Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T11:11:48.165Z Has data issue: false hasContentIssue false

7 - Nonlinear optics. From the semi-classical approach to quantum effects

Published online by Cambridge University Press:  05 August 2012

Gilbert Grynberg
Affiliation:
Ecole Normale Supérieure, Paris
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Fabre
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Introduction

In 1961, just a few months after Maiman invented the ruby laser, Franken focused the pulses emitted from such a laser, of wavelength 694 nm, on a quartz plate, and examined the spectrum of the light transmitted using a simple prism (see Figure 7.1). He thus discovered that ultra-violet light of wavelength 347 nm was emerging from the quartz plate. Clearly, as it propagated through the quartz, the light of frequency ω had generated the second harmonic, of frequency 2ω.

It thus transpires that in optics, as in any other part of physics, a system subjected to a strong enough sinusoidal excitation will leave the linear response regime. Nonlinearities cause harmonics of the excitation frequency to appear.

But what intensity is needed before nonlinear effects will appear? One might think that a natural scale would be the electric field of the nucleus at the location of an atomic electron. In the case of the hydrogen atom in its ground state, this field is about, or 3 × 1011 V.m−1. (Here e is the charge of the electron, and a0 the Bohr radius, of the order of 5 × 10−11 m). In fact, experiment shows that, in the transparency zone of a dielectric material like quartz, a field of just 107 V.m−1 (corresponding to a light intensity of 2.5 kW.cm−2) is sufficient for nonlinear effects to appear perturbatively.

Type
Chapter
Information
Introduction to Quantum Optics
From the Semi-classical Approach to Quantized Light
, pp. 529 - 559
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×