Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T13:16:18.373Z Has data issue: false hasContentIssue false

4 - Discotic LC Dimers

Published online by Cambridge University Press:  23 July 2017

Sandeep Kumar
Affiliation:
Raman Research Institute, Bangalore, India
Santanu Kumar Pal
Affiliation:
Indian Institute of Science Education and Research, Mohali, India
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Liquid Crystal Dimers , pp. 118 - 184
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Krishnan, K., and Balagurusamy, V. S. K. 2001. ‘A novel dimeric discotic liquid crystal based on anthraquinone’. Liq Cryst 28:321–5.CrossRefGoogle Scholar
Prasad, V., Roy, A., Nagaveni, N. G., and Gayathri, K. 2011. ‘Anthraquinone-based discotic liquid crystals: New monomers and dimers’. Liq Cryst 38:1301–14.CrossRefGoogle Scholar
Chen, F., Zhang, J., and Wan, X. 2011. ‘Anthraquinoneimide-based dimers: Synthesis, piezochromism, liquid crystalline and near-infrared electrochromic properties’. Macromol Chem Phys 212:1836–45.Google Scholar
Naidu, J. J., and Kumar, S. 2003. ‘Novel anthraquinone based discotic metallomesogens’. Mol Cryst Liq Cryst 397:17–24.CrossRefGoogle Scholar
Kumar, S., and Naidu, J. J. 2002. ‘Synthesis of the first anthraquinone copper complex displaying a columnar phase induced by noncovalent π–π interactions’. Mol Cryst Liq Cryst 378:123–8.CrossRefGoogle Scholar
Lillya, C. P., and Murthy, Y. L. N. 1985. ‘Discotic twins’. Mol Cryst Liq Cryst Lett Sect 2:121–5.Google Scholar
Zamir, S., Wachtel, E. J., Zimmermann, H., et al. 1997. ‘Mesomorphic and dynamic properties of discotic alkanoyloxybenzene dimers as studied by X-ray and NMR: The effect of spacer length’. Liq Cryst 23:689–98.CrossRefGoogle Scholar
Praefcke, K., Kohne, B., Singer, D., et al. 1990. ‘Thermotropic biaxial nematic phases with negative optical character.’ Liq Cryst 7:589–94.CrossRefGoogle Scholar
Praefcke, K., Kohne, B., Gündogan, B., et al. 1991. ‘News on nematic-biaxial liquid crystals’. Mol Cryst Liq Cryst 198:393–405.Google Scholar
Contzen, J., Heppke, G., Kitzerow, H. S., Krüerke, D., and Schmid, H. 1996. ‘Storage of laser-induced holographic gratings in discotic liquid crystals’. Appl Phys B 63:605–8.CrossRefGoogle Scholar
Booth, C. J., Kruerke, D., and Heppke, G. 1996. ‘Highly twisting enantiomeric radial multiyne dopants for discotic liquid-crystalline systems’. J Mater Chem 6:927–34.CrossRefGoogle Scholar
Patel, J. S., Praefcke, K., Singer, D., and Langner, M. 1995. ‘Search for optical biaxiality in discotic liquid crystals’. Appl Phys B 60:469–72.CrossRefGoogle Scholar
Kouwer, P., Mehl, G., and Picken, S. 2004. ‘Discotic multipodes with nematic mesophases’. Mol Cryst Liq Cryst 411:387–96.CrossRefGoogle Scholar
Kouwer, P., Jager, W., Mijs, W., et al. 2004. ‘The nematic discotic phase in materials containing a siloxane core’. Mol Cryst Liq Cryst 411:377–85.CrossRefGoogle Scholar
Percec, V., C. Cho, G., Pugh, C., and D. Tomazos 1992. ‘Synthesis and character izat ion of branched liquid-crystalline polyethers containing cyclotetraveratrylene-based disk-like mesogens’. Macromolecules 25:1164–76.
Tzeng, M.-C., Liao, S.-C., T.-Chang, H., et al. 2011. ‘Enforced liquid crystalline properties of dibenzo[a,c]phenazine dimer and self assembly’. J Mater Chem 21:1704–12.Google Scholar
Ong, C. W., Chan, Y.-C., Yeh, M.-C., Lin, H.-Y., and Hsu, H.-F. 2013. ‘Lamellar organization of discotic dimer enforced by steric manipulation’. RSC Adv 3:8657–9.CrossRefGoogle Scholar
Ito, S., Herwig, P.T., Böhme, T., et al. 2000. ‘Bishexaperi-hexabenzocoronenyl: A “Superbiphenyl”’. J Am Chem Soc 122:7698–706.CrossRefGoogle Scholar
Wasserfallen, D., Fischbach, I., Chebotareva, N., et al. 2005. ‘Inf luence of hydrogen bonds on the supramolecular order of hexa-perihexabenzocoronenes’. Adv Funct Mater 15:1585–94.Google Scholar
Watson, M. D., Jäckel, F., Severin, N., Rabe, J.P., and Müllen, K. 2004. ‘A hexa-peri-hexabenzocoronene cyclophane: An addition to the toolbox for molecular electronics’. J Am Chem Soc 126:1402–7.CrossRefGoogle Scholar
Piechocki, C., Simon, J., André, J.-J., et al. 1985. ‘Synthesis and physico-chemical studies of neutral and chemically oxidized forms of bis(octaalkyl oxyphthalocyaninato) lutetium’. Chem Phys Lett 122:124–8.Google Scholar
Binnemans, K., Sleven, J., De Feyter, S., et al. 2003. ‘Structure and mesomorphic behavior of alkoxysubstituted bis(phthalocyaninato)lanthanide(III) complexes’. Chem Mater 15:3930–8.Google Scholar
Toupance, T., Bassoul, P., Mineau, L., and Simon, J. 1996. ‘Poly(oxyethylene)-substituted copper and lutetium phthalocyanines’. J Phys Chem 100:11704–10.CrossRefGoogle Scholar
Hatsusaka, K., Kimura, M., and Ohta, K. 2003. ‘Discotic liquid crystals of transition metal complexes 33: Spontaneous uniform homeotropic alignment and unique mesophase transition behavior of bis[2,3,9,10,16,17,23,24-octakis(3,4-dialkoxyphenoxy)phthalocyaninato]lutetium(III) complexes’. Bull Chem Soc Jpn 76:781–7.CrossRefGoogle Scholar
Mukai, H., Hatsusaka, K., and Ohta, K. 2007. ‘Discotic liquid crystals of transition metal complexes 39: Columnar mesomorphism and homeotropic alignment speed of sandwich-type of double-deckers and triple-deckers based on phthalocyaninato lutetium metal complexes’. J Porphyr Phthalocyanines 11:846–56.CrossRefGoogle Scholar
Mukai, H., Yokotawa, M., Hatsusaka, K., and Ohta, K. 2009. ‘Discotic liquid crystals of transition metal complexes 40: Unique double-clearing behavior of a series of novel discotic metallomesogens based on bis(phthalocyaninato)europium(III) complexes’. J Porphyr Phthalocyanines 13:70–6.CrossRefGoogle Scholar
Mukai, H., Yokotawa, M., Ichihara, M., Hatsusaka, K., and Ohta, K. 2010. ‘Discotic liquid crystals of transition metal complexes 42: The detailed phase structures and phase transition mechanisms of two Cub mesophases shown by discotic liquid crystals based on phthalocyanine metal complexes’. J Porphyr Phthalocyanines 14:188–97.CrossRefGoogle Scholar
Zhang, Y., Jiang, J., Sun, X., and Xue, Q. 2009. ‘Liquid crystal behaviour of 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine-containing gadolinium sandwich complexes’. Aust J Chem 62:455–63.Google Scholar
Sleven, J., Görller-Walrand, C., and Binnemans, K. 2001. ‘Synthesis, spectral and mesomorphic properties of octa-alkoxy substituted phthalocyanine ligands and lanthanide complexes’. Mater Sci Eng C 18:229–38.CrossRefGoogle Scholar
Maeda, F., Hatsusaka, K., Ohta, K., and Kimura, M. 2003. ‘Discotic liquid crystals of transition metal complexes. Part 35. Establishment of a unique mesophase in bis(octaalkoxyphthalocyaninato) lutetium(iii) complexes’. J Mater Chem 13:243–51.Google Scholar
Belarbi, Z., Sirlin, C., Simon, J., and Andre, J. J. 1989. ‘Electrical and magnetic properties of liquid crystalline molecular materials: Lithium and lutetium phthalocyanine derivatives’. J Phys Chem 93:8105–10.CrossRefGoogle Scholar
Komatsu, T., Ohta, K., Fujimoto, T., and Yamamoto, I. 1994. ‘Chromic materials. Part 1. Liquid-crystalline behaviour and electrochromism in bis(octakis-nalkylphthalocyaninato) lutetium(III) complexes’. J Mater Chem 4:533–6.Google Scholar
Komatsu, T., Ohta, K., Watanabe, T., et al. 1994. ‘Discotic liquid crystals of transition–metal complexes. Part 18. Discotic liquid crystalline behaviour in phthalocyanine compounds substituted by steric hindrance groups at the core’. J Mater Chem 4:537–40.Google Scholar
Basova, T., Kol'tsov, E., Hassan, A.K., et al. 2004. ‘Optical investigation of thin films of liquid–crystalline lutetium bisphthalocyanine’. J Mater Sci: Mater Electron 15:623–8.CrossRef
Gürek, A. G., Basova, T., Luneau, D., et al. 2006. ‘Synthesis, structure, and spectroscopic and magnetic properties of mesomorphic octakis(hexylthio)-substituted phthalocyanine rare-earth metal sandwich complexes’. Inorg Chem 45:1667–76.Google Scholar
Ban, K., Nishizawa, K., Ohta, K., et al. 2001.‘Discotic liquid crystals of transition metal complexes 29: Mesomorphism and charge transport properties of alkylthio-substituted phthalocyanine rare-earth metal sandwich complexes’. J Mater Chem 11:321–31.Google Scholar
Nekelson, F., Monobe, H., and Shimizu, Y. 2007. ‘New double-decker phthalocyanine metallomesogens’. Mol Cryst Liq Cryst 479:1243–9.CrossRefGoogle Scholar
Nekelson, F., Monobe, H., and Shimizu, Y. 2006. ‘A new double-decker phthalocyanine mesogen’. Chem Commun 3874–3876.Google Scholar
Bryant, G. C., Cook, M.J., Haslam, S.O., et al. 1994. ‘Discotic liquid-crystal behaviour of some multinuclear phthalocyanine derivatives’. J Mater Chem 4:209–16.Google Scholar
Bryant, G. C., Cook, M.J., Ryan, T.G., and Thorne, A. J. 1996. ‘Synthesis and characterisation of some mesogenic mononuclear and multinuclear phthalocyanines’. Tetrahedron 52:809–24.CrossRefGoogle Scholar
Nakai, T., Ban, K., Ohta, K., and Kimura, M. 2002. ‘Discotic liquid crystals of transition metal complexes. Part 32.1 Synthesis and liquidcrystalline properties of doubledeckers and tripledeckers based on cerium complexes of bisand tetrakis(3,4-dialkoxyphenyl)porphyrin’. J Mater Chem 12:844–50.Google Scholar
Shimizu, Y., Matsuno, J.-Y., Nakao, K., et al. 1995. ‘Mesogenic aluminum(III) tetraphenylporphyrins: Effect of monomer to dimer conversion on the mesomorphic properties’. Mol Cryst Liq Cryst Sci Technol A. Mol Cryst Liq Cryst 260:491–7.Google Scholar
Sakurai, T., Shi, K., Sato, H., et al. 2008. ‘Prominent electron transport property observed for triply fused metalloporphyrin dimer: Directed columnar liquid crystalline assembly by amphiphilic molecular design’. J Am Chem Soc 130:13812–3.Google Scholar
Vill, V., and Thiem, J. 1991. ‘Discotic peracylated glycosides’. Liq Cryst 9:451–5.Google Scholar
Itoh, T., Takada, A., Fukuda, T., et al. 1991. ‘Columnar liquid crystals in oligosaccharide derivatives. I. Discotic columnar liquid crystals in cellobiose octadecanoate and cellotriose hendecadecanoate’. Liq Cryst 9:221–8.Google Scholar
Takada, A., Fukuda, T., Miyamoto, T., Yakoh, Y., and Watanabe, J. 1992. ‘Columnar liquid crystals in oligosaccharide derivatives. II. Two types of discotic columnar liquid-crystalline phase of cellobiose alkanoates’. Liq Cryst 12:337–45.Google Scholar
Sugiura, M., Minoda, M., Watanabe, J., Fukuda, T., and Miyamoto, T. 1992. ‘Thermotropic liquid crystals based on chito-oligosaccharides. 1. Synthesis of chitobiose octaalkanoates and chitotriose undecaalkanoates and their thermal properties’. Bull Chem Soc Jpn 65:1939–43.Google Scholar
Attard, G. S., and Imrie, C. T. 1992. ‘Liquidcrystalline and glass-forming dimers derived from 1-aminopyrene’. Liq Cryst 11:785–9.CrossRefGoogle Scholar
Tchebotareva, N., Yin, X., Watson, M. D., et al. 2003. ‘Ordered architectures of a soluble hexa-perihexabenzocoronene–pyrene dyad: Thermotropic bulk properties and nanoscale phase segregation at surfaces’. J Am Chem Soc 125:9734–9.CrossRefGoogle Scholar
Kohne, B., Marquardat, P., Praefcke, K., et al. 1986. ‘Monothioscyllitol ethers as discogens and double discogens’. Chimia 40:360.Google Scholar
Kreuder, W., Ringsdorf, H., Herrmann-Schönherr, O., and Wendorff, J. H. 1987. ‘The “wheel of mainz” as a liquid crystal?—Structural variation and mesophade properties of trimeric descotic compounds’. Angew Chem Int Ed English 26:1249–52.CrossRefGoogle Scholar
Boden, N., Bushby, R. J., Cammidge, A. N., et al. 1999. ‘The creation of long-lasting glassy columnar discotic liquid crystals using “dimeric” discogens’. J Mater Chem 9:1391–402.CrossRefGoogle Scholar
Boden, N., Bushby, R. J., Cammidge, A. N., and Martin, P. S. 1995. ‘Glass-forming discotic liquidcrystalline oligomers’. J Mater Chem 5:1857–60.CrossRefGoogle Scholar
Bacher, A., Bleyl, I., Erdelen, C. H., et al. 1997. ‘Low molecular weight and polymeric triphenylenes as hole transport materials in organic two-layer LEDs’. Adv Mater 9:1031–5.CrossRefGoogle Scholar
Zamir, S., Poupko, R., Luz, Z., et al. 1994. ‘Molecular ordering and dynamics in the columnar mesophase of a new dimeric discotic liquid crystal as studied by X-ray diffraction and deuterium NMR’. J Am Chem Soc 116:1973–80.CrossRefGoogle Scholar
Adam, D., Schuhmacher, P., Simmerer, J., et al. 1995. ‘Photoconductivity in the columnar phases of a glassy discotic twin’. Adv Mater 7:276–80.CrossRefGoogle Scholar
van de Craats, A. M., Siebbeles, L. D. A., Bleyl, I., et al. 1998. ‘Mechanism of charge transport along columnar stacks of a triphenylene dimer’. J Phys Chem B 102:9625–34.CrossRefGoogle Scholar
Kumar, S., Schuhmacher, P., Henderson, P., Rego, J., and Ringsdorf, H. 1996. ‘Synthesis of new functionalized discotic liquid crystals for photoconducting applications’. Mol Cryst Liq Cryst Sci Technol A: Mol Cryst Liq Cryst 288:211–22.CrossRefGoogle Scholar
Kumar, S., Manickam, M., and Schonherr, H. 1999. ‘First examples of functionalized triphenylene discotic dimers: Molecular engineering of advanced materials’. Liq Cryst 26:1567–71.CrossRefGoogle Scholar
Manickam, M., Smith, A., Belloni, M., et al. 2002. ‘Introduction of bis-discotic and bis-calamitic mesogenic addends to C 60’. Liq Cryst 29:497–504.CrossRefGoogle Scholar
Kranig, W., Hüser, B., Spiess, H. W., et al. 1990. ‘Phase behavior of discotic liquid crystalline polymers and related model compounds’. Adv Mater 2:36–40.CrossRefGoogle Scholar
Kimura, M., Moriyama, M., Kishimoto, K., Yoshio, M., and Kato, T. 2007. ‘Self-assembly of liquid crystalline triphenylene–oligo(ethylene oxide)–triphenylene molecules and their complexes with lithium triflate’. Liq Cryst 34:107–12.Google Scholar
Boden, N., Bushby, R. J., and Cammidge, A. N. 1995. ‘Triphenylene-based discotic-liquid-crystalline polymers: A universal, rational synthesis’. J Am Chem Soc 117:924–7.Google Scholar
Schulte, J. L., Laschat, S., Vill, V., et al. 1998. ‘Convergent synthesis of columnar twins and tetramers from triphenylene building blocks—The first example of a columnar spiro-twin’. Eur J Org Chem 1998:2499–506.3.0.CO;2-L>CrossRefGoogle Scholar
Bisoyi, H. K., and Kumar, S. 2010. ‘Discotic nematic liquid crystals: Science and technology’. Chem Soc Rev 39:264–85.CrossRefGoogle Scholar
Varshney, S. K., Takezoe, H., Prasad, V., and Rao, D. S. S. 2009. ‘π-Conjugated triphenylene twins exhibiting polymesomorphism including the nematic phase’. Mol Cryst Liq Cryst 515:16–38.CrossRefGoogle Scholar
Cammidge, A. N., and Gopee, H. 2009. ‘Synthesis and liquid crystal properties of mixed alkynylalkoxy-triphenylenes’. Liq Cryst 36:809–16.CrossRefGoogle Scholar
Kumar, S., and Naidu, J. J. 2002. ‘Novel hexasubstituted triphenylene discotic liquid crystals having three different types of peripheral substituent’. Liq Cryst 29:899–906.CrossRefGoogle Scholar
Kumar, S., and Varshney, S. K. 2001. ‘A new form of discotic metallomesogens: The synthesis of metal-bridged triphenylene discotic dimers’. Liq Cryst 28:161–3.CrossRefGoogle Scholar
Ji, H., Zhao, K., Yu, W., Wang, B., and Hu, P. 2009. ‘Synthesis and mesomorphism of diacetylenebridged triphenylene discotic liquid crystal dimers’. Sci China Ser B: Chem 52:975–85.CrossRefGoogle Scholar
Zhao, K.-Q., Zhou, H., Yu, W.-H., Wang, B.-Q., and Ping, H. 2011. ‘Palladium catalyzed homo-coupling reaction for the synthesis of rigid-spacer connected discotic liquid crystal dimers with triphenylene mesogens’. Acta Chim Sin 69:1895–902.Google Scholar
Zhang, L., Gopee, H., Hughes, D. L., and Cammidge, A. N. 2010. ‘Antiaromatic twinned triphenylene discotics showing nematic phases and 2-dimensional [small pi]-overlap in the solid state’. Chem Commun 46:4255–7.CrossRefGoogle Scholar
Zhang, L., Hughes, D. L., and Cammidge, A. N. 2012. ‘Discotic triphenylene twins linked through thiophene bridges: Controlling nematic behavior in an intriguing class of functional organic materials’. J Org Chem 77:4288–97.CrossRefGoogle Scholar
Schönherr, H. , Kremer, F. J. B., Kumar, S., et al. 1996. ‘Self-assembled monolayers of discotic liquid crystalline thioethers, discoid disulfides, and thiols on gold: Molecular engineering of ordered surfaces’. J Am Chem Soc 118:13051–7.CrossRefGoogle Scholar
Zelcer, A., Donnio, B., Bourgogne, C., Cukiernik, F. D., and Guillon, D. 2007. ‘Mesomorphism of hybrid siloxane-triphenylene star-shaped oligomers’. Chem Mater 19:1992–2006.CrossRefGoogle Scholar
Tsukruk, V. V., Bengs, H., and Ringsdorf, H. 1996. ‘Discotic twin and triple molecules with charge–transfer interactions in Langmuir–Blodgett films’. Langmuir 12:754–7.Google Scholar
Akopova, O. B., Bulavkova, M. G., Gruzdev, M. S., and Frolova, T. V. 2011. ‘Effect of the nature of chiral fragment on mesomorphic properties of triphenylene ethers’. Russ J Gen Chem 81:714–20.CrossRefGoogle Scholar
Freudenmann, R., Behnisch, B., and Hanack, M. 2001. ‘Synthesis of conjugated-bridged triphenylenes and application in OLEDs’. J Mater Chem 11:1618–24.CrossRefGoogle Scholar
Thevenet, D., and Neier, R. 2011. ‘Click chemistry applied in the synthesis of symmetrical triphenylene-based discotic liquid-crystalline dimers’. Synthesis 2011:3801–6.CrossRefGoogle Scholar
Mao, H., He, Z., Wang, J., et al. 2007. ‘A discotic triphenylene dimer as organic hole transporting material for electroluminescence devices’. J Lumin 122–123:942–45.CrossRefGoogle Scholar
Yang, F., Xie, J., Guo, H., Xu, B., and Li, C. 2012. ‘Novel discotic liquid crystal oligomers: 1,3,5-Triazine-based triphenylene dimer and trimer with wide mesophase’. Liq Cryst 39:1368–74.CrossRefGoogle Scholar
Pal, S. K., and Kumar, S. 2006. ‘Microwave-assisted synthesis of novel imidazolium-based ionic liquid crystalline dimers’. Tetrahedron Lett 47:8993–7.Google Scholar
Kumar, S., and Gupta, S. K. 2010. ‘The first examples of discotic liquid crystalline gemini surfactants’. Tetrahedron Lett 51:5459–62.CrossRefGoogle Scholar
Gupta, S. K., and Kumar, S. 2012. ‘Novel triphenylene–ammonium–ammonium–triphenylene-based discotic ionic liquid crystalline dimers’. Liq Cryst 39:1443–9.CrossRefGoogle Scholar
Gupta, S. K., Raghunathan, V. A.;, Lakshminarayanan, V., and Kumar, S. 2009. Novel benzene-bridged triphenylene-based discotic dyads’. J Phys Chem B 113:12887–95.CrossRefGoogle Scholar
Kumar, B., Suresh, K. A., Gupta, S. K., and Kumar, S. 2010. ‘Stress–strain relation in the collapse of Langmuir monolayer of a dimer of disk shaped moiety’. J Chem Phys 133:044701.Google Scholar
Hirst, D., Diele, S., Laschat, S., and Nimtz, M. 2001. ‘Combination of chiral and achiral triphenylene units in a novel unsymmetrical columnar twin’. Helv Chim Acta 84:1190–6.3.0.CO;2-4>CrossRefGoogle Scholar
Zhao, K. Q., Bai, Y. F., Hu, P., Wang, B. Q, and Shimizu, Y. 2009. ‘Synthesis of triphenylene discotic liquid crystal dimers: Click chemistry as an efficient tool’. Mol Cryst Liq Cryst 509:819–30.CrossRefGoogle Scholar
Varshney, S. K., Monobe, H., Shimizu, Y., Takezoe, H., and Prasad, V. 2010. ‘Non-symmetrical discotic liquid crystalline dimers: Molecular design, synthesis and mesomorphic properties’. Liq Cryst 37:607–15.Google Scholar
Kumar, S., Naidu, J., and Varshney, S. K. 2004. ‘Combination of electron-deficient and electronrich discotic liquid crystals in novel unsymmetrical columnar twins’. Mol Cryst Liq Cryst 411:355–62.CrossRefGoogle Scholar
Varshney, S. K., Nagayama, H., Prasad, V., and Takezoe, H. 2010. ‘Syntheses and mesogenic properties of dimers and trimers consisting of triphenylene donor and anthraquinone acceptor’. Mol Cryst Liq Cryst 517:97–112.CrossRefGoogle Scholar
Freiser, M. J. 1970. ‘Ordered states of a nematic liquid.’ Phys Rev Lett 24:1041–3.CrossRefGoogle Scholar
Luckhurst, G. R. 2004. ‘Liquid crystals: A missing phase found at last? Nature 430:413–4.Google Scholar
Lehmann, M. 2011. ‘Biaxial nematics from their prediction to the materials and the vicious circle of molecular design.’ Liq Cryst 38:1389–405.CrossRefGoogle Scholar
Yu, L. J., and Saupe, A. 1980. ‘Observation of a biaxial nematic phase in potassium laurate-1-decanol–water mixtures’. Phys Rev Lett 45:1000–3.CrossRefGoogle Scholar
Hessel, F., Herr, R.-P., and Finkelmann, H. 1987. ‘Synthesis and characterization of biaxial nematic side chain polymers with laterally attached mesogenic groups.’ Makromol Chem 188:1597–611.CrossRefGoogle Scholar
Tschierske, C., and Photinos, D. J. 2010. ‘Biaxial nematic phases’. J Mater Chem 20:4263–94.CrossRefGoogle Scholar
Bates, M. A., and Luckhurst, G. R. 2005. ‘Biaxial nematics: Computer simulation studies of a generic rod–disc dimer model’. Phys Chem Chem Phys 7:2821–9.CrossRefGoogle Scholar
Dingemans, T. J., Madsen, L. A., Zafiropoulos, N. A., Lin, W., and Samulski, E. T. 2006. ‘Uniaxial and biaxial nematic liquid crystals’. Philos Trans R Soc A: Math Phys Eng Sci 364:2681–96.CrossRefGoogle Scholar
Pratibha, R., and Madhusudana, N. V. 1985. ‘Evidence for two coexisting nematic phases in mixtures of rod-like and disk-like nematogens’. Mol Cryst Liq Cryst 1:111–6.Google Scholar
Fletcher, I. D., and Luckhurst, G. R. 1995. ‘The synthesis and characterization of novel nonsymmetric dimers with rod-like and disc-like mesogenic units’. Liq Cryst 18:175–83.CrossRefGoogle Scholar
Hunt, J. J., Date, R. W., Timimi, B. A., Luckhurst, G. R., and Bruce, D. W. 2001. ‘Toward the biaxial nematic phase of low molar mass thermotropic mesogens: Substantial molecular biaxiality in covalently linked rod–disk dimers’. J Am Chem Soc 123:10115–6.CrossRefGoogle Scholar
Date, R. W., and Bruce, D. W. 2003. ‘Shape amphiphiles: Mixing rods and disks in liquid crystals’. J Am Chem Soc 125:9012–3.CrossRefGoogle Scholar
Apreutesei, D., and Mehl, G. 2006. ‘Investigation of the complete miscibility of disc–rod mesogens in the nematic phase’. Mol Cryst Liq Cryst 449:107–15.CrossRefGoogle Scholar
Attard, G. S., Imrie, C. T., and Karasz, F. E. 1992. ‘Low molar mass liquid-crystalline glasses: Preparation and properties of the. alpha.-(4-cyanobiphenyl-4′-oxy)-.omega.-(1-pyreniminebenzylidene-4′-oxy)alkanes’. Chem Mater 4:1246–53.Google Scholar
Sebastián, N., de la Fuente, M. R., López, D. O., et al. 2011. ‘Dielectric and thermodynamic study on the liquid crystal dimer α-(4-cyanobiphenyl-4′-oxy)-ω-(1-pyreniminebenzylidene-4′-oxy)undecane (CBO11O·Py)’. J Phys Chem B 115:9766–75.CrossRefGoogle Scholar
Sebastián, N., López, D. O., Diez-Berart, S., et al. 2011. ‘Effect of molecular flexibility on the nematic-to-isotropic phase transition for highly biaxial molecular non-symmetric liquid crystal dimers’. Materials 4:1632–47.CrossRefGoogle Scholar
Mukherjee, P. K., and Ash, B. 2013. ‘Effect of molecular flexibility on the nematic–isotropic phase transition: An improved analysis’. Solid State Commun 160:1–4.CrossRefGoogle Scholar
Kouwer, P. H. J., and Mehl, G. H. 2003. ‘Multiple levels of order in linked disc–rod liquid crystals’. Angew Chem Int Ed 42:6015–8.CrossRefGoogle Scholar
Kouwer, P. H. J., Pourzand, J., and Mehl, G. H. 2004. ‘Disc-shaped triphenylenes in a smectic organisation’. Chem Commun 66–7.Google Scholar
Kouwer, P. H. J., and Mehl, G. H. 2003. ‘Full miscibility of disk- and rod-shaped mesogens in the nematic phase’. J Am Chem Soc 125:11172–3.CrossRefGoogle Scholar
Kouwer, P. H. J., Welch, C. J., McRobbie, G., et al. 2004. ‘Mixtures of disc-shaped and rod-shaped mesogens with chiral components’. J Mater Chem 14:1798–803.CrossRef
Kouwer, P. H. J., and Mehl, G. H. 2009. ‘Hierarchical organisation in shape-amphiphilic liquid crystals’. J Mater Chem 19:1564–75.CrossRefGoogle Scholar
Cook, A. G., Wardell, J. L., Brooks, N. J., et al. 2012. ‘Non-symmetric liquid crystal dimer containing a carbohydrate-based moiety’. Carbohydr Res 360:78–83.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×