Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T07:05:29.362Z Has data issue: false hasContentIssue false

Chapter Twelve - Metabolic and taxonomic diversity in antarctic subglacial environments

from Part III - Life in extreme environments and the responses to change: the example of polar environments

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access

Summary

Aquatic subglacial habitats occur throughout the cryosphere where basal melting is sufficient to produce aqueous environments (Priscu & Christner, 2004). Heat energy for melting of basal ice is produced by frictional heating due to glacier movement and geothermal heat flux (Fisher et al., 2015). These heat sources in concert with the lowering of the pressure melting point due to the weight and insulating properties of the overlying ice all contribute to basal ice melting.

Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 279 - 296
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achberger, A.M. (2016). Structure and Functional Potential of Microbial Communities in Subglacial Lake Whillans and at the Ross Ice Shelf Grounding Zone, West Antarctica. PhD thesis, Louisiana State University.Google Scholar
Achberger, A.M., Christner, B.C., Michaud, A.B., et al. (2016). Microbial community structure of subglacial Lake Whillans, West Antarctica. Frontiers in Microbiology, 7, 256–213. doi:10.3389/fmicb.2016.01457Google Scholar
Achberger, A.M., Michaud, A.B., Vick-Majors, T.J., et al. (2017). Microbiology of subglacial environments. In: Margesin, R. (ed.) Psychrophiles: From Biodiversity to Biotechnology. Springer International Publishing, Cham, Switzerland, pp. 83110.Google Scholar
Bakermans, C., Skidmore, M. (2011). Microbial respiration in ice at subzero temperatures (−4°C to −33°C). Environmental Microbiology Reports, 3, 774782. doi:10.1111/j.1758-2229.2011.00298.xGoogle Scholar
Beulig, F., Røy, H., Glombitza, C., Jørgensen, B.B. (2018). Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proceedings of the National Academy of Sciences of the USA, 115, 367372. doi:10.1073/pnas.1715789115Google Scholar
Bottrell, S.H., Tranter, M. (2002). Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrological Processes, 16, 23632368. doi:10.1002/hyp.1012CrossRefGoogle Scholar
Boyd, E.S., Lange, R.K., Mitchell, A.C., et al. (2011). Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Applied and Environmental Microbiology, 77, 47784787. doi:10.1128/AEM.00376-11Google Scholar
Bulat, S.A. (2016). Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. Philosophical Transactions of the Royal Society A, 374, 20140292. doi:10.1098/rsta.2014.0292Google Scholar
Carter, S.P., Fricker, H.A. (2012). The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Annals of Glaciology, 53, 267280. doi:10.3189/2012aog60a119CrossRefGoogle Scholar
Christner, B.C., Mosley-Thompson, E., Thompson, L.G., Reeve, J.N. (2001). Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology, 3, 570577. doi:10.1046/j.1462-2920.2001.00226.xGoogle Scholar
Christner, B.C., Royston-Bishop, G., Foreman, C.M., et al. (2006). Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnology and Oceanography, 51, 24852501.Google Scholar
Christner, B.C., Priscu, J.C., Achberger, A.M., et al. (2014). A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 512, 310313. doi:10.1038/nature13667Google Scholar
Christoffersen, P., Bougamont, M. (2014). Significant groundwater contribution to Antarctic ice streams hydrologic budget. Geophysical Research Letters, 41, 2003–2010. doi:10.1002/2014gl059250CrossRefGoogle Scholar
Dieser, M., Hagedorn, B., Christner, B.C., et al. (2014). Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME Journal, 8, 23052316. doi:10.1038/ismej.2014.59Google Scholar
Dowdeswell, J.A., Siegert, M.J. (1999). The dimensions and topographic setting of Antarctic subglacial lakes and implications for large-scale water storage beneath continental ice sheets. Geological Society of America Bulletin, 111, 254263.Google Scholar
Doyle, S., Montross, S., Skidmore, M., Christner, B. (2013). Characterizing microbial diversity and the potential for metabolic function at −15°C in the basal ice of Taylor Glacier, Antarctica. Biology, 2, 10341053. doi:10.3390/biology2031034Google Scholar
Fisher, A.T., Mankoff, K.D., Tulaczyk, S.M., Tyler, S.W., Foley, N.; WISSARD Science Team (2015). High geothermal heat flux measured below the West Antarctic Ice Sheet. Science Advances, 1, e1500093. doi:10.1126/sciadv.1500093Google Scholar
Fricker, H.A., Scambos, T., Bindschadler, R., Padman, L. (2007). An active subglacial water system in West Antarctica mapped from space. Science, 315, 15441548. doi:10.1126/science.1136897CrossRefGoogle ScholarPubMed
Fricker, H.A., Siegfried, M.R., Carter, S.P., Scambos, T.A. (2015). A decade of progress in observing and modelling Antarctic subglacial water systems. Philosophical Transactions of the Royal Society A, 374, 20140294. doi:10.1098/rsta.2014.0294Google Scholar
Gaidos, E., Marteinsson, V., Thorsteinsson, T., et al. (2009). An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME Journal, 3, 486497. doi:10.1038/ismej.2008.124Google Scholar
Gray, L., Joughin, I., Tulaczyk, S., Spikes, V.B. (2005). Evidence for subglacial water transport in the West Antarctic Ice Sheet through three‐dimensional satellite radar interferometry. Geophysical Research Letters, 32, L03501.Google Scholar
Harrold, Z.R., Skidmore, M.L., Hamilton, T.L., et al. (2015). Aerobic and anaerobic thiosulfate oxidation by a cold-adapted, subglacial chemoautotroph. Applied and Environmental Microbiology, 82, 14861495. doi:10.1128/AEM.03398-15Google Scholar
Hawkings, J.R., Wadham, J.L., Benning, L.G., et al. (2017). Ice sheets as a missing source of silica to the polar oceans. Nature Communications, 8, 14198. doi:10.1038/ncomms14198Google Scholar
Hell, K., Insam, H., Edwards, A., et al. (2013). The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME Journal, 7, 1814–1826. doi:10.1038/ismej.2013.51Google Scholar
Hodson, A., Brock, B., Pearce, D., Laybourn-Parry, J., Tranter, M. (2015). Cryospheric ecosystems: a synthesis of snowpack and glacial research. Environmental Research Letters, 10, 110201–9. doi:10.1088/1748-9326/10/11/110201Google Scholar
Jouzel, J., Petit, J.R., Souchez, R., et al. (1999). More than 200 meters of lake ice above subglacial Lake Vostok, Antarctica. Science, 286, 21382141.CrossRefGoogle ScholarPubMed
Jørgensen, B.B. (1982). Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature, 296, 643645. doi:10.1038/296643a0CrossRefGoogle Scholar
Jørgensen, B.B. (2011). Deep subseafloor microbial cells on physiological standby. Proceedings of the National Academy of Sciences of the USA, 108, 1819318194. doi:10.1073/pnas.1115421108Google Scholar
Kapitsa, A.P., Ridley, J.K., de Q Robin, G., Siegert, M.J., Zotikov, I.A. (1996). A large deep freshwater lake beneath the ice of central East Antarctica. Nature, 381, 684686. doi:10.1038/381684a0Google Scholar
Karl, D.M., Bird, D.F., Bjorkman, K., et al. (1999). Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science, 286, 21442147. doi:10.1126/science.286.5447.2144Google Scholar
Lanoil, B., Skidmore, M., Priscu, J.C., et al. (2009). Bacteria beneath the West Antarctic Ice Sheet. Environmental Microbiology, 11, 609615. doi:10.1111/j.1462-2920.2008.01831.xGoogle Scholar
LaRowe, D., Amend, J. (2014). Energetic constraints on life in marine deep sediments. In: Kallmeyer, J., Wagner, D. (eds) Microbial Life of the Deep Biosphere. De Gruyter, Berlin, Boston, pp. 279302.Google Scholar
Lin, L.-H., Wang, P.-L., Rumble, D., et al. (2006). Long-term sustainability of a high-energy, low-diversity crustal biome. Science, 314, 479482. doi:10.1126/science.1127376Google Scholar
Lipps, J.H., Ronan, T.E., DeLaca, T.E. (1979). Life below the Ross Ice Shelf, Antarctica. Science, 203, 447449. doi:10.1126/science.203.4379.447Google Scholar
Llubes, M., Lanseau, C., Rémy, F. (2006). Relations between basal condition, subglacial hydrological networks and geothermal flux in Antarctica. Earth and Planetary Science Letters, 241, 655662. doi:10.1016/j.epsl.2005.10.040Google Scholar
Lollar, B.S., Onstott, T.C., Lacrampe-Couloume, G., Ballentine, C.J. (2014). The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516, 379382. doi:10.1038/nature14017Google Scholar
McKay, C.P., Hand, K.P., Doran, P.T., Andersen, D.T., Priscu, J.C. (2003). Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica. Geophysical Research Letters, 30, 124. doi:10.1029/2003GL017490Google Scholar
Michaud, A.B., Skidmore, M.L., Mitchell, A.C., et al. (2016). Solute sources and geochemical processes in Subglacial Lake Whillans. West Antarctica, 44, 347350. doi:10.1130/G37639.1Google Scholar
Michaud, A.B., Dore, J.E., Achberger, A.M., et al. (2017). Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nature Publishing Group, 10, 18. doi:10.1038/ngeo2992Google Scholar
Mikucki, J.A., Priscu, J.C. (2007). Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied and Environmental Microbiology, 73, 40294039. doi:10.1128/AEM.01396-06Google Scholar
Mikucki, J.A., Foreman, C.M., Sattler, B., Lyons, W.B., Priscu, J.C. (2004). Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquatic Geochemistry, 10, 199220. doi:10.1007/s10498-004-2259-xGoogle Scholar
Mikucki, J.A., Schrag, D.P., Mikucki, J.A., et al. (2009). A contemporary microbially maintained subglacial ferrous ‘ocean’.Science, 324, 397400. doi:10.1126/science.1167350Google Scholar
Mikucki, J.A., Lee, P.A., Ghosh, D., et al. (2016). Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge. Philosophical Transactions of the Royal Society A, 374, pii: 20140290. doi:10.1098/rsta.2014.0290Google Scholar
Mitchell, A.C., Lafrenière, M.J., Skidmore, M.L., Boyd, E.S. (2013). Influence of bedrock mineral composition on microbial diversity in a subglacial environment. Geology, 41, 855858. doi:10.1130/G34194.1Google Scholar
Montross, S.N., Skidmore, M., Tranter, M., Kivimaki, A.L., Parkes, R.J. (2013). A microbial driver of chemical weathering in glaciated systems. Geology, 41, 215218. doi:10.1130/G33572.1Google Scholar
National Research Council (2007). Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship. The National Academies Press, Washington, DC.Google Scholar
Oswald, G., Robin, G.Q. (1973). Lakes beneath the Antarctic ice sheet. Nature, 245, 251254. doi:10.1038/245251a0Google Scholar
Pattyn, F. (2010). Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth and Planetary Science Letters, 295, 451461. doi:10.1016/j.epsl.2010.04.025Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.Google Scholar
Post, A.L., Galton-Fenzi, B.K., Riddle, M.J., et al. (2014). Modern sedimentation, circulation and life beneath the Amery Ice Shelf, East Antarctica. Continental Shelf Research, 74, 7787. doi:10.1016/j.csr.2013.10.010Google Scholar
Prestrud-Anderson, S., Drever, J.I., Humphrey, N.F. (1997). Chemical weathering in glacial environments. Geology, 25, 399.Google Scholar
Priscu, J.C., Christner, B.C. (2004). Earth’s icy biosphere. Microbial Diversity and Prospecting, 130145.Google Scholar
Priscu, J.C., Adams, E.E., Lyons, W.B., et al. (1999). Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science, 286, 21412144.Google Scholar
Priscu, J.C., Tulaczyk, S., Studinger, M., et al. (2008). Antarctic subglacial water: origin, evolution, and ecology. In: Vincent, W.F., Laybourn-Parry, J (eds) Polar Lakes and Rivers. Oxford University Press Inc., New York, pp. 119135.CrossRefGoogle Scholar
Priscu, J.C., Achberger, A.M., Cahoon, J.E., et al. (2013). A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarctic Science, 25, 637647. doi:10.1017/S0954102013000035Google Scholar
Purcell, A.M., Mikucki, J.A., Achberger, A.M., et al. (2014). Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Frontiers in Microbiology, 5, 594. doi:10.3389/fmicb.2014.00594Google Scholar
Riddle, M.J., Craven, M., Goldsworthy, P.M., Carsey, F. (2007). A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography, 22. doi:10.1029/2006pa001327Google Scholar
Rignot, E., Jacobs, S., Mouginot, J., Scheuchl, B. (2013). Ice-shelf melting around Antarctica. Science, 341, 266270. doi:10.1126/science.1235798Google Scholar
Robinson, N.J., Williams, M.J.M., Barrett, P.J., et al. (2010). Observations of flow and ice-ocean interaction beneath the McMurdo Ice Shelf, Antarctica. Journal of Geophysical Research, 115, C03025. doi:10.1029/2008JC005255Google Scholar
Rogers, S., Shtarkman, Y., Koçer, Z., et al. (2013). Ecology of subglacial lake Vostok (Antarctica), based on metagenomic/metatranscriptomic analyses of accretion ice. Biology, 2, 629650. doi:10.3390/biology2020629Google Scholar
Sharp, M., Parkes, J., Cragg, B., Fairchild, I.J., Lamb, H. (1999). Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology, 27, 107. doi:10.1130/0091-7613(1999)0272.3.co;2Google Scholar
Siegert, M.J., Ellis-Evans, J.C., Tranter, M., et al. (2001). Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature, 414, 603609. doi:10.1038/414603aGoogle Scholar
Siegert, M.J., Carter, S., Tabacco, I., Popov, S., Blankenship, D.D. (2005). A revised inventory of Antarctic subglacial lakes. Antarctic Science, 17, 453. doi:10.1017/S0954102005002889Google Scholar
Siegert, M.J., Clarke, R.J., Mowlem, M., Ross, N. (2012). Clean access, measurement, and sampling of Ellsworth Subglacial Lake: a method for exploring deep Antarctic subglacial lake environments. Review of Geophysics, 50, RG1003. doi:10.1029/2011rg000361Google Scholar
Siegert, M.J., Makinson, K., Blake, D., et al. (2014). An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13. Annals of Glaciology, 55, 5973. doi:10.3189/2014AoG65A008Google Scholar
Siegert, M.J., Ross, N., Le Brocq, A.M. (2016). Recent advances in understanding Antarctic subglacial lakes and hydrology. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 374, 20140306. doi:10.1098/rsta.2014.0306Google Scholar
Siegfried, M.R., Fricker, H.A., Roberts, M., Scambos, T.A., Tulaczyk, S. (2014). A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry. Geophysical Research Letters, 41, 891898. doi:10.1002/2013gl058616Google Scholar
Skidmore, M. (2011). Microbial communities in Antarctic subglacial aquatic environments. In: Antarctic Subglacial Aquatic Environments. American Geophysical Union. Oxford University Press Inc., New York, pp. 6181.Google Scholar
Skidmore, M.L., Foght, J.M., Sharp, M.J. (2000). Microbial life beneath a high Arctic glacier. Applied and Environmental Microbiology, 66, 32143220. doi:10.1128/AEM.66.8.3214-3220.2000.UpdatedGoogle Scholar
Skidmore, M., Tranter, M., Tulaczyk, S., Lanoil, B. (2010). Hydrochemistry of ice stream beds – evaporitic or microbial effects? Hydrological Processes, 24, 517523. doi:10.1002/hyp.7580CrossRefGoogle Scholar
Tranter, M. (2003). Geochemical weathering in glacial and proglacial environments. In: Singh, V.P., Singh, P, Haritashay, U.K. (eds) Treatise on Geochemistry. Elsevier, the Netherlands, pp. 189205.Google Scholar
Tranter, M., Skidmore, M., Wadham, J. (2005). Hydrological controls on microbial communities in subglacial environments. Hydrological Processes, 19, 995998. doi:10.1002/hyp.5854CrossRefGoogle Scholar
Tulaczyk, S., Tulaczyk, S., Mikucki, J.A., et al. (2014). WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Annals of Glaciology, 55, 5158. doi:10.3189/2014aog65a009Google Scholar
Uemura, T., Taniguchi, M., Shibuya, K. (2011). Submarine groundwater discharge in Lützow-Holm Bay, Antarctica. Geophysical Research Letters, 38, L08402. doi:10.1029/2010GL046394Google Scholar
Vick-Majors, T.J., Achberger, A., Santibáñez, P.A., et al. (2015). Biogeochemistry and microbial diversity in the marine cavity beneath the McMurdo Ice Shelf, Antarctica. Limnology and Oceanography, 61, 572586. doi:10.1002/lno.10234Google Scholar
Vick-Majors, T.J., Mitchell, A.C., Achberger, A.M., et al. (2016). Physiological ecology of microorganisms in subglacial Lake Whillans. Frontiers in Microbiology, 7, 116. doi:10.3389/fmicb.2016.01705Google Scholar
Wadham, J.L., Tranter, M., Skidmore, M., et al. (2010). Biogeochemical weathering under ice: Size matters. Global Biogeochemical Cycles, 24, GB3025. doi:10.1029/2009gb003688Google Scholar
Wadham, J.L., Arndt, S., Tulaczyk, S., et al. (2012). Potential methane reservoirs beneath Antarctica. Nature, 488, 633637. doi:10.1038/nature11374CrossRefGoogle ScholarPubMed
Wingham, D.J., Siegert, M.J., Shepherd, A., Muir, A.S. (2006). Rapid discharge connects Antarctic subglacial lakes. Nature, 440, 10331036. doi:10.1038/nature04660Google Scholar
Wright, A., Siegert, M. (2012). A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 24, 659664. doi:10.1017/S095410201200048XGoogle Scholar
Zotikov, I.A. (2006). The Antarctic Subglacial Lake Vostok. Springer-Verlag ,Berlin/Heidelberg/New York.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×