipient I-or orthotopic liver transplantation. J Pediatr 1987; 111:479–89.CrossRefGoogle Scholar
Starling, E. On the absorption of fluids from the connective tissue spaces. J Physiol (Lond) 1896;19:312.CrossRefGoogle ScholarPubMed
Gines, P, Arroyo, V, Rodes, J. Pathophysiology, complications, and treatment of ascites. Clin Liver Dis 1997;1:129–55.CrossRefGoogle ScholarPubMed
Morali, G A, Sniderman, K W, Deitel, K M. Is sinusoidal portal hypertension a necessary factor for the development of hepatic ascites?J Hepatol 1992;16:249–50.CrossRefGoogle ScholarPubMed
Arroyo, V, Rodes, J. A rational approach to the treatment of ascites. Postgrad Med 1975;51:558–62.CrossRefGoogle ScholarPubMed
Gines P, Arroyo V, Rodes J. Disorders of renal function in cirrhosis. In: Boyer, T, Zakim, D, eds. Hepatology: a textbook of liver disease. Philadelphia: BC Decker, 1996:659–64.Google Scholar
Gines, P, Fernandez-Esparrach, G, Arroyo, V. Pathogenesis of ascites in cirrhosis. Semin Liver Dis 1997;17:175–89.CrossRefGoogle ScholarPubMed
Epstein, M, Berk, D P, Hollenberg, N K. Renal failure in the patient with cirrhosis: the role of active vasoconstriction. Am J Med 1970;49:175–85.CrossRefGoogle ScholarPubMed
Schrier, R. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy, parts I-II. N Engl J Med 1988;9:1127–34.CrossRefGoogle Scholar
Lieberman, F L, Reynolds, T B. Plasma volume in cirrhosis of the liver; its relation to portal hypertension, ascites, and renal failure. J Clin Invest 1967;46:1297–308.CrossRefGoogle ScholarPubMed
Lieberman, F L, Denison, E K, Reynolds, T B. The relationship of volume, portal hypertension, ascites, and renal sodium retention in cirrhosis: the overflow theory of ascites formation. Ann NY Acad Sci 1970;170:202–12.CrossRefGoogle Scholar
Anderson, R J, Cronin, R E, McDonald, K M. Mechanisms of portal hypertension-induced alterations in renal hemodynamics, renal water excretion, and renin secretion. J Clin Invest 1976;58:964–70.CrossRefGoogle ScholarPubMed
Levy M. Observation on real function and ascites formation in dogs with experimental portal cirrhosis. In: Epstein, M, ed. The kidney in liver disease. New York: Elsevier, 1978:131–42.Google Scholar
Levy, M, Allotey, J B. Temporal relationships between urinary salt retention and altered systemic hemodynamics in dogs with experimental cirrhosis. J Lab Clin Med 1978;92:560–9.Google ScholarPubMed
Levy, M, Wexler, M J. Renal sodium retention and ascites formation on dogs with experimental cirrhosis but without portal hypertension or increased splanchnic vascular capacity. J Lab Clin Med 1978;91:520–36.Google ScholarPubMed
Rosoff, L Jr, Zia, P, Reynolds, T. Studies of renin and aldosterone in cirrhotic patients with ascites. Gastroenterology 1975;69:698–705.Google ScholarPubMed
Epstein M. Hepatorenal syndrome. In: Epstein, M, ed. The kidney in liver disease. New York: Elsevier Biomedical, 1983:377.Google Scholar
Levy M. Pathophysiology of ascites formation. In: Epstein, M, ed. The kidney in liver disease. New York: Elsevier Biomedical, 1983:245.Google Scholar
Klepetko, W, Muller, C, Hartter, E. Plasma atrial natriuretic factor in cirrhotic patients with ascites: effect of peritoneovenous shunt implantation. Gastroenterology 1988;95:764–70.CrossRefGoogle ScholarPubMed
Bichet, D G, Putten, V J, Schrier, R W. Potential role of increased sympathetic activity impaired sodium and water excretion in cirrhosis. N Engl J Med 1982;307:552–7.CrossRefGoogle ScholarPubMed
Floras, J S, Legault, L, Morali, G A. Increased sympathetic outflow in cirrhosis and ascites: direct evidence from intraneural recordings. Ann Intern Med 1991;114:373–80.CrossRefGoogle ScholarPubMed
Schrier, R W, Arroyo, VBernardi, M. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988;8:1151–7.CrossRefGoogle ScholarPubMed
Claria, J, Jimenez, W, Arroyo, V. Effects of V1-vasopressin receptor blockade on arterial pressure in conscious rats with cirrhosis and ascites. Gastroenterology 1991;100:494–501.CrossRefGoogle ScholarPubMed
Pariente, E, Bataille, C, Bercoff, E. Acute effects of captopril on systemic and renal hemodynamics and on renal functions in cirrhotic patients with ascites. Gastroenterology 1985;88:1255–9.CrossRefGoogle Scholar
Guevara, M, Gines, P, Fernandez-Esparrach, G. Effects of normalization of vasoconstrictor systems on renal functions in cirrhotic patients with hepatorenal syndrome. J Hepatol 1996;25:71.Google Scholar
Vorobioff, J, Bredfeldt, J E, Groszmann, R J. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology 1984;87:1120–6.Google ScholarPubMed
Groszmann, R J. Hyperdynamic circulation of liver disease 40 years later: pathophysiology and clinical consequences. Hepatology 1994;20:1359–63.CrossRefGoogle ScholarPubMed
Guarner, C, Soriano, G, Tomas, A. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology 1993;18:1139–43.CrossRefGoogle ScholarPubMed
Sieber, C C, Lopez-Talavera, J C, Groszmann, R J. Role of nitric oxide in the in vitro splanchnic vascular hyporeactivity in ascitic cirrhotic rats. Gastroenterology 1993;104:1750–4.CrossRefGoogle ScholarPubMed
Sieber, C C, Groszmann, R J. Nitric oxide mediates hyporeactivity to vasopressors in mesenteric vessels of portal hypertensive rats. Gastroenterology 1992;103:235–9.CrossRefGoogle ScholarPubMed
Battista, S, Fusco, B, Mengozzi, G. Systemic and portal nitric oxide and endothelin-1 levels in cirrhotic patients. Hepatology 1995;23(suppl 1):73A.Google Scholar
Vallance, P, Moncada, S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide?Lancet 1991;337:776–8.CrossRefGoogle ScholarPubMed
Cattau, E L Jr, Benjamin, S B, Knuff, T E. The accuracy of the physical examination in the diagnosis of suspected ascites. JAMA 1982;247:1164–6.CrossRefGoogle Scholar
Dinkel, E, Lehnart, R, Troger, J. Sonographic evidence of intraperitoneal fluid: an experimental study and its clinical implications. Pediatr Radiol 1984;14:299–303.CrossRefGoogle ScholarPubMed
Franken, E J. Ascites in infants and children: roentgen diagnosis. Radiology 1972;102:393–8.CrossRefGoogle ScholarPubMed
Griscom, N T, Colodny, A H, Rosenberg, H K. Diagnostic aspects of neonatal ascites: report of 27 cases. Am J Roentgenol 1977;128:961–9.CrossRefGoogle ScholarPubMed
Runyon, B A, Montano, A A, Akriviadis, E A. The serum-ascites albumin gradient is superior to the exudate-transudate concept in the differential diagnosis of ascites. Ann Intern Med 1992;117:215–20.CrossRefGoogle ScholarPubMed
Runyon, B A, Canawati, H N, Akriviadis, E A. Optimization of ascitic fluid culture technique. Gastroenterology 1988;95:1351–5.CrossRefGoogle ScholarPubMed
Hoefs, J C, Runyon, B A. Spontaneous bacterial peritonitis. Dis Mon 1985;31:1–48.CrossRefGoogle ScholarPubMed
Pokros, P J, Reynolds, T B. Rapid diuresis in patients with ascites from chronic liver disease: the importance of peripheral edema. Gastroenterology 1986;90:1827–33.CrossRefGoogle Scholar
Runyon, B A. Management of adult patients with ascites caused by cirrhosis. Hepatology 1998;27:264–72.CrossRefGoogle ScholarPubMed
Fogel, M R, Sawhney, V K, Neal, E A. Diuresis in the ascitic patient: a randomized controlled trial of three regimens. J Clin Gastroenterol 1981;3:73–80.CrossRefGoogle ScholarPubMed
Perez-Ayuso, R M, Arroyo, V, Planas, R. Randomized comparative study of efficacy of furosemide versus spironolactone in nonazotemic cirrhosis with ascites. Relationship between the diuretic response and the activity of the renin-aldosterone system. Gastroenterology 1983;84:961–8.Google ScholarPubMed
Gregory, P B, Broekelschen, P H, Hill, M D. Complications of diuresis in the alcoholic patient with ascites: a controlled trial. Gastroenterology 1977;73:534–8.Google ScholarPubMed
Moult, P J, Lunzer, M R, Trash, D B. Use of bumetanide in the treatment of ascites due to liver disease. Gut 1974;15:988–92.CrossRefGoogle ScholarPubMed
Arroyo, V, Bosch, J, Casamitjana, R. Use of piretanide, a new loop diuretic, in cirrhosis with ascites: relationship between the diuretic response and the plasma aldosterone level. Gut 1980;21:855–9.CrossRefGoogle ScholarPubMed
Lebrec, D, Hillon, P, Munoz, C. The effect of propranolol on portal hypertension in patients with cirrhosis: a hemodynamic study. Hepatology 1982;2:523–7.CrossRefGoogle ScholarPubMed
Buhler, F R, Laragh, J H, Baer, L. Propranolol inhibition of renin secretion. A specific approach to diagnosis and treatment of renin-dependent hypertensive diseases. N Engl J Med 1972;287:1209–14.CrossRefGoogle ScholarPubMed
Wilkinson, S P, Bernardi, M, Smith, I K. Effect of beta-adrenergic blocking drugs on the renin-aldosterone system, sodium excretion and renal hemodynamics. Gastroenterology 1977;73:659–63.Google ScholarPubMed
Rector, W G Jr, Reynolds, T B. Propranolol in the treatment of cirrhotic ascites. Arch Intern Med 1984;144:1761–3.CrossRefGoogle ScholarPubMed
Gines, P, Arroyo, V, Quintero, E. Comparison between paracentesis and diuretics in the treatment of cirrhotics with tense ascites: results of a randomized study. Gastroenterology 1987;93:234–41.CrossRefGoogle ScholarPubMed
Pinto, P C, Amerian, J, Reynolds, T B. Large-volume paracentesis in nonedematous patients with tense ascites: its effect on intravascular volume. Hepatology 1988;8:207–10.CrossRefGoogle ScholarPubMed
Gines, P, Tito, L, Arroyo, V. Randomized comparative study of therapeutic paracentesis with and without intravenous albumin in cirrhosis. Gastroenterology 1988;94:1493–502.CrossRefGoogle ScholarPubMed
Tito, L, Gines, P, Arroyo, V. Total paracentesis associated with intravenous albumin management patients with cirrhosis and ascites. Gastroenterology 1990;98:146–51.CrossRefGoogle ScholarPubMed
Smart, H L, Triger, D R. A randomized prospective trial comparing daily paracentesis and intravenous albumin with recirculation in diuretic refractory ascites. J Hepatol 1990;10:191–7.CrossRefGoogle ScholarPubMed
Wilde, J T, Cooper, P, Kennedy, H J. Coagulation disturbances following ascites recirculation. J Hepatol 1990;10:217–22.CrossRefGoogle ScholarPubMed
Quiroga, J, Sangro, B, Nunez, M. Transjugular intrahepatic portal-systemic shunt in the treatment of refractory ascites: effect on clinical, renal, humoral, and hemodynamic parameters. Hepatology 1995;21:986–94.Google ScholarPubMed
Ochs, A, Rossle, M, Haag, K. The transjugular intrahepatic portosystemic stent-shunt procedure for refractory ascites. N Engl J Med 1995;332:1192–7.CrossRefGoogle ScholarPubMed
Stanley, M M, Ochi, S, Lee, K K. Peritoneovenous shunting as compared with medical treatment in patients with alcoholic cirrhosis and massive ascites. Veterans Administration Cooperative Study on Treatment of Alcoholic Cirrhosis with Ascites. N Engl J Med 1989;321:1632–8.CrossRefGoogle ScholarPubMed
Hassall, E, Benson, L, Hart, M. Hepatic encephalopathy after portacaval shunt in a noncirrhotic child. J Pediatr 1984;105: 439–41.CrossRefGoogle Scholar
Zaki, A E, Ede, R J, Davis, M. Experimental studies of blood brain barrier permeability in acute hepatic failure. Hepatology 1984;4:359–63.CrossRefGoogle ScholarPubMed
Zaki, A E, Wardle, E N, Canalese, J. Potential toxins of acute liver failure and their effects on blood–brain barrier permeability. Experientia 1983;39:988–91.CrossRefGoogle ScholarPubMed
Roy, S, Pomier-Layrargues, G, Butterworth, R F. Hepatic encephalopathy in cirrhotic and portacaval shunted dogs: lack of changes in brain GABA uptake, brain GABA levels, brain glutamic acid decarboxylase activity and brain postsynaptic GABA receptors. Hepatology 1988;8:845–9.CrossRefGoogle ScholarPubMed
Jalan, R, Hayes, P C. Hepatic encephalopathy and ascites. Lancet 1997;350:1309–15.CrossRefGoogle ScholarPubMed
Walker, C O, Schenker, S. Pathogenesis of hepatic encephalopathy – with special reference to the role of ammonia. Am J Clin Nutr 1970;23:619–32.CrossRefGoogle ScholarPubMed
Nance, F C, Kaufman, H J, Kline, D G. Role of urea in the hyperammonemia of germ-free Eck fistula dogs. Gastroenterology 1974;66:108–12.Google ScholarPubMed
Snodgrass, P J, DeLong, G R. Urea-cycle enzyme deficiencies and an increased nitrogen load producing hyperammonemia in Reye's syndrome. N Engl J Med 1976;294:855–60.CrossRefGoogle ScholarPubMed
Bessman, S P, Bradley, J E. Uptake of ammonia by muscle; its implications in ammoniagenic coma. N Engl J Med 1955;253: 1143–7.CrossRefGoogle ScholarPubMed
Uribe, M, Marquez, M A, Ramos, Garcia G. Treatment of chronic portal systemic encephalopathy with vegetable and animal protein diets: a controlled cross-over study. Dig Dis Sci 1982;27:1109–16.CrossRefGoogle Scholar
Pappas, S C, Ferenci, P, Schafer, D F. Visual evoked potentials in a rabbit model of hepatic encephalopathy. II. Comparison of hyperammonemic encephalopathy, postictal coma, and coma induced by synergistic neurotoxins. Gastroenterology 1984;86:546–51.Google Scholar
Cole, M, Rutherford, R B, Smith, F O. Experimental ammonia encephalopathy in the primate. Arch Neurol 1972;26:130–6.CrossRefGoogle ScholarPubMed
MacGillilray B. EEG monitoring in metabolic liver disease. In: Glaser, G, ed. Handbook of electroencephalography and clinical neurophysiology. Vol 15: Metabolic endocrine and toxi diseases. New York: Elsevier Scientific Publishing, 1975:5–26.Google Scholar
Phear, E A, Ruebner, B, Sherlock, S. Methionine toxicity in liver disease and its prevention by chlortetracycline. Clin Sci (Lond) 1956;15:93–117.Google ScholarPubMed
Challenger, F, Walshe, J M. Foetor hepaticus. Lancet 1955;268:1239–41.CrossRefGoogle ScholarPubMed
Zieve, L, Doizaki, W M, Zieve, J. Synergism between mercaptans and ammonia or fatty acids in the production of coma: a possible role for mercaptans in the pathogenesis of hepatic coma. J Lab Clin Med 1974;83:16–28.Google ScholarPubMed
McClain, C J, Zieve, L, Doizaki, W M. Blood methanethiol in alcoholic liver disease with and without hepatic encephalopathy. Gut 1980;21:318–23.CrossRefGoogle ScholarPubMed
Chen, S, Mahadevan, V, Zieve, L. Volatile fatty acids in the breath of patients with cirrhosis of the liver. J Lab Clin Med 1970;75:622–7.Google ScholarPubMed
Linscheer, W G, Castell, D O, Platt, R R. A new method for evaluation of portasystemic shunting. The rectal octanoate tolerance test. Gastroenterology 1969;57:415–23.Google ScholarPubMed
Zieve, L. Coma production with ammonia: synergistic factors. Gastroenterology 1980;78:1327A.Google Scholar
Fisher, J E, Baldessarini, R J. False neurotransmitters and hepatic failure. Lancet 1971;II:75–80.CrossRefGoogle Scholar
Borg, J, Warter, J M, Schlienger, J L. Neurotransmitter modifications in human cerebrospinal fluid and serum during hepatic encephalopathy. J Neurol Sci 1982;57:343–56.CrossRefGoogle ScholarPubMed
Cuilleret, G, Pomier-Layrargues, G, Pons, F. Changes in brain catecholamine levels in human cirrhotic hepatic encephalopathy. Gut 1980;21:565–9.CrossRefGoogle ScholarPubMed
Hirayama, C. Tryptophan metabolism in liver disease. Clin Chim Acta 1971;32:191–7.CrossRefGoogle ScholarPubMed
Record, C O, Chase, R A, Alberti, K G. Disturbances in glucose metabolism in patients with liver damage due to paracetamol overdose. Clin Sci Mol Med 1975;49:473–9.Google ScholarPubMed
Schafer, D F, Fowler, J M, Jones, E A. Colonic bacteria: a source of gamma-aminobutyric acid in blood. Proc Soc Exp Biol Med 1981;167:301–3.CrossRefGoogle ScholarPubMed
Schafer, D F, Jones, E A. Hepatic encephalopathy and the gamma-aminobutyric-acid neurotransmitter system. Lancet 1982;1:18–20.CrossRefGoogle ScholarPubMed
Ferenci, P, Covell, D, Schafer, D F. Metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid in a rabbit model of fulminant hepatic failure. Hepatology 1983;3:507–12.CrossRefGoogle Scholar
Ferenci, P, Schafer, D F, Kleinberger, G. Serum levels of gamma-aminobutyric-acid-like activity in acute and chronic hepatocellular disease. Lancet 1983;2:811–14.CrossRefGoogle ScholarPubMed
Schafer, D F, Fowler, J M, Munson, P J. Gamma-aminobutyric acid and benzodiazepine receptors in an animal model of fulminant hepatic failure. J Lab Clin Med 1983;102:870–80.Google Scholar
Blitzer, B L, Waggoner, J G, Jones, E A. A model of fulminant hepatic failure in the rabbit. Gastroenterology 1978;74:664–71.Google ScholarPubMed
Smiaowski A. The effect of intrahippocampal administration of gamma-aminobutyric acid (GABA). In. Fonnum, E, ed. Amino acids as chemical transmitters. New York: Plenum Press, 1978:1977.CrossRefGoogle Scholar
Lavoie, J, Giguere, J F, Layrargues, G P. Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J Neurochem 1987;49:692–7.CrossRefGoogle ScholarPubMed
Butterworth, R F, Lavoie, J, Giguere, J F. Affinities and densities of high-affinity [3H]muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Hepatology 1988;8:1084–8.CrossRefGoogle ScholarPubMed
Record, C. Neurochemistry of hepatic encephalopathy. Gut 1991;32:1261–3.CrossRefGoogle ScholarPubMed
Baraldi, M, Zeneroli, M L, Ventura, E. Supersensitivity of benzodiazepine receptors in hepatic encephalopathy due to fulminant hepatic failure in the rat: reversal by a benzodiazepine antagonist. Clin Sci (Lond) 1984;67:167–75.CrossRefGoogle ScholarPubMed
Olasmaa, M, Guidotti, A, Rothstein, J D. Naturally occurring benzodiazepines in CSF of patients with hepatic encephalopathy. Sjoc Nekurosci Abs 1988;15:199. 8.Google Scholar
Scolo-Levizzaire, G, Steinmann, E. Reversal of hepatic coma by benzodiazepine antagonist. Lancet 1985;i:1324–5.CrossRefGoogle Scholar
Pomier-Layrargues, G, Giguere, J F, Butterworth, R F. Clinical trials of the efficacy of fluamzenil in hepatic coma. J Hepatol 1990; 10:S13.Google Scholar
Jones, E A, Basile, A S. Does ammonia contribute to increased GABA-ergic neurotransmission in liver failure?Metab Brain Dis 1998;13:351–60.CrossRefGoogle ScholarPubMed
Faloon, W W, Evans, G L. Precipitating factors in genesis of hepatic coma. N Y State J Med 1970;70:2891–6.Google ScholarPubMed
Cadranel, J F, Lebiez, E, Martino, Di V. Focal neurological signs in hepatic encephalopathy in cirrhotic patients: an underestimated entity?Am J Gastroenterol 2001;96:515–18.CrossRefGoogle Scholar
Watanabe, A. Cerebral changes in hepatic encephalopathy. J Gastroenterol Hepatol 1998;13:752–60.CrossRefGoogle ScholarPubMed
Kostler, H. Proton magnetic resonance spectroscopy in portal-systemic encephalopathy. Metab Brain Dis 1998;13:291–301.CrossRefGoogle ScholarPubMed
Dawson, A M, McLaren, J, Sherlock, S. Neomycin in the treatment of hepatic coma. Lancet 1957;273:1262–8.Google ScholarPubMed
Atterbury, C E, Maddrey, W C, Conn, H O. Neomycin-sorbitol and lactulose in the treatment of acute portal-systemic encephalopathy. A controlled, double-blind clinical trial. Am J Dig Dis 1978; 23:398–406.CrossRefGoogle ScholarPubMed
Berk, D P, Chalmers, T. Deafness complicating antibiotic therapy of hepatic encephalopathy. Ann Intern Med 1970;73:393–6.CrossRefGoogle ScholarPubMed
Cabrera, J, Arroyo, V, Ballesta, A M. Aminoglycoside nephrotoxicity in cirrhosis. Value of urinary beta 2-microglobulin to discriminate functional renal failure from acute tubular damage. Gastroenterology 1982;82:97–105.Google ScholarPubMed
Elkington, S G, Floch, M H, Conn, H O. Lactulose in the treatment of chronic portal-systemic encephalopathy. A double-blind clinical trial. N Engl J Med 1969;281:408–12.CrossRefGoogle ScholarPubMed
Conn, H O, Leevy, C M, Vlahcevic, Z R. Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy. A double blind controlled trial. Gastroenterology 1977;72(4 pt 1):573–83.Google ScholarPubMed
Conn, H O, Lieberthal, M M. The hepatic coma syndromes and lactulose. Baltimore: Williams & Wilkins, 1979:261.Google Scholar
Bircher, J, Haemmerli, U P, Trabert, E. The mechanism of action of lactulose in portal-systemic encephalopathy. Non-ionic diffusion of ammonia in the canine colon. Rev Eur Etud Clin Biol 1971;16:352–7.Google ScholarPubMed
Vince, A, Zeegen, R, Drinkwater, J E. The effect of lactulose on the faecal flora of patients with hepatic encephalopathy. J Med Microbiol 1974;7:163–8.CrossRefGoogle ScholarPubMed
Uribe, M, Campollo, O, Vargas, F. Acidifying enemas (lactitol and lactose) vs. nonacidifying enemas (tap water) to treat acute portal-systemic encephalopathy: a double-blind, randomized clinical trial. Hepatology 1987;7:639–43.CrossRefGoogle ScholarPubMed
Vince, A, Killingley, M, Wrong, O M. Effect of lactulose on ammonia production in a fecal incubation system. Gastroenterology 1978;74:544–9.Google Scholar
Morgan, M Y, Hawley, K E. Lactitol vs. lactulose in the treatment of acute hepatic encephalopathy in cirrhotic patients: a double-blind, randomized trial. Hepatology 1987;7:1278–84.CrossRefGoogle ScholarPubMed
Sabath, L D, Toftegaard, I. Rapid microassays for clindamycin and gentamicin when present together and the effect of pH and of each on the antibacterial activity of the other. Antimicrob Agents Chemother 1974;6:54–9.CrossRefGoogle ScholarPubMed
Weber F. Combination therapy with lactulose and antibiotics. In: Seeff, L B, Conn, H, eds. Hepatic encephalopathy: management with lactulose a and related carbohydrates. East Lansing, MI: Medi Ed Press, 1988:207–17.Google Scholar
Pirotte, G, Guffens, J M, Devos, J. Comparative study of basal arterial ammonemia of orally-induced hyperammonemia of chronic portal systemic encephalopathy, treated with neomycin, lactulose, and an association of neomycin and lactulose. Digestion 1974;10:435–44.CrossRefGoogle Scholar
Eriksson, L S, Persson, A, Wahren, J. Branched-chain amino acids in the treatment of chronic hepatic encephalopathy. Gut 1982;23:801–6.CrossRefGoogle ScholarPubMed
Wahren, J, Denis, J, Desurmont, P. Is intravenous administration of branched chain amino acids effective in the treatment of hepatic encephalopathy? A multicenter study. Hepatology 1983;3:475–80.CrossRefGoogle ScholarPubMed
Horst, D, Grace, N D, Conn, H O. Comparison of dietary protein with an oral, branched chain-enriched amino acid supplement in chronic portal-systemic encephalopathy: a randomized controlled trial. Hepatology 1984;4:279–87.CrossRefGoogle ScholarPubMed
Cascino, A, Cangiano, C, Calcaterra, V. Plasma amino acids imbalance in patients with liver disease. Am J Dig Dis 1978; 23:591–8.CrossRefGoogle ScholarPubMed
Rossi-Fanelli, F, Freund, H, Krause, R. Induction of coma in normal dogs by the infusion of aromatic amino acids and its prevention by the addition of branched-chain amino acids. Gastroenterology 1982;83:664–71.Google ScholarPubMed
Rossi-Fanelli, F, Riggio, O, Cangiano, C. Branched-chain amino acids vs lactulose in the treatment of hepatic coma: a controlled study. Dig Dis Sci 1982;27:929–35.CrossRefGoogle ScholarPubMed
McGhee, A, Henderson, J M, Millikan, W J Jr. Comparison of the effects of Hepatic-Aid and a Casein modular diet on encephalopathy, plasma amino acids, and nitrogen balance in cirrhotic patients. Ann Surg 1983;197:288–93.CrossRefGoogle Scholar
Riordan, S M, Williams, R. Treatment of hepatic encephalopathy. N Engl J Med 1997;337:473–9.CrossRefGoogle ScholarPubMed
Fabbri, A, Magrini, N, Bianchi, G. Overview of randomized clinical trials of oral branched-chain amino acid treatment in chronic hepatic encephalopathy. JPEN J Parenter Enteral Nutr 1996;20:159–64.CrossRefGoogle ScholarPubMed
Charlton, C P, Buchanan, E, Holden, C E. Intensive enteral feeding in advanced cirrhosis: reversal of malnutrition without precipitation of hepatic encephalopathy. Arch Dis Child 1992;67:603–7.CrossRefGoogle ScholarPubMed
Ferenci P, Grim G, Meryn S. Benzodiazepine antagonists in the treatment of human hepatic encephalopathy. In: Santiago, G, ed. Cirrhosis, hepatic encephalopathy and ammonium toxicity. New York: Plenum Press, 1990:255–65.Google Scholar
Gyr, K, Meier, R. Flumazenil in the treatment of portal systemic encephalopathy – an overview. Intensive Care Med 1991; 17(suppl 1):S39–42.CrossRefGoogle ScholarPubMed
Ferenci, P, Herneth, A, Steindl, P. Newer approaches to therapy of hepatic encephalopathy. Semin Liver Dis 1996;16:329–38.CrossRefGoogle ScholarPubMed
Lunzer, M, James, I M, Weinman, J. Treatment of chronic hepatic encephalopathy with levodopa. Gut 1974;15:555–61.CrossRefGoogle ScholarPubMed
Morgan, M Y, Jakobovits, A W, James, I M. Successful use of bromocriptine in the treatment of chronic hepatic encephalopathy. Gastroenterology 1980;78:663–70.Google ScholarPubMed
Uribe, M, Farca, A, Marquez, M A. Treatment of chronic portal systemic encephalopathy with bromocriptine: a double-blind controlled trial. Gastroenterology 1979;76:1347–51.Google ScholarPubMed
Rossle, M, Siegerstetter, V, Huber, M. The first decade of the transjugular intrahepatic portosystemic shunt (TIPS): state of the art. Liver 1998;18:73–89.CrossRefGoogle ScholarPubMed
Dodds, W J, Hoyer, L W. Coagulation activities in perfused organs: regulation by addition of animal plasmas. Br J Haematol 1974; 26:497–509.CrossRefGoogle ScholarPubMed
Saito, H, Hamilton, S M, Tavill, A S. Synthesis and release of Hageman factor (Factor XII) by the isolated perfused rat liver. J Clin Invest 1983;72:948–54.CrossRefGoogle ScholarPubMed
Deykin, D, Cochios, F, DeCamp, G. Hepatic removal of activated factor X by the perfused rabbit liver. Am J Physiol 1968;214:414–19.Google ScholarPubMed
Duetsch, D. Blood coagulation changes in liver disease. Prog Liver Dis 1965;2:69–83.CrossRefGoogle Scholar
Aster R. Production, distribution, life-span, and fate of platelets. In: Beutler, E, Williams, W J, eds. Hematology. New York: McGraw-Hill, 1977:1210.Google Scholar
Gazzard, B G, Portmann, B, Murray-Lyon, I M. Causes of death in fulminant hepatic failure and relationship to quantitative histological assessment of parenchymal damage. Q J Med 1975;44:615–26.Google ScholarPubMed
Weston, M J, Langley, P G, Rubin, M H. Platelet function in fulminant hepatic failure and effect of charcoal haemoperfusion. Gut 1977;18:897–902.CrossRefGoogle ScholarPubMed
Ingeberg, S, Jacobsen, P, Fischer, E. Platelet aggregation and release of ATP in patients with hepatic cirrhosis. Scand J Gastroenterol 1985;20:285–8.CrossRefGoogle ScholarPubMed
Owen, J S, Hutton, R A, Day, R C. Platelet lipid composition and platelet aggregation in human liver disease. J Lipid Res 1981;22:423–30.Google ScholarPubMed
O'Grady, J G, Langley, P G, Isola, L M. Coagulopathy of fulminant hepatic failure. Semin Liver Dis 1986;6:159–63.CrossRefGoogle ScholarPubMed
Hughes, R D, Lane, D A, Ireland, H. Fibrinogen derivatives and platelet activation products in acute and chronic liver disease. Clin Sci (Lond) 1985;68:701–7.CrossRefGoogle ScholarPubMed
Francis, J L, Armstrong, D J. Acquired dysfibrinogenaemia in liver disease. J Clin Pathol 1982;35:667–72.CrossRefGoogle ScholarPubMed
Soria, J, Soria, C, Ryckewaert, J J. Study of acquired dysfibrinogenaemia in liver disease. Thromb Res 1980;19:29–41.CrossRefGoogle ScholarPubMed
Martinez, J, Palascak, J E, Kwasniak, D. Abnormal sialic acid content of the dysfibrinogenemia associated with liver disease. J Clin Invest 1978;61:535–8.CrossRefGoogle ScholarPubMed
Ekindjian, O G, Devanlay, M, Duchassaing, D. Multivariate analysis of clinical and biological data in cirrhotic patients: application to prognosis. Eur J Clin Invest 1981;11:213–20.CrossRefGoogle ScholarPubMed
Nanji, A A, Blank, D W. Clinical status as reflected in biochemical tests on patients with chronic alcoholic liver disease. Clin Chem 1983;29:992–3.Google ScholarPubMed
Wion, K L, Kelly, D, Summerfield, J A. Distribution of factor VIII mRNA and antigen in human liver and other tissues. Nature 1985;317:726–9.CrossRefGoogle ScholarPubMed
Kelly, D A, Summerfield, J A. Hemostasis in liver disease. Semin Liver Dis 1987;7:182–91.CrossRefGoogle ScholarPubMed
Colman, R W, Robboy, S J, Minna, J D. Disseminated intravascular coagulation (DIC): an approach. Am J Med 1972;52:679–89.CrossRefGoogle ScholarPubMed
Verstraete, M, Vermylen, J, Collen, D. Intravascular coagulation in liver disease. Annu Rev Med 1974;25:447–55.CrossRefGoogle ScholarPubMed
Colman RW, Marder V, Salzman EW. Overview of hemostasis. In: Hirsh, J, Colman, R W, Marder, V J, eds. Hemostasis and thrombosis: basic principles and clinical practice. Philadelphia: JB Lippincott, 1987:3–18.Google Scholar
Carr, J M. Disseminated intravascular coagulation in cirrhosis. Hepatology 1989;10:103–10.CrossRefGoogle ScholarPubMed
Cioni, G, Cristani, A, Mussini, C. Incidence and clinical significance of elevated fibrin(ogen) degradation product and/or D-dimer levels in liver cirrhosis patients. Ital J Gastroenterol 1990;22:70–4.Google ScholarPubMed
Bauer, K A, Rosenberg, R D. Thrombin generation in acute promyelocytic leukemia. Blood 1984;64:791–6.Google ScholarPubMed
Bauer, K A, Bednarek, M. Detection of factor X activation in humans. Thromb Haemost 1987;58:280A.Google Scholar
Ho, C H, Hou, M C, Lin, H C. Can advanced hemostatic parameters detect disseminated intravascular coagulation more accurately in patients with cirrhosis of the liver?Zhonghua Yi Xue Za Zhi (Taipei) 1998;61:332–8.Google ScholarPubMed
Tollefsen, D M, Blank, M K. Detection of a new heparin-dependent inhibitor of thrombin in human plasma. J Clin Invest 1981;68:589–96.CrossRefGoogle ScholarPubMed
Sanders, N L, Bajaj, S P, Zivelin, A. Inhibition of tissue factors/factor VIIa activity in plasma requires factor X and an additional plasma component. Blood 1985;66:204–12.Google Scholar
Bernstein, D E, Jeffers, L, Erhardtsen, E. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology 1997;113:1930–7.CrossRefGoogle ScholarPubMed
Shami, V M, Caldwell, S H, Hespenheide, E E. Recombinant activated factor VII for coagulopathy in fulminant hepatic failure compared with conventional therapy. Liver Transpl 2003;9:138–43.CrossRefGoogle ScholarPubMed
Atkison, P R, Jardine, L, Williams, S. Use of recombinant factor VIIa in pediatric patients with liver failure and severe coagulopathy. Transplant Proc 2005;37:1091–3.CrossRefGoogle ScholarPubMed
Macdougall, B R, Bailey, R J, Williams, R. H2-receptor antagonists and antacids in the prevention of acute gastrointestinal haemorrhage in fulminant hepatic failure. Two controlled trials. Lancet 1977;1:617–19.Google ScholarPubMed
Friedman, E W, Sussman, II. Safety of invasive procedures in patients with the coagulopathy of liver disease. Clin Lab Haematol 1989;11:199–204.CrossRefGoogle ScholarPubMed
Sharma, P, McDonald, G B, Banaji, M. The risk of bleeding after percutaneous liver biopsy: relation to platelet count. J Clin Gastroenterol 1982;4:451–3.CrossRefGoogle ScholarPubMed
Agnelli, G, Berrettini, M, Cunto, M. Desmopressin-induced improvement of abnormal coagulation in chronic liver disease. Lancet 1983;1:645.CrossRefGoogle ScholarPubMed
Mannuccio, P M, Vicente, V, Vianello, L. Controlled trial of desmopressin in liver cirrhosis and other conditions associated with a prolonged bleeding time. Blood 1986;67:1148–53.Google Scholar
Burroughs, A K, Matthews, K, Qadiri, M. Desmopressin and bleeding time in patients with cirrhosis. Br Med J (Clin Res Ed) 1985;291:1377–81.CrossRefGoogle ScholarPubMed
Burghard, R, Leititis, J U, Rossi, R. Treatment of severe coagulation disturbances as a condition of improved prognosis in fulminant liver failure. Arch Dis Child 1985;60:167–70.CrossRefGoogle ScholarPubMed
Fujiwara, K, Ono, K, Akamatsu, K. Treatment with antithrombin III concentrate in fulminant hepatic failure. Hepatology 1987;7:1067A.Google Scholar
Conn, H O, Fessel, J M. Spontaneous bacterial peritonitis in cirrhosis: variations on a theme. Medicine (Baltimore) 1971;50:161–97.CrossRefGoogle ScholarPubMed
Almdal, T P, Skinhoj, P. Spontaneous bacterial peritonitis in cirrhosis. Incidence, diagnosis, and prognosis. Scand J Gastroenterol 1987;22:295–300.CrossRefGoogle ScholarPubMed
Guarner, C, Runyon, B A. Spontaneous bacterial peritonitis: pathogenesis, diagnosis, and management. Gastroenterologist 1995;3:311–28.Google Scholar
Larcher, V F, Manolaki, N, Vegnente, A. Spontaneous bacterial peritonitis in children with chronic liver disease: clinical features and etiologic factors. J Pediatr 1985;106:907–12.CrossRefGoogle ScholarPubMed
Rabinovitz, M, Gavaler, J S, Kumar, S. Role of serum complement, immunoglobulins, and cell-mediated immune system in the pathogenesis of spontaneous bacterial peritonitis (SBP). Dig Dis Sci 1989;34:1547–52.CrossRefGoogle Scholar
Rimola, A, Bory, F, Teres, J. Oral, nonabsorbable antibiotics prevent infection in cirrhotics with gastrointestinal hemorrhage. Hepatology 1985;5:463–7.CrossRefGoogle ScholarPubMed
Runyon, B A. Low-protein-concentration ascitic fluid is predisposed to spontaneous bacterial peritonitis. Gastroenterology 1986;91:1343–6.CrossRefGoogle ScholarPubMed
Such, J, Guarner, C, Enriquez, J. Low C3 in cirrhotic ascites predisposes to spontaneous bacterial peritonitis. J Hepatol 1988;6:80–4.CrossRefGoogle ScholarPubMed
Runyon, B A, Morrissey, R L, Hoefs, J C, Wyle, F A. Opsonic activity of human ascitic fluid: a potentially important protective mechanism against spontaneous bacterial peritonitis. Hepatology 1985;5:634–7.CrossRefGoogle ScholarPubMed
Guarner, C, Soriano, G. Spontaneous bacterial peritonitis. Semin Liver Dis 1997;17:203–17.CrossRefGoogle ScholarPubMed
Ho, H, Guerra, L G, Zuckerman, M J. Urinary tract infection: a predisposing factor for spontaneous bacterial peritonitis. Gastroenterology 1990;98:A593.Google Scholar
Barnes, P F, Arevalo, C, Chan, L S. A prospective evaluation of bacteremic patients with chronic liver disease. Hepatology 1988;8:1099–103.CrossRefGoogle ScholarPubMed
Leggiadro, R J, Lazar, L F. Spontaneous bacterial peritonitis due to Neisseria meningitidis serogroup Z in an infant with liver failure. Clin Pediatr (Phila) 1991;30:350–2.CrossRefGoogle Scholar
Clark, J H, Fitzgerald, J F, Kleiman, M B. Spontaneous bacterial peritonitis. J Pediatr 1984;104:495–500.CrossRefGoogle ScholarPubMed
Pinzello, G, Simonetti, R G, Craxi, A. Spontaneous bacterial peritonitis: a prospective investigation in predominantly nonalcoholic cirrhotic patients. Hepatology 1983;3:545–9.Google ScholarPubMed
Such, J, Runyon, B A. Spontaneous bacterial peritonitis. Clin Infect Dis 1998;27:669–74; quiz 675–6.CrossRefGoogle ScholarPubMed
Runyon, B A. Spontaneous bacterial peritonitis: an explosion of information. Hepatology 1988;8:171–5.CrossRefGoogle Scholar
Runyon, B A. Paracentesis of ascitic fluid. A safe procedure. Arch Intern Med 1986;146:2259–61.CrossRefGoogle ScholarPubMed
Grabau, C M, Crago, S F, Hoff, L K. Performance standards for therapeutic abdominal paracentesis. Hepatology 2004;40:484–8.CrossRefGoogle ScholarPubMed
Runyon, B A, Umland, E T, Merlin, T. Inoculation of blood culture bottles with ascitic fluid. Improved detection of spontaneous bacterial peritonitis. Arch Intern Med 1987;147:73–5.CrossRefGoogle ScholarPubMed
Runyon, B A, Antillon, M R, Akriviadis, E A. Bedside inoculation of blood culture bottles with ascitic fluid is superior to delayed inoculation in the detection of spontaneous bacterial peritonitis. J Clin Microbiol 1990;28:2811–12.Google ScholarPubMed
Castellote, J, Xiol, X, Verdaguer, R. Comparison of two ascitic fluid culture methods in cirrhotic patients with spontaneous bacterial peritonitis. Am J Gastroenterol 1990;85:1605–8.Google ScholarPubMed
Siersema, P D, Marie, S, Zeijl, J H. Blood culture bottles are superior to lysis-centrifugation tubes for bacteriological diagnosis of spontaneous bacterial peritonitis. J Clin Microbiol 1992;30:667–9.Google ScholarPubMed
Runyon, B A, Hoefs, J C. Ascitic fluid analysis in the differentiation of spontaneous bacterial peritonitis from gastrointestinal tract perforation into ascitic fluid. Hepatology 1984;4:447–50.CrossRefGoogle ScholarPubMed
Akriviadis, E A, Runyon, B A. Utility of an algorithm in differentiating spontaneous from secondary bacterial peritonitis. Gastroenterology 1990;98:127–33.CrossRefGoogle ScholarPubMed
Garrison, R N, Cryer, H M, Howard, D A. Clarification of risk factors for abdominal operations in patients with hepatic cirrhosis. Ann Surg 1984;199:648–55.CrossRefGoogle ScholarPubMed
Deviere, J, Content, J, Crusiaux, A. IL-6 and TNF alpha in ascitic fluid during spontaneous bacterial peritonitis. Dig Dis Sci 1991;36:123–4.CrossRefGoogle ScholarPubMed
McHutchison JG, Runyon BA. Spontaneous bacterial peritonitis. In: Owen, R L, Surawica, C M, eds. Gastrointestinal and hepatic infections. Philadelphia: WB Saunders, 1994:455–75.Google Scholar
Felisart, J, Rimola, A, Arroyo, V. Cefotaxime is more effective than is ampicillin-tobramycin in cirrhotics with severe infections. Hepatology 1985;5:457–62.CrossRefGoogle ScholarPubMed
Grange, J D, Amiot, X, Grange, V. Amoxicillin-clavulanic acid therapy of spontaneous bacterial peritonitis: a prospective study of twenty-seven cases in cirrhotic patients. Hepatology 1990;11:360–4.CrossRefGoogle ScholarPubMed
Runyon, B A, McHutchison, J G, Antillon, M R. Short-course versus long-course antibiotic treatment of spontaneous bacterial peritonitis. A randomized controlled study of 100 patients. Gastroenterology 1991;100:1737–42.CrossRefGoogle ScholarPubMed
Terg, R, Cobas, S, Fassio, E. Oral ciprofloxacin after a short course of intravenous ciprofloxacin in the treatment of spontaneous bacterial peritonitis: results of a multicenter, randomized study. J Hepatol 2000;33:564–9.CrossRefGoogle Scholar
Navasa, M, Follo, A, Llovet, J M. Randomized, comparative study of oral ofloxacin versus intravenous cefotaxime in spontaneous bacterial peritonitis. Gastroenterology 1996;111:1011–17.CrossRefGoogle ScholarPubMed
Sort, P, Navasa, M, Arroyo, V. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 1999;341:403–9.CrossRefGoogle ScholarPubMed
Garcia-Tsao, G. Spontaneous bacterial peritonitis. Gastroenterol Clin North Am 1992;21:257–75.Google ScholarPubMed
Tito, L, Rimola, A, Gines, P. Recurrence of spontaneous bacterial peritonitis in cirrhosis: frequency and predictive factors. Hepatology 1988;8:27–31.CrossRefGoogle ScholarPubMed
Runyon, B A, Epps, D E. Diuresis of cirrhotic ascites increases its opsonic activity and may help prevent spontaneous bacterial peritonitis. Hepatology 1986;6:396–9.CrossRefGoogle ScholarPubMed
Such, J, Guarner, C, Soriano, G. Selective intestinal decontamination increases serum and ascitic fluid C3 levels in cirrhosis. Hepatology 1990;12:1175–8.CrossRefGoogle ScholarPubMed
Gines, P, Rimola, A, Planas, R. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology 1990;12(4 pt 1):716–24.CrossRefGoogle ScholarPubMed
Soriano, G, Guarner, C, Teixido, M. Selective intestinal decontamination prevents spontaneous bacterial peritonitis. Gastroenterology 1991;100:477–81.CrossRefGoogle ScholarPubMed
Ring-Larsen, H, Palazzo, U. Renal failure in fulminant hepatic failure and terminal cirrhosis: a comparison between incidence, types, and prognosis. Gut 1981;22:585–91.CrossRefGoogle ScholarPubMed
Punukollu, R C, Gopalswamy, N. The hepatorenal syndrome. Med Clin North Am 1990;74:933–43.CrossRefGoogle ScholarPubMed
Kew, M C, Brunt, P W, Varma, R R. Renal and intrarenal blood-flow in cirrhosis of the liver. Lancet 1971;2:504–10.CrossRefGoogle ScholarPubMed
Arroyo, V, Gines, P, Gerbes, A L. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 1996;23:164–76.CrossRefGoogle ScholarPubMed
Gines, P, Cardenas, A, Arroyo, V. Management of cirrhosis and ascites. N Engl J Med 2004;350:1646–54.CrossRefGoogle ScholarPubMed
Cardenas, A. Hepatorenal syndrome: a dreaded complication of end-stage liver disease. Am J Gastroenterol 2005;100:460–7.CrossRefGoogle ScholarPubMed
Kramer, L, Horl, W H. Hepatorenal syndrome. Semin Nephrol 2002;22:290–301.Google ScholarPubMed
Crawford, D H, Endre, Z H, Axelsen, R A. Universal occurrence of glomerular abnormalities in patients receiving liver transplants. Am J Kidney Dis 1992;19:339–44.CrossRefGoogle ScholarPubMed
Iwatsuki, S, Popovtzer, M M, Corman, J L. Recovery from “hepatorenal syndrome” after orthotopic liver transplantation. N Engl J Med 1973;289:1155–9.CrossRefGoogle ScholarPubMed
Gonwa, T A, Morris, C A, Goldstein, R M. Long-term survival and renal function following liver transplantation in patients with and without hepatorenal syndrome – experience in 300 patients. Transplantation 1991;51:428–30.CrossRefGoogle ScholarPubMed
Koppel, M H, Coburn, J W, Mims, M M. Transplantation of cadaveric kidneys from patients with hepatorenal syndrome. Evidence for the functional nature of renal failure in advanced liver disease. N Engl J Med 1969;280:1367–71.CrossRefGoogle Scholar
Ring-Larsen, H, Hesse, B, Stigsby, B. Effect of portal-systemic anastomosis on renal haemodynamics in cirrhosis. Gut 1976; 17:856–60.CrossRefGoogle ScholarPubMed
Guarner, C, Colina, I, Guarner, F. Renal prostaglandins in cirrhosis of the liver. Clin Sci (Lond) 1986;70:477–84.CrossRefGoogle ScholarPubMed
Fernandez-Seara, J, Prieto, J, Quiroga, J. Systemic and regional hemodynamics in patients with liver cirrhosis and ascites with and without functional renal failure. Gastroenterology 1989;97:1304–12.CrossRefGoogle ScholarPubMed
Lenz, K, Hortnagl, H, Druml, W. Beneficial effect of 8-ornithine vasopressin on renal dysfunction in decompensated cirrhosis. Gut 1989;30:90–6.CrossRefGoogle Scholar
Lenz, K, Hortnagl, H, Druml, W. Ornipressin in the treatment of functional renal failure in decompensated liver cirrhosis. Effects on renal hemodynamics and atrial natriuretic factor. Gastroenterology 1991;101:1060.CrossRefGoogle ScholarPubMed
Zipser, R D, Hoefs, J C, Speckart, P F. Prostaglandins: modulators of renal function and pressor resistance in chronic liver disease. J Clin Endocrinol Metab 1979;48:895–900.CrossRefGoogle ScholarPubMed
Zambraski, E J, Dunn, M J. Importance of renal prostaglandins in control of renal function after chronic ligation of the common bile duct in dogs. J Lab Clin Med 1984;103:549–59.Google ScholarPubMed
Zipser, R D, Radvan, G H, Kronborg, I J. Urinary thromboxane B2 and prostaglandin E2 in the hepatorenal syndrome: evidence for increased vasoconstrictor and decreased vasodilator factors. Gastroenterology 1983;84:697–703.Google ScholarPubMed
Moore, K, Ward, P S, Taylor, G W. Systemic and renal production of thromboxane A2 and prostacyclin in decompensated liver disease and hepatorenal syndrome. Gastroenterology 1991;100:1069–77.CrossRefGoogle ScholarPubMed
Gupta, S, Morgan, T R, Gordan, G S. Calcitonin gene–related peptide in hepatorenal syndrome. A possible mediator of peripheral vasodilation?J Clin Gastroenterol 1992;14:122–6.CrossRefGoogle ScholarPubMed
Epstein, M, Goligorsky, M S. Endothelin and nitric oxide in hepatorenal syndrome: a balance reset. J Nephrol 1997;10:120–35.Google ScholarPubMed
Gines, A, Escorsell, A, Gines, P. Incidence, predictive factors, and treatment of the hepatorenal syndrome with ascites. Gastroenterolgoy 1993;105:229–36.CrossRefGoogle Scholar
Gines, P, Arroyo, V. Hepatorenal syndrome. J Am Soc Nephrol 1999;10:1833–9.Google ScholarPubMed
Wong, F, Blendis, L. New challenge of hepatorenal syndrome: prevention and treatment. Hepatology 2001;34:1242–51.CrossRefGoogle ScholarPubMed
Follo, A, Llovet, J M, Navasa, M. Renal impairment after spontaneous bacterial peritonitis in cirrhosis: incidence, clinical course, predictive factors and prognosis. Hepatology 1994;20:1495–501.CrossRefGoogle ScholarPubMed
Nanji, A A, Halstead, A C. Spurious decrease in serum creatinine in patients with hyperbilirubinemia. Dig Dis Sci 1982;27:1051.CrossRefGoogle ScholarPubMed
Papadakis, M A, Arieff, A I. Unpredictability of clinical evaluation of renal function in cirrhosis. Prospective study. Am J Med 1987;82:945–52.CrossRefGoogle ScholarPubMed
Rudman, D, DiFulco, T J, Galambos, J T. Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J Clin Invest 1973;52:2241–9.CrossRefGoogle ScholarPubMed
Bernardi, M, Palma, R, Trevisani, F. Effects of a new loop diuretic (muzolimine) in cirrhosis with ascites: comparison with furosemide. Hepatology 1986;6:400–5.CrossRefGoogle ScholarPubMed
Simon, D M, McCain, J R, Bonkovsky, H L. Effects of therapeutic paracentesis on systemic and hepatic hemodynamics and on renal and hormonal function. Hepatology 1987;7:423–9.CrossRefGoogle ScholarPubMed
Epstein M. Hepatorenal syndrome. In: Epstein, M, ed. The kidney in liver disease. Baltimore: Williams & Wilkins, 1988:89–97.Google Scholar
Tristani, F E, Cohn, J N. Systemic and renal hemodynamics in oliguric hepatic failure: effect of volume expansion. J Clin Invest 1967;46:1894–906.CrossRefGoogle ScholarPubMed
Golper, T A. Continuous arteriovenous hemofiltration in acute renal failure. Am J Kidney Dis 1985;6:373–86.CrossRefGoogle ScholarPubMed
Kaplan, A A, Longnecker, R E, Folkert, V W. Continuous arteriovenous hemofiltration. A report of six months' experience. Ann Intern Med 1984;100:358–67.CrossRefGoogle Scholar
Alarabi, A A, Danielson, B G, Wikstrom, B. Artificial renal and liver support in a severe hepatorenal syndrome of childhood. Acta Paediatr 1992;81:75–8.CrossRefGoogle Scholar
Schroeder, E T, Anderson, G H Jr, Smulyan, H. Effects of a portacaval or peritoneovenous shunt on renin in the hepatorenal syndrome. Kidney Int 1979;15:54–61.CrossRefGoogle ScholarPubMed
Linas, S L, Schaefer, J W, Moore, E E. Peritoneovenous shunt in the management of the hepatorenal syndrome. Kidney Int 1986;30:736–40.CrossRefGoogle ScholarPubMed
Pladson, T R, Parrish, R M. Hepatorenal syndrome. Recovery after peritoneovenous shunt. Arch Intern Med 1977;137:1248–9.CrossRefGoogle ScholarPubMed
Gillam, G L, Stokes, K B, McLellan, J. Fulminant hepatic failure with intractable ascites due to an echovirus 11 infection successfully managed with a peritoneo-venous (LeVeen) shunt. J Pediatr Gastroenterol Nutr 1986;5:476–80.CrossRefGoogle Scholar
Brensing, K A, Textor, J, Strunk, H. Transjugular intrahepatic portosystemic stent-shunt for hepatorenal syndrome. Lancet 1997;349:697–8.CrossRefGoogle ScholarPubMed
Kalambokis, G, Economou, M, Fotopoulos, A. The effects of chronic treatment with octreotide versus octreotide plus midodrine on systemic hemodynamics and renal hemodynamics and function in nonazotemic cirrhotic patients with cirrhosis. Am J Gastroenterol 2005;100:879–85.CrossRefGoogle Scholar
Angeli, P, Volpin, R, Gerunda, G. Reversal of type 1 hepatorenal syndrome with the administration of midodrine and octreotide. Hepatology 1999;29:1690.CrossRefGoogle ScholarPubMed
Pomier-Layragues, G, Paquin, S C, Hassoun, Z. Octreotide in hepatorenal syndrome: a randomized, double-blind, placebo-controlled, crossover study. Hepatology 2003;100:879.Google Scholar
Arieff, A I, Chidsey, C A. Renal function in cirrhosis and the effects of prostaglandin A. Am J Med 1974;56:695–703.CrossRefGoogle ScholarPubMed
Zusman, R M, Axelrod, L, Tolkoff-Rubin, N. The treatment of the hepatorenal syndrome with intra-renal administration of prostaglandin E1. Prostaglandins 1977;13:819–30.CrossRefGoogle ScholarPubMed
Fevery, J, Cutsem, E, Nevens, F. Reversal of hepatorenal syndrome in four patients by peroral misoprostol (prostaglandin E1 analogue) and albumin administration. J Hepatol 1990;11:153–8.CrossRefGoogle ScholarPubMed
Zipser, R D, Kronborg, I, Rector, W. Therapeutic trial of thromboxane synthesis inhibition in the hepatorenal syndrome. Gastroenterology 1984;87:1228–32.Google ScholarPubMed
Pinzani, M, Laffi, G, Meacci, E. Intrarenal thromboxane A2 generation reduces the furosemide-induced sodium and water diuresis in cirrhosis with ascites. Gastroenterology 1988;95:1081–7.CrossRefGoogle ScholarPubMed
Polson, R J, Park, G R, Lindop, M J. The prevention of renal impairment in patients undergoing orthotopic liver grafting by infusion of low dose dopamine. Anaesthesia 1987;42:15–19.CrossRefGoogle ScholarPubMed
Arroyo, V, Guevara, M, Gines, P. Hepatorenal syndrome in cirrhosis: pathogenesis and treatment. Gastroenterology 2002;122:1658–76.CrossRefGoogle ScholarPubMed
Badalamenti, S, Graziani, G, Salerno, F, Ponticelli, C. Hepatorenal syndrome: new perspectives in pathogenesis and treatment. Arch Intern Med 1993;153:1957–63.CrossRefGoogle ScholarPubMed
Seu, P, Wilkinson, A H, Shaked, A. The hepatorenal syndrome in liver transplant recipients. Am Surg 1991;57:806–9.Google ScholarPubMed
Nielsen, K, Kondrup, J, Martinsen, L. Long-term oral refeeding of patients with cirrhosis of the liver. Br J Nutr 1995;74:557–67.CrossRefGoogle ScholarPubMed
Nielsen, K, Kondrup, J, Martinsen, L. Nutritional assessment and adequacy of dietary intake in hospitalized patients with alcoholic liver cirrhosis. Br J Nutr 1993;69:665–79.CrossRefGoogle ScholarPubMed
Greco, A V, Mingrone, G, Benedetti, G. Daily energy and substrate metabolism in patients with cirrhosis. Hepatology 1998;27:346–50.CrossRefGoogle ScholarPubMed
Muller, M J, Fenk, A, Lautz, H U. Energy expenditure and substrate metabolism in ethanol-induced liver cirrhosis. Am J Physiol 1991;260(3 pt 1):E338–44.Google ScholarPubMed
Cabre, E, Gassull, M A. Nutritional issues in cirrhosis and liver transplantation. Nutrition in chronic liver disease and liver transplantation. Curr Opin Clin Nutr Metab Care 1999;2:373–80.CrossRefGoogle ScholarPubMed
Swart, G R, Zillikens, M C, Vuure, J K. Effect of a late evening meal on nitrogen balance in patients with cirrhosis of the liver. BMJ 1989;299:1202–3.CrossRefGoogle ScholarPubMed
Venne, Verboeket-van W P, Westerterp, K R, Hoek, B. Energy expenditure and substrate metabolism in patients with cirrhosis of the liver: effects of the pattern of food intake. Gut 1995;36:110–16.CrossRefGoogle Scholar
Yamanaka, H, Genjida, K, Yokota, K. Daily pattern of energy metabolism in cirrhosis. Nutrition 1999;15:749–54.CrossRefGoogle ScholarPubMed
Cabre, E, Gonzalez-Huix, F, Abad-Lacruz, A. Effect of total enteral nutrition on the short-term outcome of severely malnourished cirrhotics. A randomized controlled trial. Gastroenterology 1990;98:715–20.CrossRefGoogle ScholarPubMed
Hirsch, S, Maza, M P, Gattas, V. Nutritional support in alcoholic cirrhotic patients improves host defenses. J Am Coll Nutr 1999;18:434–41.CrossRefGoogle ScholarPubMed
Bianchi, G P, Marchesini, G, Fabbri, A. Vegetable versus animal protein diet in cirrhotic patients with chronic encephalopathy. A randomized cross-over comparison. J Intern Med 1993;233:385–92.CrossRefGoogle ScholarPubMed
Aleynik, S I, Leo, M A, Ma, X. Polyenylphosphatidylcholine prevents carbon tetrachloride-induced lipid peroxidation while it attenuates liver fibrosis. J Hepatol 1997;27:554–61.CrossRefGoogle ScholarPubMed
Navder, K P, Baraona, E, Lieber, C S. Polyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipemia in rats. J Nutr 1997;127:1800–6.CrossRefGoogle ScholarPubMed
Ma, X, Zhao, J, Lieber, C S. Polyenylphosphatidylcholine attenuates non-alcoholic hepatic fibrosis and accelerates its regression. J Hepatol 1996;24:604–13.CrossRefGoogle ScholarPubMed
Poniachik, J, Baraona, E, Zhao, J. Dilinoleoylphosphatidylcholine decreases hepatic stellate cell activation. J Lab Clin Med 1999;133:342–8.CrossRefGoogle ScholarPubMed
Lochs, H, Plauth, M. Liver cirrhosis: rationale and modalities for nutritional support – the European Society of Parenteral and Enteral Nutrition consensus and beyond. Curr Opin Clin Nutr Metab Care 1999;2:345–9.CrossRefGoogle ScholarPubMed
Protheroe, S M. Feeding the child with chronic liver disease. Nutrition 1998;14:796–800.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cirrhosis and Chronic Liver Failure
    • By Stephen Hardy, M.D., Instructor, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Attending Physician, Department of Pediatric Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, Ronald E. Kleinman, M.D., Professor, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Acting Physician-in-Chief, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cirrhosis and Chronic Liver Failure
    • By Stephen Hardy, M.D., Instructor, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Attending Physician, Department of Pediatric Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, Ronald E. Kleinman, M.D., Professor, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Acting Physician-in-Chief, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cirrhosis and Chronic Liver Failure
    • By Stephen Hardy, M.D., Instructor, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Attending Physician, Department of Pediatric Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, Ronald E. Kleinman, M.D., Professor, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Acting Physician-in-Chief, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.008
Available formats
×