Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T09:31:36.627Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 May 2019

Taras Gerya
Affiliation:
Swiss Federal University (ETH), Zürich
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, M. (2000) A local mesh refinement multigrid method for 3D convection problems with strongly variable viscosity. Journal of Computational Physics, 160, 126150.CrossRefGoogle Scholar
Amestoy, P., Duff, I., Koster, J., L’excellent, A. (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23 (1), 1541.CrossRefGoogle Scholar
Ampuero, J.-P., Ben-Zion, Y. (2008) Cracks, pulses and macroscopic asymmetry of dy-namic rupture on a bimaterial interface with velocity-weakening friction. Geophysical Journal International, 173, 674692.CrossRefGoogle Scholar
Ampuero, J.-P., Rubin, A. M. (2008) Earthquake nucleation on rate and state faults – aging and slip laws. Journal of Geophysical Research, 113, B01302.CrossRefGoogle Scholar
Anderson, O. L. (1995) Equations of State for Solids in Geophysics and Ceramic Science. Oxford University Press.CrossRefGoogle Scholar
Andrews, E. R., Billen, M. I. (2009) Rheologic controls on the dynamics of slab detachment. Tectonophysics, 464, 6069.CrossRefGoogle Scholar
Armann, M., Tackley, P. J. (2012) Simulating the thermo-chemical magmatic and tectonic evolution of Venus’ mantle and lithosphere 1. two-dimensional models. Journal of Geophysical Research, 117, E12003.CrossRefGoogle Scholar
Asphaug, E., Agnor, C. B., Williams, Q. (2006) Hit-and-run planetary collisions. Nature, 439, 155160.CrossRefGoogle ScholarPubMed
Bagdassarov, N. S., Fradkov, A. S. (1993) Evolution of double diffusion convection in a felsic magma chamber. Journal of Volcanology and Geothermal Research, 54 (3–4), 291308.CrossRefGoogle Scholar
Baitsch-Ghirardello, B., Stracke, A., Connolly, J. A. D., Nikolaeva, K. M., Gerya, T. V. (2014) Lead transport in intra-oceanic subduction zones: 2D geochemical–thermo-mechanical modeling of isotopic signatures. Lithos, 208–209, 265280.CrossRefGoogle Scholar
Barazangi, M., Isacks, B. L., Oliver, J., Dubois, J., Pascal, G. (1973) Descent of lithosphere beneath New Hebrides, Tonga–Fiji and New Zealand: evidence for detached slabs. Nature, 242 (5393), 98101.CrossRefGoogle Scholar
Baumann, T. (2016) Appraisal of geodynamic inversion results: a data mining approach. Geophysical Journal International, 207, 667679.CrossRefGoogle Scholar
Baumann, T., Kaus, B. J. P. (2015) Geodynamic inversion to constrain the nonlinear rheology of the lithosphere. Geophysical Journal International, 202, 12891316.CrossRefGoogle Scholar
Baumann, T., Gerya, T., Connolly, J. A. D. (2010) Numerical modelling of spontaneous slab breakoff dynamics during continental collision. In: Spalla, M. I., Marotta, A. M., Gosso, G. (editors), Advances in Interpretation of Geological Processes. Geological Society, London, Special Publications, 332, pp. 99114.Google Scholar
Baumann, T., Kaus, B. J. P., Popov, A. (2014) Constraining effective rheology through parallel joint geodynamic inversion. Tectonophysics, 631 (15), 197211.CrossRefGoogle Scholar
Baumgardner, J. R. (1985) Three-dimensional treatment of convective flow in the Earth’s mantle. Journal of Statistical Physics, 39, 501511.CrossRefGoogle Scholar
Beaumont, C., Jamieson, R. A., Nguyen, M. H., Lee, B. (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414, 738742.CrossRefGoogle ScholarPubMed
Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R., Massonne, H. J. (2011) Diapirs as the source of the sediment signature in arc lavas. Nature Geoscience, 4, 641646.CrossRefGoogle Scholar
Belytschko, T., Liu, W. K., Moran, B. (2000) Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Chichester.Google Scholar
Ben-Zion, Y. (2008) Collective behavior of earthquakes and faults: continuum-discrete transitions, evolutionary changes and corresponding dynamic regimes. Reviews of Geophysics, 46, RG4006.CrossRefGoogle Scholar
Ben-Zion, Y., Rice, J. R. (1993) Earthquake failure sequences along a cellular fault zone in a three-dimensional elastic solid containing asperity and nonasperity regions. Journal of Geophysical Research, 98, 1410914131.CrossRefGoogle Scholar
Ben-Zion, Y., Rice, J. R. (1997) Dynamic simulations of slip on a smooth fault in an elastic solid. Journal of Geophysical Research, 102, 1777117784.CrossRefGoogle Scholar
Benz, W., Slattery, W., Cameron, A. G. W. (1986) The origin of the moon and the single-impact hypothesis 1. Icarus, 66, 515.CrossRefGoogle Scholar
Bercovici, D. (editor) (2007) Mantle Dynamics. Treatise on Geophysics, Volume 7. Elsevier.Google Scholar
Bercovici, D., Michaut, C. (2010) Two-phase dynamics of volcanic eruptions: compaction, compression and the conditions for choking. Geophysical Journal International, 182 (2), 843864.CrossRefGoogle Scholar
Bercovici, D., Ricard, Y. (2012) Mechanisms for the generation of plate tectonics by two phase grain-damage and pinning. Physics of the Earth and Planetary Interiors, 202203, 2755.CrossRefGoogle Scholar
Bercovici, D., Ricard, Y. (2014) Plate tectonics, damage and inheritance. Nature, 508, 513516.CrossRefGoogle ScholarPubMed
Bercovici, D., Schubert, G. (editors) (2015) Mantle Dynamics. Treatise on Geophysics, 2nd Edition, Volume 7. Elsevier.Google Scholar
Bercovici, D., Ricard, Y., Schubert, G. (2001) A two-phase model for compaction and damage: 1. General theory. Journal of Geophysical Research, 106, 88878906.CrossRefGoogle Scholar
Bercovici, D., Tackley, P., Ricard, Y. (2015) The generation of plate tectonics from mantle dynamics. In: Bercovici, D., Schubert, G. (editors), Mantle Dynamics. Treatise on Geophysics, Volume 7. Elsevier, pp. 271318.Google Scholar
Bergantz, G. W. (2000) On the dynamics of magma mixing by reintrusion: implications for pluton assembly processes. Journal of Structural Geology, 22, 12971309.CrossRefGoogle Scholar
Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445522.CrossRefGoogle Scholar
Berner, H., Ramberg, H., Stephanson, O. (1972) Diapirism in theory and experiment. Tectonophysics, 15, 197218.CrossRefGoogle Scholar
Best, M. G., Christiansen, E. H. (2001) Igneous Petrology. Blackwell Science, Malden.Google Scholar
Bhattacharya, P., Rubin, A. M., Bayart, E., Savage, H. M., Marone, C. (2015) Critical evaluation of state evolution laws in rate and state friction: fitting large velocity steps in simulated fault gouge with time-, slip-, and stress-dependent constitutive laws. Journal of Geophysical Research, 120, 63656385.CrossRefGoogle Scholar
Billen, M. I., Kreylos, O., Hamann, B., Jadamec, M. A., Kellogg, L. H., Staadt, O., Sumner, D. Y. (2008) A geoscience perspective on immersive 3D gridded data visualization. Computers & Geosciences, 34, 10561072.CrossRefGoogle Scholar
Biot, M. A. (1941) General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155164.CrossRefGoogle Scholar
Biot, M. A. (1965) Mechanics of Incremental Deformations: Theory of Elasticity and Viscoelasticity of Initially Stressed Solids and Fluids, Including Thermodynamic Foundations and Applications to Finite Strain. John Wiley & Sons.CrossRefGoogle Scholar
Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809824.CrossRefGoogle Scholar
Bird, P. (1978) Finite elements modeling of lithosphere deformation: the Zagros collision orogeny. Tectonophysics, 50, 307336.CrossRefGoogle Scholar
Bitsch, B., Lambrechts, M., Johansen, A. (2015) The growth of planets by pebble accretion in evolving protoplanetary discs. Astronomy & Astrophysics, 582, A112.CrossRefGoogle Scholar
Bittner, D., Schmeling, H. (1995) Numerical modeling of melting processes and induced diapirism in the lower crust. Geophysical Journal International, 123, 5970.CrossRefGoogle Scholar
Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore, D., Olson, P., Schmeling, H., Schnaubelt, T. (1989) A benchmark comparison for mantle convection codes. Geophysical Journal International, 98 (1), 2338.CrossRefGoogle Scholar
Bocher, M., Coltice, N., Fournier, A., Tackley, P. J. (2016) A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics. Geophysical Journal International, 204 (1), 200214.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., Pringle, E. A., Bonal, L., Jørgensen, J. K., Nordlund, Å., Moynier, F., Bizzarro, M. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.CrossRefGoogle ScholarPubMed
Boris, J. P., Book, D. L. (1973) Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 11, 3869.CrossRefGoogle Scholar
Brace, W. F., Kohlstedt, D. T. (1980) Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research, 85, 62486252.CrossRefGoogle Scholar
Braun, J., Sambridge, M. (1997) Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization. Basin Research, 9, 2752.CrossRefGoogle Scholar
Braun, J., Thieulot, C., Fullsack, P., DeKool, M., Beaumont, C., Huismans, R. (2008) DOUAR: a new three-dimensional creeping flow numerical model for the solution of geological problems. Physics of the Earth and Planetary Interiors, 171, 7691.CrossRefGoogle Scholar
Brosh, E., Shneck, R. Z., Makov, G. (2008) Explicit Gibbs free energy equation of state for solids. Journal of Physics and Chemistry of Solids, 69, 19121922.CrossRefGoogle Scholar
Brune, S. (2016) Rifts and rifted margins: a review of geodynamic processes and natural hazards. In: Duarte, J., Schellart, W. (editors), Plate Boundaries and Natural Hazards. American Geophysical Union, Wiley, pp. 3976.Google Scholar
Budiansky, B. (1970) Thermal and thermoelastic properties of isotropic composites. Journal of Composite Materials, 4, 286295.CrossRefGoogle Scholar
Buiter, S. J. H., Govers, R., Wortel, M. J. R. (2002) Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophysics, 354, 195210.CrossRefGoogle Scholar
Buiter, S. J. H., Babeyko, A. Yu., Ellis, S., Gerya, T. V., Kaus, B. J. P., Kellner, A., Schreurs, G., Yamada, Y. (2006) The numerical sandbox: comparison of model results for a shortening and an extension experiment. In: Buiter, S. J. H., Schreurs, G. (editors), Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London, Special Publications, 253, pp. 2964.Google Scholar
Buiter, S. J. H., Schreurs, G., Albertz, M., Gerya, T. V., Kaus, B., Landry, W., le Pourhiet, L., Mishin, Y., Egholm, D. L., Cooke, M., Maillot, B., Thieulot, C., Crook, T., May, D., Souloumiac, P., Beaumont, C. (2016) Benchmarking numerical models of brittle thrust wedges. Journal of Structural Geology, 92, 140177.CrossRefGoogle Scholar
Burg, J.-P., Gerya, T. V. (2005) The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23, 7595.CrossRefGoogle Scholar
Burg, J.-P., Bodinier, J.-L., Gerya, T., Bedini, R.-M., Boudier, F., Dautria, J.-M., Prikhodko, V., Efimov, A., Pupier, E., Balanec, J.-L. (2009) Translithospheric mantle diapirism: geological evidence and numerical modelling of the Kondyor zoned ultramafic complex (Russian Far-East). Journal of Petrology, 50, 289321.CrossRefGoogle Scholar
Burkett, E. R., Billen, M. I. (2010) Three-dimensionality of slab detachment due to ridge–trench collision: laterally simultaneous boudinage versus tear propagation. Geochemistry, Geophysics, Geosystems, 11, Q11012.CrossRefGoogle Scholar
Burov, E. B., Cloetingh, S. (1997) Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth and Planetary Science Letters, 150, 726.CrossRefGoogle Scholar
Burov, E., Gerya, T. (2014) Asymmetric three-dimensional topography over mantle plumes. Nature, 513, 8589.CrossRefGoogle ScholarPubMed
Burov, E., Poliakov, A. (2001) Erosion and rheology controls on synrift and postrift evolution: verifying old and new ideas using a fully coupled numerical model. Journal of Geophysical Research, 106 (B8), 1646116481.CrossRefGoogle Scholar
Burov, E., Jolivet, L., Le Pourhiet, L., Poliakov, A. (2001) A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts. Tectonophysics, 342, 113136.CrossRefGoogle Scholar
Burov, E., Jaupart, C., Guillou-Frottier, L. (2003) Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. Journal of Geophysical Research, 108, 2177.CrossRefGoogle Scholar
Burstedde, C., Ghattas, O., Gurnis, M., Stadler, G., Tan, E., Tu, T., Wilcox, L. C., Zhong, S. (2008) Scalable adaptive mantle convection simulation on petascale supercomputers. Proceedings of the 2008 ACM/IEEE conference on Supercomputing, Austin, TX, Article No. 62.Google Scholar
Burstedde, C., Ghattas, O., Stadler, G., Tu, T., Wilcox, L. C. (2009) Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems. Computer Methods in Applied Mechanics and Engineering, 198, 16911700.CrossRefGoogle Scholar
Busse, F. H., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea, E., Guillou, L., Houseman, G., Nataf, H.-C., Ogawa, M. (1994) 3-D convection at infinite Prandtl number in Cartesian geometry – a benchmark comparison. Geophysical & Astrophysical Fluid Dynamics, 75, 3959.CrossRefGoogle Scholar
Byerlee, J. D. (1978) Friction of rocks. Pure and Applied Geophysics, 116, 615626.CrossRefGoogle Scholar
Cai, M. (2010) Practical estimates of tensile strength and Hoek-Brown strength parameter m(i) of brittle rocks. Rock Mechanics and Rock Engineering, 43, 167184.CrossRefGoogle Scholar
Canup, R. M. (2004) Simulations of a late lunar-forming impact. Icarus, 168, 33456.CrossRefGoogle Scholar
Canup, R. M., Asphaug, E. (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708.CrossRefGoogle Scholar
Cao, W., Kaus, B. J. P., Paterson, S. (2016) Intrusion of granitic magma into the continental crust facilitated by multiple pulses and diking: numerical simulations. Tectonics, 35, 15751594.CrossRefGoogle Scholar
Caricchi, L., Burlini, L., Ulmer, P., Gerya, T., Vassalli, M. Papale, P. (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth and Planetary Science Letters, 264, 402419.CrossRefGoogle Scholar
Castro, A. Gerya, T. V. (2008) Magmatic implications of mantle wedge plumes: experimental study. Lithos, 103, 138148.CrossRefGoogle Scholar
Chambers, J. E. (2001) Making more terrestrial planets. Icarus, 152, 205224.CrossRefGoogle Scholar
Chambers, J. E., Wetherill, G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304327.CrossRefGoogle Scholar
Chapman, B., Jost, G., van der Pas, R. (2007) Using OpenMP: portable shared memory parallel Programming. MIT Press, Cambridge, MA.Google Scholar
Chemenda, A. I., Burg, J.-P., Mattauer, M. (2000) Evolutionary model of the Himalaya-Tibet system: geopoem based on new modelling, geological and geophysical data. Earth and Planetary Science Letters, 174, 397409.CrossRefGoogle Scholar
Chen, J., Spiers, C. J. (2016) Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model. Journal of Geophysical Research, 121, 86428665.CrossRefGoogle Scholar
Chen, S., Zhang, H., Yuen, D., Zhang, S., Zhang, J., Shi, Y. (2008) Volume rendering visualization of 3D spherical mantle convection with an unstructured mesh. Visual Geosciences, 13, 97104.CrossRefGoogle Scholar
Chester, F. M. (1994) Effects of temperature on friction: constitutive equations and experiments with quartz gouge. Journal of Geophysical Research, 99, 72477261.CrossRefGoogle Scholar
Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contributions to Mineralogy and Petrology, 86, 107118.CrossRefGoogle Scholar
Chopin, C. (2003) Ultrahigh-pressure metamorphism: tracing continental crust into mantle. Earth and Planetary Science Letters, 212, 114.CrossRefGoogle Scholar
Christensen, U. (1982) Phase boundaries in finite amplitude mantle convection. Geophysical Journal of the Royal Astronomical Society, 68, 487497.CrossRefGoogle Scholar
Christensen, U. R., Yuen, D. A. (1985) Layered convection induced by phase changes. Journal of Geophysical Research, 90, 1029110300.CrossRefGoogle Scholar
Chung, W.-Y., Kanamori, H. (1976) Source process and tectonic implications of the Spanish deep-focus earthquake of March 29, 1954. Physics of the Earth and Planetary Interiors, 13 (2), 8596.CrossRefGoogle Scholar
Clauser, C., Huenges, E. (1995) Thermal conductivity of rocks and minerals. In: Ahrens, T. J. (editor), Rock Physics and Phase Relations. AGU Reference Shelf 3. American Geophysical Union, Washington DC, pp. 105126.Google Scholar
Clemens, J. D., Mawer, C. K. (1992) Granitic magma transport by fracture propagation. Tectonophysics, 204, 339360.CrossRefGoogle Scholar
Cloetingh, S. A. P. L., Ziegler, P. A., Bogaard, P. J. F., Andriessen, P. A. M., Artemieva, I. M., Bada, G., van Balen, R. T., Beekman, F., Ben-Avraham, Z., Brun, J.-P., Bunge, H. P., Burov, E. B., Carbonell, R., Facenna, C., Friedrich, A., Gallart, J., Green, A. G., Heidbach, O., Jones, A. G., Matenco, L., Mosar, J., Oncken, O., Pascal, C., Peters, G., Sliaupa, S., Soesoo, A., Spakman, W., Stephenson, R. A., Thybo, H., Torsvik, T., de Vicente, G., Wenzel, F., Wortel, M. J. R. (2007) TOPO-EUROPE: the geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 58, 1118.CrossRefGoogle Scholar
Cloos, M. (1982) Flow melanges – numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California. Geological Society of America Bulletin, 93, 330345.2.0.CO;2>CrossRefGoogle Scholar
Cocco, M., Bizzarri, A. (2002) On the slip-weakening behavior of rate- and state dependent constitutive laws. Geophysical Research Letters, 29, 1516.CrossRefGoogle Scholar
Cocco, M., Bizzarri, A., Tinti, E. (2004) Physical interpretation of the breakdown process using a rate- and state-dependent friction law. Tectonophysics, 378, 241262.CrossRefGoogle Scholar
Cohen, R.E. (editor) (2005) High-Performance Computing Requirements for the Computational Solid Earth Sciences. www.geo-prose.com/computational_SES.htmlGoogle Scholar
Colón, D. P., Bindeman, I. N., Gerya, T. V. (2018) Thermomechanical modelling of the formation of a multilevel, crustal-scale magmatic system by the Yellowstone plume. Geophysical Research Letters, 45, 38733879.CrossRefGoogle Scholar
Coltice, N., Rolf, T., Tackley, P. J., Labrosse, S. (2012) Dynamic causes of the relation between area and age of the ocean floor. Science, 336 (6079), 335338.CrossRefGoogle ScholarPubMed
Condamine, F. L., Rolland, J., Morlon, H. (2013) Macroevolutionary perspectives to environmental change. Ecology Letters, 16, 7285.CrossRefGoogle ScholarPubMed
Connolly, J. A. D. (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and an application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524541.CrossRefGoogle Scholar
Connolly, J. A. D., Kerrick, D. M. (1987) An algorithm and computer program for calculating composition phase diagrams. CALPHAD, 11, 155.CrossRefGoogle Scholar
Connolly, J. A. D., Podladchikov, Y. Y. (1998) Compaction-driven fluid flow in viscoelastic rock. Geodinamica Acta, 11, 5584.CrossRefGoogle Scholar
Connolly, J., Podladchikov, Y. Y. (2000) Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins. Tectonophysics, 324, 137168.CrossRefGoogle Scholar
Costa, A., Caricchi, L., Bagdassarov, N. (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochemistry, Geophysics, Geosystems, 10, Q03010.CrossRefGoogle Scholar
Crameri, F., Schmeling, H., Golabek, G. J., Duretz, T., Orendt, R., Buiter, S. J. H., May, D. A., Kaus, B. J. P., Gerya, T. V., Tackley, P. J. (2012a) A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method. Geophysical Journal International, 189, 3854.CrossRefGoogle Scholar
Crameri, F., Tackley, P. J., Meilick, I., Gerya, T., Kaus, B. J. P. (2012b) A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophysical Research Letters, 39, doi:10.1029/2011GL050046.CrossRefGoogle Scholar
Cserepes, L., Rabinowicz, M., Rosemberg-Borot, C. (1988) Three-dimensional infinite Prandtl number convection in one and two layers and implications for the Earth’s gravity field. Journal of Geophysical Research, 93, 1200912025.CrossRefGoogle Scholar
Dabrowski, M., Krotkiewski, M., Schmid, D. W. (2008) MILAMIN: MATLAB-based finite element method solver for large problems. Geochemistry, Geophysics, Geosystems, 9, Q04030, doi:10.1029/2007GC001719.CrossRefGoogle Scholar
Daignières, M., Fremond, M., Friaa, A. (1978) Modèle de type Norton-Hoff généralisé pour l’étude des déformations lithosphériques (exemple: la collision Himalayenne). Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, 268B, 371374.Google Scholar
Dal Zilio, L., van Dinther, Y., Gerya, T. V., Pranger, C. C. (2018) Seismic behaviour of mountain belts controlled by plate convergence rate. Earth and Planetary Science Letters, 482, 8192.CrossRefGoogle Scholar
Damon, M., Kameyama, M. C., Knox, M., Porter, D. H., Yuen, D., Sevre, E. O. D. (2008) Interactive visualization of 3D mantle convection. Visual Geosciences, 13, 4957.CrossRefGoogle Scholar
David, C., Wong, T. F., Zhu, W. L., Zhang, J. X. (1994) Laboratory measurement of compaction-induced permeability change in porous rocks – implications for the generation and maintenance of pore pressure excess in the crust. Pure and Applied Geophysics, 143, 425456.CrossRefGoogle Scholar
Davies, G. F. (1985) Heat deposition and retention in a solid planet growing by impacts. Icarus, 63, 4568.CrossRefGoogle Scholar
Davies, J. H, Von Blanckenburg, F. (1995) Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129, 85102.CrossRefGoogle Scholar
Day, S. M., Dalguer, L. A., Lapusta, N., Liu, Y. (2005) Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research, 110, B12307.CrossRefGoogle Scholar
de Capitani, C., Brown, H. (1987) The computation of chemical equilibrium in complex systems containing non-ideal solid solutions. Geochimica et Cosmochimica Acta, 51, 26392652.CrossRefGoogle Scholar
DePaolo, D. J., Cerling, T. E., Hemming, S. R., Knoll, A. H., Richter, F. M., Royden, L. H., Rudnick, R. L., Stixrude, L., Trefil, J. S. (2008) Origin and Evolution of Earth: Research Questions for a Changing Planet. Committee on Grand Research Questions in the Solid-Earth Sciences, Board on Earth Sciences and Resources, Division on Earth and Life Studies, National Research Council of the National Academies, The National Academies Press, Washington, DC.Google Scholar
Descombes, P., Gaboriau, T., Albouy, C., Heine, C., Leprieur, F., Pellissier, L. (2017) Linking species diversification to palaeo-environmental changes: a process-based modelling approach. Global Ecology and Biogeography, 27, 233244.CrossRefGoogle Scholar
Deubelbeiss, Y., Kaus, B. J. P. (2008) Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity. Physics of the Earth and Planetary Interiors, 171, 92111.CrossRefGoogle Scholar
Dieterich, J. H. (1972) Time-dependent friction in rocks. Journal of Geophysical Research, 77, 36903697.CrossRefGoogle Scholar
Dieterich, J. H. (1978) Time-dependent friction and the mechanics of stick-slip. Pure and Applied Geophysics, 116, 790806.CrossRefGoogle Scholar
Dieterich, J. H. (1979) Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84, 21612168.CrossRefGoogle Scholar
Dieterich, J. H. (1981) Constitutive properties of faults with simulated gouge. In: Carter, N. L., Friedman, M., Logan, J. M., Stearns, D. W. (editors), Mechanical Behavior of Crustal Rocks. The Handin volume. Geophysical Monograph Series, volume 24. Washington, DC, American Geophysical Union, pp. 103120.Google Scholar
Dieterich, J. H. (1992) Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics, 211, 115134.CrossRefGoogle Scholar
Dieterich, J. H., Kilgore, B. D. (1994) Direct observation of frictional contacts: new insights for state-dependent properties. Pure and Applied Geophysics, 143, 283302.CrossRefGoogle Scholar
Dobrzhinetskaya, L. F., Eide, E. A., Larsen, R. B., Sturt, B. A., Tronnes, R. G., Smith, D. C., Taylor, W. R., Posukhova, T. V. (1995) Microdiamond in high-grade metamorphic rocks of the Western Gneiss Region, Norway. Geology, 2, 597600.2.3.CO;2>CrossRefGoogle Scholar
Dohrmann, C., Bochev, P. (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. International Journal for Numerical Methods in Fluids, 46, 183201.CrossRefGoogle Scholar
Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., Wu, Y. H., Sone, H. (2010) Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences, 47, 11411157.CrossRefGoogle Scholar
Dorogokupets, P. I., Karpov, I. K. (1984) Thermodynamics of Minerals and Mineral Equilibria. Nauka, Novosibirsk (in Russian).Google Scholar
Drew, D. (1971) Averaged field equations for two-phase media. Studies in Applied Mathematics, 50, 133166.CrossRefGoogle Scholar
Drew, D. (1983) Averaged field equations for two-phase flow. Annual Review of Mechanics, 15, 261291.CrossRefGoogle Scholar
Drew, D., Passman, S. (1999) Theory of Multicomponent Fluids. Applied Mathematics and Science Volume 135. Springer-Verlag, New York.CrossRefGoogle Scholar
Drew, D., Segel, L. (1971) Averaged equations for two-phase flows. Studies in Applied Mathematics, 50, 205257.CrossRefGoogle Scholar
Driesner, T., Geiger, S. (2007) Numerical simulation of multiphase fluid flow in hydrothermal systems. Fluid–Fluid Interactions, 65, 187212.CrossRefGoogle Scholar
Driesner, T., Geiger, S., Heinrich, C. A. (2006) Modeling multiphase flow of H2O-NaCl fluids by combining CSP5.0 with SoWat2.0. Geochimica et Cosmochimica Acta, 70 (18), A147A147.CrossRefGoogle Scholar
Duretz, T., May, D. A., Gerya, T. V., Tackley, P. J. (2011a) Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for applied geodynamics: a numerical study. Geochemistry, Geophysics, Geosystems, 12, Q07004.CrossRefGoogle Scholar
Duretz, T., Gerya, T. V., May, D. A. (2011b) Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics, 502, 244256.CrossRefGoogle Scholar
Duretz, T., Gerya, T. V., Spakman, W. (2014) Slab detachment in laterally varying subduction zones: 3-D numerical modeling. Geophysical Research Letters, 41, 19511956.CrossRefGoogle Scholar
Dymkova, D., Gerya, T. (2013) Porous fluid flow enables oceanic subduction initiation on Earth. Geophysical Research Letters, 40, 56715676.CrossRefGoogle Scholar
Einstein, A. (1906) Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik, 19, 289306.CrossRefGoogle Scholar
Ellenberger, F. (1994) Histoire de la Géologie. La grande éclosion et ses prémices. Petite Collection d’Histoire des Sciences, 2. Technique et Documentation. Lavoisier, Paris.Google Scholar
Elsasser, W. M. (1963) Early history of the Earth. In: Geiss, J., Goldberg, E. (editors), Earth Science and Meteoritics. North-Holland, Amsterdam, pp. 130.Google Scholar
Evans, B., Goetze, C. (1979) The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. Journal of Geophysical Research, 84, 55055524.CrossRefGoogle Scholar
Faccenda, M., Burlini, L., Gerya, T. V., Mainprice, D. (2008a) Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455, 10971101.CrossRefGoogle Scholar
Faccenda, M., Gerya, T. V., Chakraborty, S. (2008b) Styles of post-subduction collisional orogeny: influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos, 103, 257287.CrossRefGoogle Scholar
Faccenda, M., Gerya, T. V., Burlini, L. (2009) Deep slab hydration induced by bending related variations in tectonic pressure. Nature Geoscience, 2, 790793.CrossRefGoogle Scholar
Faccenda, M., Gerya, T. V., Mancktelow, N. S., Moresi, L. (2012) Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling. Geochemistry, Geophysics, Geosystems, 13, Q01010.CrossRefGoogle Scholar
Faccenna, C., Bellier, O., Martinod, J., Piromallo, C., Regard, V. (2006) Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 242, 8597.CrossRefGoogle Scholar
Farrington, R. J., Moresi, L.-N., Capitanio, F. A. (2014) The role of viscoelasticity in subducting plates. Geochemistry, Geophysics, Geosystems, 15, 42914304.CrossRefGoogle Scholar
Fedorenko, R. P. (1964) The speed of convergence of one iterative process. USSR Computational Mathematics and Mathematical Physics, 4 (3), 227235.CrossRefGoogle Scholar
Fischer, R., Gerya, T. (2016a) Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modeling. Gondwana Research, 37, 5370.CrossRefGoogle Scholar
Fischer, R., Gerya, T. (2016b) Early Earth plume-lid tectonics: a high-resolution 3D numerical modelling approach. Journal of Geodynamics, 100, 198214.CrossRefGoogle Scholar
Fornberg, B. (1995) A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge.Google Scholar
Fowler, A. C. (1984) On the transport of moisture in polythermal glaciers. Geophysical and Astrophysical Fluid Dynamics, 29, 99140.CrossRefGoogle Scholar
Fowler, A. (1985) A mathematical model of magma transport in the asthenosphere. Geophysical and Astrophysical Fluid Dynamics, 33, 6396.CrossRefGoogle Scholar
Fuchs, K., Bonjer, K.-P., Bock, G., Cornea, I., Radu, C., Enescu, D., Jianu, D., Nourescu, A., Merkler, G., Moldoveanu, T., Tudorache, G. (1979) The Romanian earthquake of March 4, 1977: II, aftershocks and migration of seismic activity. Tectonophysics, 53 (3–4), 225247.CrossRefGoogle Scholar
Furuichi, M., May, D. A., Tackley, P. J. (2011) Development of a Stokes flow solver robust to large viscosity jumps using a Schur complement approach with mixed precision arithmetic. Journal of Computational Physics, 230, 88358851.CrossRefGoogle Scholar
Galvan, B., Miller, S. (2013) A full GPU simulation of evolving fracture networks in a heterogeneous poro-elasto-plastic medium with effective-stress-dependent permeability. In: Yuen, D., Wang, L., Chi, X., Johnsson, L., Ge, W., Shi, Y. (editors), GPU Solutions to Multi-scale Problems in Science and Engineering. Lecture Notes in Earth System Sciences. Springer, Berlin, pp. 305319.CrossRefGoogle Scholar
Gassmann, F. (1951) Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 123.Google Scholar
Geenen, T., Rehman, M., MacLachlan, S. P., Segal, G., Vuik, C., van den Berg, A. P., Spakman, W. (2009) Scalable robust solvers for unstructured FE geodynamic modeling applications: solving the Stokes equation for models with large localized viscosity contrasts. Geochemistry, Geophysics, Geosystems, 10, Q09002.CrossRefGoogle Scholar
Gerya, T. V. (2010a) Introduction to Numerical Geodynamic Modelling. Cambridge University Press.Google Scholar
Gerya, T. (2010b) Dynamical instability produces transform faults at mid-ocean ridges. Science, 329, 10471050.CrossRefGoogle ScholarPubMed
Gerya, T. (2011) Future directions in subduction modeling. Journal of Geodynamics, 52, 344378.CrossRefGoogle Scholar
Gerya, T. V. (2013) Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Physics of the Earth and Planetary Interiors, 214, 3552.CrossRefGoogle Scholar
Gerya, T. V. (2014a) Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth and Planetary Science Letters, 391, 183192.CrossRefGoogle Scholar
Gerya, T. V. (2014b) Precambrian geodynamics: concepts and models. Gondwana Research, 25, 442463.CrossRefGoogle Scholar
Gerya, T. (2016) Origin, evolution, seismicity and models of oceanic and continental transform boundaries. In: Duarte, J., Schellart, W. (editors), Plate Boundaries and Natural Hazards. American Geophysical Union, Wiley, pp. 3976.CrossRefGoogle Scholar
Gerya, T. V., Burg, J.-P. (2007) Intrusion of ultramafic magmatic bodies into the continental crust: numerical simulation. Physics of the Earth and Planetary Interiors, 160, 124142.CrossRefGoogle Scholar
Gerya, T., Burov., E. (2018) Nucleation and evolution of ridge-ridge-ridge triple junctions: thermomechanical model and geometrical theory. Tectonophysics, 746, 83105.CrossRefGoogle Scholar
Gerya, T. V., Maresch, W. V. (2004) Metapelites of the Kanskiy granulite complex (Eastern Siberia): kinked P-T paths and geodynamic model. Journal of Petrology, 45, 13931412.CrossRefGoogle Scholar
Gerya, T. V., Meilick, F. I. (2011) Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology, 29, 731.CrossRefGoogle Scholar
Gerya, T. V., Stoeckhert, B. (2006) 2-D numerical modeling of tectonic and metamorphic histories at active continental margins. International Journal of Earth Sciences, 95, 250274.CrossRefGoogle Scholar
Gerya, T. V., Yuen, D. A. (2003a) Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, 140, 293318.CrossRefGoogle Scholar
Gerya, T. V., Yuen, D. A. (2003b) Rayleigh–Taylor instabilities from hydration and melting propel cold plumes at subduction zones. Earth and Planetary Science Letters, 212, 4762.CrossRefGoogle Scholar
Gerya, T. V., Yuen, D. A. (2007) Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163, 83105.CrossRefGoogle Scholar
Gerya, T. V., Perchuk, L. L., Van Reenen, D. D., Smit, C. A. (2000) Two-dimensional numerical modeling of pressure-temperature-time paths for the exhumation of some granulite facies terrains in the Precambrian. Journal of Geodynamics, 29, 1735.CrossRefGoogle Scholar
Gerya, T. V., Maresch, W. V., Willner, A. P., Van Reenen, D. D., Smit, C. A. (2001) Inherent gravitational instability of thickened continental crust with regionally developed low- to medium-pressure granulite facies metamorphism. Earth and Planetary Science Letters, 190, 221235.CrossRefGoogle Scholar
Gerya, T. V., Stoeckhert, B., Perchuk, A. L. (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel – a numerical simulation. Tectonics, 21, 1056.CrossRefGoogle Scholar
Gerya, T. V., Yuen, D. A., Maresch, W. V. (2004a) Thermomechanical modeling of slab detachment. Earth and Planetary Science Letters, 226, 101116.CrossRefGoogle Scholar
Gerya, T. V., Yuen, D. A., Sevre, E. O. D. (2004b) Dynamical causes for incipient magma chambers above slabs. Geology, 32, 8992.CrossRefGoogle Scholar
Gerya, T. V., Perchuk, L. L., Maresch, W. V., Willner, A. P. (2004c) Inherent gravitational instability of hot continental crust: implication for doming and diapirism in granulite facies terrains. In: Whitney, D., Teyssier, C., Siddoway, C. S. (editors), Gneiss Domes in Orogeny, GSA Special Paper 380, pp. 97115.CrossRefGoogle Scholar
Gerya, T. V., Podlesskii, K. K., Perchuk, L. L., Maresch, W. V. (2004d) Semi-empirical Gibbs free energy formulations for minerals and fluids. Physics and Chemistry of Minerals, 31 (7), 429455.CrossRefGoogle Scholar
Gerya, T. V., Connolly, J. A. D., Yuen, D. A., Gorczyk, W., Capel, A. M. (2006) Sesmic implications of mantle wedge plumes. Physics of the Earth and Planetary Interiors, 156, 5974.CrossRefGoogle Scholar
Gerya, T. V., Connolly, J. A. D., Yuen, D. A. (2008a) Why is terrestrial subduction one-sided? Geology, 36, 4346.CrossRefGoogle Scholar
Gerya, T. V., Perchuk, L. L., Burg, J.-P. (2008b) Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts. Lithos, 103, 236256.CrossRefGoogle Scholar
Gerya, T. V., May, D. A., Duretz, T. (2013) An adaptive staggered grid finite difference method for modeling geodynamic Stokes flows with strongly variable viscosity. Geochemistry, Geophysics, Geosystems, 14, 12001225.CrossRefGoogle Scholar
Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S., Whattam, S. A. (2015) Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527, 221225.CrossRefGoogle ScholarPubMed
Ghabezloo, S. (2010) Effect of porosity on the thermal expansion coefficient: a discussion of the paper ‘Effects of mineral admixtures on the thermal expansion properties of hardened cement paste’ by Z.H. Shui, R. Zhang, W. Chen, D. Xuan, Constr. Build. Mater. 24 (9) (2010) 1761–1767. Construction and Building Materials, 24, 17961798.CrossRefGoogle Scholar
Ghabezloo, S. (2012) Micromechanical analysis of the effect of porosity on the thermal expansion coefficient of heterogeneous porous materials. International Journal of Rock Mechanics and Mining Sciences, 55, 97101.CrossRefGoogle Scholar
Gillmann, C., Tackley, P. J. (2014) Atmosphere/mantle coupling and feedbacks on Venus. Journal of Geophysical Research: Planets, 119, 11891217.CrossRefGoogle Scholar
Golabek, G. J., Schmeling, H., Tackley, P. J. (2008) Earth’s core formation aided by flow channelling instabilities induced by iron diapirs. Earth and Planetary Science Letters, 271, 2433.Google Scholar
Golabek, G. J., Gerya, T. V., Kaus, B. J. P., Ziethe, R., Tackley, P. J. (2009) Rheological controls on the terrestrial core formation mechanism. Geochemistry, Geophysics, Geosystems, 10, Q11007.Google Scholar
Golabek, G. J., Keller, T., Gerya, T. V., Zhu, G., Tackley, P. J., Connolly, J. A. D. (2011) Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus, 215, 346357.CrossRefGoogle Scholar
Golabek, G. J., Bourdon, B., Gerya, T. V. (2014) Numerical models of the thermomechanical evolution of planetesimals: application to the acapulcoite-lodranite parent body. Meteoritics & Planetary Science, 49, 10831099.CrossRefGoogle Scholar
Golabek, G. J., Emsenhuber, A., Jutzi, M., Asphaug, E. I., Gerya, T. V. (2018) Coupling SPH and thermochemical models of planets: methodology and example of a Mars-sized body. Icarus, 301, 235246.CrossRefGoogle Scholar
Gorczyk, W., Vogt, K. (2018) Intrusion of magmatic bodies into the continental crust: 3-D numerical models. Tectonics, 37, 705723.CrossRefGoogle Scholar
Gorczyk, W., Guillot, S., Gerya, T. V., Hattori, K. (2007a) Asthenospheric upwelling, oceanic slab retreat and exhumation of UHP mantle rocks: insights from Greater Antilles. Geophysical Research Letters, 34, L21309.CrossRefGoogle Scholar
Gorczyk, W., Gerya, T. V., Connolly, J. A. D., Yuen, D. A. (2007b) Growth and mixing dynamics of mantle wedge plumes. Geology, 35, 587590.CrossRefGoogle Scholar
Gotelli, N. J., Anderson, M. J., Arita, H. T., Chao, N., Colwell, R. K., Connolly, S. R., Currie, D. J., Dunn, R. R., Graves, G. R., Green, J. L., Grytnes, J. -A., Jiang, Y. -H., Jetz, W., Lyons, S. K., McCain, C. M., Magurran, A. E., Rahbek, C., Rangel, T. F. L. V. B., Sobero, J., Webb, C. O., Willig, M. R. (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 12, 873886.CrossRefGoogle ScholarPubMed
Griffith, A. A. (1924) The theory of rupture. Proceedings of the 1st International Congress on Applied Mechanics, Delft, pp. 5463.Google Scholar
Gueguen, Y., Dienes, J. (1989) Transport properties of rocks from statistics and percolation. Mathematical Geology, 21, 113.CrossRefGoogle Scholar
Gupta, A. (2000) WSMP: Watson sparse matrix package (Part-II: direct solution of general sparse systems). Technical Report RC 21888 (98472), IBM T.J. Watson Research Center, Yorktown Heights, NY.Google Scholar
Gustafsson, B. (2008) High Order Finite-Difference Methods for Time-dependent PDE. Springer Verlag.Google Scholar
Hager, B. H., O’Connell, R. J. (1981) A simple global model of plate dynamics and mantle convection. Journal of Geophysical Research, 86, 48434867.CrossRefGoogle Scholar
Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., Muller, R. D. (2003) Catastrophic initiation of subduction following forced convergence across fractures zones. Earth and Planetary Science Letters, 212, 1530.CrossRefGoogle Scholar
Hall, C. E., Parmentier, E. M. (2003) Influence of grain size evolution on convective instability. Geochemistry, Geophysics, Geosystems, 4, 1029.CrossRefGoogle Scholar
Hall, P. S., Kincaid, C. (2001) Diapiric flow at subduction zones: a recipe for rapid transport. Science, 292, 24722475.CrossRefGoogle ScholarPubMed
Hansen, U., Yuen, D. A. (1988) Numerical simulations of thermal-chemical instabilities at the core–mantle boundary. Nature, 334, 237240.CrossRefGoogle Scholar
Heister, T., Dannberg, J., Gassmöller, R., Bangerth, W. (2017) High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems. Geophysical Journal International, 210, 833851.CrossRefGoogle Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W., Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science, 278A.Google Scholar
Herrendörfer, R., van Dinther, Y., Gerya, T., Dalguer, L. A. (2015) Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nature Geoscience, 8, 471474.CrossRefGoogle Scholar
Herrendörfer, R., Gerya, T., van Dinther, Y. (2018) An invariant rate- and state-dependent friction formulation for earthquake cycle simulations Part 1: mature fault zone. Journal of Geophysical Research, 123, 50185051.CrossRefGoogle Scholar
Hess, P. C. (1989) Origin of Igneous Rocks. Harvard University Press, London.Google Scholar
Hirschmann, M. M. (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems, 1 (10), 1042, doi:10.1029/2000GC000070.CrossRefGoogle Scholar
Hofmeister, A. M. (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 16991706.CrossRefGoogle ScholarPubMed
Holland, T. J. B., Powell, R. (1990) An enlarged and updated internally consistent thermodynamic data set with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. Journal of Metamorphic Geology, 8, 309343.CrossRefGoogle Scholar
Holland, T. J. B., Powell, R. (1998) Internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309344.CrossRefGoogle Scholar
Holland, T. J. B., Powell, R. (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333383.CrossRefGoogle Scholar
Honda, R., Mizutani, H., Yamamoto, T. (1993) Numerical simulation of earth’s core formation. Journal of Geophysical Research, 98, 20752089.CrossRefGoogle Scholar
Houseman, G. (1988) The dependence of convection planform on mode of heating. Nature, 332, 346349.CrossRefGoogle Scholar
Hubschwerlen, N., Zheng, L., Kaempfer, T., Gerya, T. (2017) Thermo-hydro-mechanical effects of a geological repository at macro-scale – a novel modeling approach adapted from plate tectonics. Clay Conference 2017, Abstract Volume, Davos, Switzerland.Google Scholar
Huismans, R., Beaumont, C. (2011) Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 473, 7479.CrossRefGoogle ScholarPubMed
Hüttig, C., Stemmer, K. (2008) The spiral grid: a new approach to discretize the sphere and its application to mantle convection. Geochemistry, Geophysics, Geosystems, 9, Q02018.CrossRefGoogle Scholar
Ida, S., Nakagawa, Y., Nakazawa, K. (1987) The Earth’s core formation due to the Rayleigh-Taylor instability. Icarus, 69, 239248.CrossRefGoogle Scholar
Ikemoto, A., Iwamori, H. (2014) Numerical modeling of trace element transportation in subduction zones: implications for geofluid processes. Earth, Planets and Space, 66, 26, doi.org/10.1186/1880–5981-66–26.CrossRefGoogle Scholar
Isacks, B., Molnar, P. (1969) Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223, 11211124.CrossRefGoogle Scholar
Ismail-Zadeh, A., Tackley, P. (2010) Computational Methods for Geodynamics. Cambridge University Press.CrossRefGoogle Scholar
Jadamec, M. A., Kreylos, O., Chang, B., Fischer, K. M., Yikilmaz, M. B. (2018) A visual survey of global slab geometries with ShowEarthModel and implications for a three-dimensional subduction paradigm. Earth and Space Science, 5, doi.org/10.1002/2017EA000349.CrossRefGoogle Scholar
Jamieson, R. A., Beaumont, C., Nguyen, M. H., Lee, B. (2002) Interaction of metamorphism, deformation, and exhumation in large convergent orogens. Journal of Metamorphic Geology, 20, 924.CrossRefGoogle Scholar
Jenny, P., Pope, S. B., Muradoglu, M., Caughey, D. A. (2001) A hybrid algorithm for the joint PDF equation of turbulent reactive flows. Journal of Computational Physics, 166, 218252.CrossRefGoogle Scholar
Johannes, W. (1985) The significance of experimental studies for the formation of migmatites. In: Ashworth, V. A. (editor), Migmatites. Blackie, Glasgow, pp. 3685.CrossRefGoogle Scholar
Johnson, T. E., Brown, M., Kaus, B., Van Tongeren, J. A. (2014) Delamination and recycling of Archaean crust caused by gravitational instabilities. Nature Geoscience, 7, 4752.CrossRefGoogle Scholar
Kadlec, B., Dorn, G., Tufo, H., Yuen, D. (2008) Interactive 3-D computation of fault surfaces using level sets. Visual Geosciences, 13, 133138.CrossRefGoogle Scholar
Kameyama, M., Yuen, D. A., Karato, S. (1999) Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth and Planetary Science Letters, 168, 159172.CrossRefGoogle Scholar
Kaneko, Y., Lapusta, N., Ampuero, J.-P. (2008) Spectral element modeling of spontaneous earthquake rupture on rate and state faults: effect of velocity-strengthening friction at shallow depths. Journal of Geophysical Research, 113, B09317.CrossRefGoogle Scholar
Karato, S. (2008) Deformation of Earth Materials. Cambridge University Press, New York.CrossRefGoogle Scholar
Karato, S., Wu, P. (1993) Rheology of the upper mantle: a synthesis. Science, 260, 771778.CrossRefGoogle ScholarPubMed
Karato, S., Riedel, M. R., Yuen, D. A. (2001) Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127, 83108.CrossRefGoogle Scholar
Karniadakis, G. E., Kirby, R. M. (2003) A Seamless Approach to Parallel Algorithms and their Implementation. Cambridge University Press.Google Scholar
Karpov, I. K., Kiselev, A. I., Letnikov, F. A. (1976) Computer Modeling of Natural Mineral Formation. Nedra Press, Moscow (in Russian).Google Scholar
Katayama, I., Karato, S. (2008) Low-temperature, high-stress deformation of olivine under water-saturated conditions. Physics of the Earth and Planetary Interiors, 168, 125133.CrossRefGoogle Scholar
Katz, R. F. (2008) Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. Journal of Petrology, 49, 20992121.CrossRefGoogle Scholar
Katz, R. F., Spiegelman, M., Langmuir, C. H. (2003) A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4, 1073.CrossRefGoogle Scholar
Katz, R. F., Spiegelman, M., Holtzman, B. (2006) The dynamics of melt and shear localization in partially molten aggregates. Nature, 442, 676679.CrossRefGoogle ScholarPubMed
Kaus, B. J. P., Becker, T. W. (2007) Effects of elasticity on the Rayleigh-Taylor instability: implications for large-scale geodynamics. Geophysical Journal International, 168, 843862.CrossRefGoogle Scholar
Kaus, B. J. P., Podladchikov, Y. Y. (2006) Initiation of localized shear zones in viscoelastoplastic rocks. Journal of Geophysical Research, 111, B04412.CrossRefGoogle Scholar
Kaus, B. J. P., Schmalholz, S. M. (2006) 3D finite amplitude folding: implications for stress evolution during crustal and lithospheric deformation. Geophysical Research Letters, 33, L14309.CrossRefGoogle Scholar
Kaus, B. J. P., Connolly, J. A. D., Podladchikov, Y. Y., Schmalholz, S. M. (2005) Effect of mineral phase transitions on sedimentary basin subsidence and uplift. Earth and Planetary Science Letters, 233, 213228.CrossRefGoogle Scholar
Kaus, B. J. P., Steedman, C., Becker, T. W. (2008) From passive continental margin to mountain belt: insights from analytical and numerical models and application to Taiwan. Physics of the Earth and Planetary Interiors, 171, 235251.CrossRefGoogle Scholar
Kaus, B. J. P., Mühlhaus, H., May, D. A. (2010) A stabilization algorithm for geodynamic numerical simulations with a free surface. Physics of the Earth and Planetary Interiors, 181, 1220.CrossRefGoogle Scholar
Kaus, B. J. P., Popov, A. A., Baumann, T. S., Püsök, A. E., Bauville, A., Fernandez, N., Collignon, M. (2016) Forward and inverse modelling of lithospheric deformation on geological timescales. In: Binder, K., Müller, M., Schnurpfeil, A. (editors), NIC Symposium 2016 – Proceedings. NIC Series, Volume 48, pp. 299307.Google Scholar
Kelemen, P., Shimizu, N., Salters, V. (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 375, 747753.CrossRefGoogle Scholar
Keller, T., Katz, R. F. (2016) The role of volatiles in reactive melt transport in the asthenosphere. Journal of Petrology, 57, 10731108.CrossRefGoogle Scholar
Keller, T., May, D. A., Kaus, B. J. P. (2013) Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophysical Journal International, 195, 14061442.CrossRefGoogle Scholar
Keondzhyan, V. P., Monin, A. S. (1977) Continental drift and large-scale wandering of the Earths’ pole. Izvestiya, Physics of the Solid Earth, 13, 760772.Google Scholar
Keondzhyan, V. P., Monin, A. S. (1980) Compositional convection in the Earth’s mantle. Dokladi Akademii Nauk SSSR, 253, 7881.Google Scholar
Khan, A., Connolly, J. A. D., Olsen, N. (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. Journal of Geophysical Research, 111, B10102.CrossRefGoogle Scholar
Kocks, U. F., Argon, A. S., Ashby, M. F. (1975) Thermodynamics and kinetics of slip. Progress in Materials Science, 19, 1291.Google Scholar
Kooi, H., Beaumont, C. (1994) Escarpment evolution on high-elevation rifted margins – insights derived from a surface processes model that combines diffusion, advection, and reaction. Journal of Geophysical Research, 99 (B6), 1219112209.CrossRefGoogle Scholar
Koptev, A., Calais, E., Burov, E., Leroy, S., Gerya, T. (2015) Dual continental rift systems generated by plume–lithosphere interaction. Nature Geoscience, 8, 388392.CrossRefGoogle Scholar
Kronbichler, M., Heister, T., Bangerth, W. (2012) High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191, 1229.CrossRefGoogle Scholar
Krotkiewski, M., Dabrowski, M., Podladchikov, Y. Y. (2008) Fractional steps methods for transient problems on commodity computer architectures. Physics of the Earth and Planetary Interiors, 171, 122136.CrossRefGoogle Scholar
Kundu, P. K., Cohen, I. M. (2002) Fluid Mechanics. Academic Press.Google Scholar
Landau, L. D., Lifshitz, E. M. (1987) Fluid Mechanics, 2nd English edition. Pergamon Press.Google Scholar
Lapusta, N. (2003) Nucleation and early seismic propagation of small and large events in a crustal earthquake model. Journal of Geophysical Research, 108, B42205.CrossRefGoogle Scholar
Lapusta, N., Barbot, S. (2012) Models of earthquakes and aseismic slip based on laboratory-derived rate and state friction laws. In: Bizzarri, A., Bhat, H. S. (editors), The Mechanics of Faulting: From Laboratory to Real Earthquakes, Volume 661. Research Signpost, Kerala, pp. 153207.Google Scholar
Lapusta, N., Liu, Y. (2009) Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. Journal of Geophysical Research, 114, B09303.CrossRefGoogle Scholar
Lapusta, N., Rice, J. R., Ben-Zion, Y., Zheng, G. (2000) Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. Journal of Geophysical Research, 105 (23), 2376523789.CrossRefGoogle Scholar
Large, R. R., Halpin, J. A., Lounejeva, E., Danyushevsky, L. A., Maslennikov, V. V., Gregory, D., Sack, P. J., Haines, P. W., Long, J. A., Makoundi, C., Stepanov, A. S. (2015) Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Research, 28, 12821293.CrossRefGoogle Scholar
Larsen, T. B., Yuen, D. A., Malevsky, A. V. (1995) Dynamical consequences on fast subducting slabs from a self-regulating mechanism due to viscous heating in variable viscosity convection. Geophysical Research Letters, 22, 12771280.CrossRefGoogle Scholar
Lee, C.-T. A., Caves, J., Jiang, H., Cao, W., Lenardic, A., McKenzie, N. R., Shorttle, O., Yin, Q., Dyer, B. (2018) Deep mantle roots and continental emergence: implications for whole-Earth elemental cycling, long-term climate, and the Cambrian explosion. International Geology Review, 60 (4), 431448.CrossRefGoogle Scholar
Leeman, J. R., Saffer, D. M., Scuderi, M. M., Marone, C. (2016) Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nature Communications, 7, 11104.CrossRefGoogle ScholarPubMed
LeVeque, R. (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.CrossRefGoogle Scholar
Levin, V., Shapiro, N., Park, J., Ritzwoller, M. (2002) Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature, 418, 763767.CrossRefGoogle ScholarPubMed
Li, Z., Xu, Z., Gerya, T., Burg, J.-P. (2013) Collision of continental corner from 3-D numerical modeling. Earth and Planetary Science Letters, 380, 98111.CrossRefGoogle Scholar
Lichtenberg, T., Golabek, G. J., Gerya, T. V., Meyer, M. R. (2016) The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus, 274, 350365.CrossRefGoogle Scholar
Lichtenberg, T., Golabek, G. J., Dullemond, C. P., Schonbachler, M., Gerya, T. V., Meyer, M. R. (2018) Impact splash chondrule formation during planetesimal recycling. Icarus, 302, 2743.CrossRefGoogle Scholar
Lin, J.-R., Gerya, T. V., Tackley, P., Yuen, D. (2009) Numerical modeling of protocore destabilization during planetary accretion: methodology and results. Icarus, 204, 732748.CrossRefGoogle Scholar
Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I., Maruyama, S. (2004) Global UHP metamorphism and continental subduction/collision: the Himalayan model. International Geology Review, 46, 127.CrossRefGoogle Scholar
Liu, Y., Rice, J. R. (2007) Spontaneous and triggered aseismic deformation transients in a subduction fault model. Journal of Geophysical Research, 112, B09404.CrossRefGoogle Scholar
Longo, A., Vassalli, M., Papale, P., Barsanti, M. (2006) Numerical simulation of convection and mixing in magma chambers replenished with CO2-rich magma. Geophysical Research Letters, 33 (21), L21305.CrossRefGoogle Scholar
Lourenco, D. L., Rozel, A., Gerya, T., Tackley, P. (2018) Efficient cooling of rocky planets by intrusive magmatism. Nature Geoscience, 11, 322327.CrossRefGoogle Scholar
Lu, G., Kaus, B. J. P., Zhao, L., Zheng, T. (2015) Self-consistent subduction initiation induced by mantle flow. Terra Nova, 27 (2), 130138.CrossRefGoogle Scholar
Lynch, D. R. (2005) Numerical Partial Differential Equations for Environmental Scientists and Engineers: A Practical First Course. Springer Verlag.Google Scholar
Machetel, P., Rabinowicz, M., Bernardet, P. (1986) Three-dimensional convection in spherical shells. Geophysical & Astrophysical Fluid Dynamics, 37, 5784.CrossRefGoogle Scholar
MacPherson, G. J., Davis, A. M., Zinner, E. K. (1995) The distribution of aluminium-26 in the early solar system – a reappraisal. Meteoritics, 30, 365386.CrossRefGoogle Scholar
Mallard, C., Coltice, N., Seton, M., Mueller, R. D., Tackley, P. J. (2016) Subduction drives the organisation of Earth’s tectonic plates. Nature, 535, 140143.CrossRefGoogle ScholarPubMed
Marone, C. (1998) Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences, 26, 643696.CrossRefGoogle Scholar
Marone, C., Hobbs, B. E., Ord, A. (1992) Coulomb constitutive laws for friction: contrasts in frictional behavior for distributed and localized shear. Pure and Applied Geophysics, 139, 195214.CrossRefGoogle Scholar
Marschall, H., Schumacher, J. C. (2012) Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience, 5, 862867.CrossRefGoogle Scholar
Marsh, B. D. (1982) On the mechanics of igneous diapirism, stoping, and zone melting. American Journal of Science, 282, 808855.CrossRefGoogle Scholar
Massonne, H.-J. (1999) A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution. Proc. 7th Int. Kimberlite Conf., pp. 533539.Google Scholar
Matsumoto, T., Tomoda, Y. (1983) Numerical-simulation of the initiation of subduction at the fracture-zone. Journal of Physics of the Earth, 31, 183194.CrossRefGoogle Scholar
May, D. A., Moresi, L. (2008) Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Physics of the Earth and Planetary Interiors, 171, 3347.CrossRefGoogle Scholar
May, D. A., Schellart, W. P., Moresi, L. (2013) Overview of adaptive finite element analysis in computational geodynamics. Journal of Geodynamics, 70, 120.CrossRefGoogle Scholar
May, D. A., Brown, J., Le Pourhiet, L. (2014) pTatin3D: High-performance methods for long-term lithospheric dynamics. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press, pp. 274284.Google Scholar
May, D. A., Brown, J., Le Pourhiet, L. (2015) A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Computer Methods in Applied Mechanics and Engineering, 290, 496523.CrossRefGoogle Scholar
McKenzie, D. (1984) The generation and compaction of partially molten rock. Journal of Petrology, 25, 713765.CrossRefGoogle Scholar
Mei, S., Bai, W., Hiraga, T., Kohlstedt, D. (2002) Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions. Earth and Planetary Science Letters, 201, 491507.CrossRefGoogle Scholar
Melnik, O. (2000) Dynamics of two-phase conduit flow of high viscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bulletin of Volcanology, 62, 153170.CrossRefGoogle Scholar
Melnik, O., Sparks, R. S. J. (1999) Nonlinear dynamics of lava dome extrusion. Nature, 402, 3741.CrossRefGoogle Scholar
Melosh, H. J. (1990) Giant impacts and the thermal state of the early Earth. In: Newsom, H. E., Jones, J. H. (editors), Origin of the Earth. Oxford University Press, New York, pp. 6983.CrossRefGoogle Scholar
Melosh, H. J. (2008) Did an impact blast away half of the martian crust? Nature Geoscience, 1, 412414.CrossRefGoogle Scholar
Meyer, D., Jenny, P. (2004) Conservative velocity interpolation for PDF methods. Proceedings in Applied Mathematics and Mechanics, 4, 466467.CrossRefGoogle Scholar
Miller, S. A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., Kaus, B. J. P. (2004) Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427, 724727.CrossRefGoogle ScholarPubMed
Minear, J. W., Toksöz, M. N. (1970) Thermal regime of a downgoing slab and new global tectonics. Journal of Geophysical Research, 75, 13971419.CrossRefGoogle Scholar
Mishin, Y. A., Gerya, T. V., Burg, J.-P., Connolly, J. A. D. (2008) Dynamics of double subduction: numerical modeling. Physics of the Earth Planetary Interiors, 171, 280295.CrossRefGoogle Scholar
Moore, J. D. P, Nielsen, S., Hansen, L. N. (2019) Ductile deformation explains the physics of friction and genesis of earthquakes. Nature (submitted).Google Scholar
Moore, W., Webb, A. (2013) Heat-pipe earth. Nature, 501, 501505.CrossRefGoogle ScholarPubMed
Morency, C., Huismans, R. S., Beaumont, C., Fullsack, P. (2007) A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability. Journal of Geophysical Research, 112, B10407.CrossRefGoogle Scholar
Moresi, L., Zhong, S., Gurnis, M. (1996) The accuracy of finite element solutions of Stokes’ flow with strongly varying viscosity. Physics of the Earth and Planetary Interiors, 97, 8394.CrossRefGoogle Scholar
Moresi, L., Dufour, F., Mühlhaus, H.-B. (2003) A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics, 184, 476497.CrossRefGoogle Scholar
Moresi, L., Quenette, S., Lemiale, V., Mériaux, C., Appelbe, B., Mühlhaus, H.-B. (2007) Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors, 163, 6982.CrossRefGoogle Scholar
Morra, G. (2018) Pythonic Geodynamics: Implementations for Fast Computing. Lecture Notes in Earth System Sciences. Springer Nature.Google Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N., Ohishi, Y. (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855858.CrossRefGoogle ScholarPubMed
Murnaghan, F. D. (1944) The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30, 244247.CrossRefGoogle ScholarPubMed
Nagata, K., Nakatani, M., Yoshida, S. (2012) A revised rate- and state-dependent friction law obtained by constraining constitutive and evolution laws separately with laboratory data. Journal of Geophysical Research, 117, B02314.CrossRefGoogle Scholar
Nakatani, M. (2001) Conceptual and physical clarification of rate and state friction: frictional sliding as a thermally activated rheology. Journal of Geophysical Research, 106, 1334713380.CrossRefGoogle Scholar
Naliboff, J. B., Billen, M. I., Gerya, T., Saunders, J. (2013) Dynamics of outer rise faulting in oceanic-continental subduction systems. Geochemistry, Geophysics, Geosystems, 14, 23102327.CrossRefGoogle Scholar
Nigmatulin, R. I. (1991) Dynamics of Multiphase Media. Hemisphere, New York.Google Scholar
Nikolaeva, K., Gerya, T. V., Connolly, J. A. D. (2008) Numerical modelling of crustal growth in intraoceanic volcanic arcs. Physics of the Earth and Planetary Interiors, 171, 336356.CrossRefGoogle Scholar
Noda, H., Shimamoto, T. (2012) Transient behavior and stability analyses of halite shear zones with an empirical rate-and-state friction to flow law. Journal of Structural Geology, 38, 234242.CrossRefGoogle Scholar
Oganov, A. R., Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D’ layer. Nature, 430, 445448.CrossRefGoogle ScholarPubMed
Oldenburg, C. M., Spera, F. J., Yuen, D. A. (1990) Self-organization in convective magma mixing. Earth-Science Reviews, 29, 331348.CrossRefGoogle Scholar
Omlin, S. (2016) Development of massively parallel near peak performance solvers for three-dimensional geodynamic modelling. Doctoral Thesis, University of Lausanne, Switzerland.Google Scholar
Omlin, S., Malvoisin, B., Podladchikov, Y. Y. (2017) Pore fluid extraction by reactive solitary waves in 3-D. Geophysical Research Letters, 44, 92679275.CrossRefGoogle Scholar
Omlin, S., Räss, L., Podladchikov, Y. Y. (2018) Simulation of three-dimensional viscoelastic deformation coupled to porous fluid flow. Tectonophysics, 746, 695701.CrossRefGoogle Scholar
O’Neill, C., Marchi, S., Zhang, S., Bottke, W. (2017) Impact-driven subduction on the Hadean Earth. Nature Geoscience, 10, 793797.CrossRefGoogle Scholar
Papale, P. (1999) Strain-induced magma fragmentation in explosive eruptions. Nature, 397, 425428.CrossRefGoogle ScholarPubMed
Papale, P. (2001) Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. Journal Geophysical Research, 106, 1104311065.CrossRefGoogle Scholar
Pascal, G., Dubois, J., Barazangi, M., Isacks, B. L., Oliver, J. (1973) Seismic velocity anomalies beneath the New Hebrides island arc: evidence for a detached slab in the upper mantle. Journal of Geophysical Research, 78 (29), 69987004.CrossRefGoogle Scholar
Patankar, S. V. (1980) Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York.Google Scholar
Patocka, V., Cadek, O., Tackley, P. J., Cizkova, H. (2017) Stress memory effect in viscoelastic stagnant lid convection. Geophysical Journal International, 209, 14621475.CrossRefGoogle Scholar
Peng, Z., Gomberg, J. (2010) An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience, 3, 599607.CrossRefGoogle Scholar
Penniston-Dorland, S. C., Kohn, M. J., Manning, C. E. (2015) The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models. Earth and Planetary Science Letters, 428, 243254.CrossRefGoogle Scholar
Pergler, T., Matyska, C. (2008) A hybrid spectral and finite element method for coseismic and postseismic deformation. Physics of the Earth and Planetary Interiors, 163, 122148.CrossRefGoogle Scholar
Petford, N., Cruden, A. R., McCaffrey, K. J., Vigneresse, J.-L. (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408, 669673.CrossRefGoogle ScholarPubMed
Petrini, K., Connolly, J. A. D., Podladchikov, Y. Y (2001) A coupled petrological-tectonic model for sedimentary basin evolution: the influence of metamorphic reactions on basin subsidence. Terra Nova, 13, 354359.CrossRefGoogle Scholar
Pinkerton, H., Stevenson, R. J. (1992) Methods of determining the rheological properties of magmas at subliquidus temperatures. Journal of Volcanology and Geothermal Research, 53, 4766.CrossRefGoogle Scholar
Pitcher, W. S. (1979) The nature, ascent and emplacement of granitic magma. Journal of the Geological Society London, 136, 627662.CrossRefGoogle Scholar
Plümper, O., John, T., Podladchikov, Y. Y., Vrijmoed, J. C., Scambelluri, M. (2017) Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nature Geoscience, 10, 150156.CrossRefGoogle Scholar
Poli, S., Schmidt, M. W. (2002) Petrology of subducted slabs. Annual Review of Earth and Planetary Science, 30, 207235.CrossRefGoogle Scholar
Popov, A. A., Sobolev, S. V. (2008) SLIM3D: a tool for three-dimensional thermomechanical modeling of lithospheric deformation with elasto-visco-plastic rheology. Physics of the Earth and Planetary Interiors, 171, 5575.CrossRefGoogle Scholar
Popov, A. A., Lehmann, R., Kaus, B. J. P. (2014a) How to compute stress and effective viscosity for visco-elasto-plastic rheologies in geodynamic codes. German-Swiss Geodynamics Workshop 2014, Abstracts.Google Scholar
Popov, I. Yu., Lobanov, I. S., Popov, S. I.,. Popov, A. I, Gerya, T. V. (2014b) Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity. Solid Earth, 5, 461476.CrossRefGoogle Scholar
Pouryazdan, M., Kaus, B. J. P., Rack, A., Ershov, A., Hahn, H. (2017) Mixing instabilities during shearing of metals. Nature Communications, 8, 1611.CrossRefGoogle ScholarPubMed
Pusok, A. E., Kaus, B. J. P., Popov, A. A. (2017) On the quality of velocity interpolation schemes for marker-in-cell method and staggered grids. Pure and Applied Geophysics, 174, 10711089.CrossRefGoogle Scholar
Pysklywec, R. N. (2006) Surface erosion control on the evolution of the deep lithosphere. Geology, 34, 225228.CrossRefGoogle Scholar
Ramberg, H. (1968) Instability of layered system in the field of gravity. Physics of the Earth and Planetary Interiors, 1, 427474.CrossRefGoogle Scholar
Ramberg, H. (1981) The role of gravity in orogenic belts. In: McClay, K. R., Price, N. J. (editors), Thrust and Nappe Tectonics. Geological Society Special Publication, London, pp. 125140.Google Scholar
Ranalli, G. (1995) Rheology of the Earth. Chapman & Hall, London.Google Scholar
Ranero, C. R., Phipps Morgan, J., Reichert, C. (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367373.CrossRefGoogle ScholarPubMed
Ranero, C. R., Villaseñor, A., Phipps Morgan, J., Weinribe, W. (2005) Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems, 6, doi:10.1029/2005GC000997.CrossRefGoogle Scholar
Rass, L., Yarushina, V. M., Simon, N. S. C., Podladchikov, Y. Y. (2014) Chimneys, channels, pathway flow or water conducting features – an explanation from numerical modelling and implications for CO2 storage. In: Dixon, T., Herzog, H., Twinning, S. (editors), 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, Energy Procedia, 63, pp. 37613774.CrossRefGoogle Scholar
Regenauer-Lieb, K., Yuen, D. A. (2008) Multiscale brittle-ductile coupling and genesis of slow earthquakes. Pure and Applied Geophysics, 165, 523543.CrossRefGoogle Scholar
Revenaugh, J., Parsons, B. (1987) Dynamic topography and gravity anomalies for fluid layers whose viscosity varies exponentially with depth. Geophysical Journal of the Royal Astronomical Society, 90, 349368.CrossRefGoogle Scholar
Rey, P. F., Coltice, N., Flament, N. (2014) Spreading continents kick-started plate tectonics. Nature, 513, 405408.CrossRefGoogle ScholarPubMed
Ricard, Y., Bercovici, D., Schubert, G. (2001) A two-phase model for compaction and damage 2. Applications to compaction, deformation, and the role of interfacial surface tension. Journal of Geophysical Research, 106, 89078924.CrossRefGoogle Scholar
Ricard, Y., Šrámek, O., Dubuffet, F. (2009) Runaway core-mantle segregation of terrestrial planets. Earth and Planetary Science Letters, 284, 144150.CrossRefGoogle Scholar
Rice, J. R. (1993) Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research, 98 (B6), 98859907.CrossRefGoogle Scholar
Rice, J., Ruina, A. (1983) Stability of steady frictional slipping. Journal of Applied Mechanics, 50, 343349.CrossRefGoogle Scholar
Rice, J., Lapusta, N., Ranjith, K. (2001) Rate and state dependent friction and the stability of sliding between elastically deformable solids. Journal of the Mechanics and Physics of Solids, 49, 18651898.CrossRefGoogle Scholar
Richter, F. M. (1973) Finite amplitude convection through a phase boundary. Geophysical Journal of the Royal Astronomical Society, 35, 265276.CrossRefGoogle Scholar
Richter, F. M. (1978) Mantle convection models. Annual Review of Earth and Planetary Science, 6, 919.CrossRefGoogle Scholar
Roache, P. J. (1997) Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29, 123160.CrossRefGoogle Scholar
Roache, P. J. (1998) Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, NM.Google Scholar
Rosen, O. M., Zorin, Y. M., Zayachkovsky, A. A. (1972) A find of a diamond linked with eclogites of the Precambrian Kokchetav massif. Dokladi Akademii Nauk SSSR, 203, 674676 (in Russian).Google Scholar
Rozel, A., Ricard, Y., Bercovici, D. (2011) A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization. Geophysical Journal International, 184, 719728.CrossRefGoogle Scholar
Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J., Gerya, T. (2017) Continental crust formation on early Earth controlled by intrusive magmatism. Nature, 545, 332335.CrossRefGoogle ScholarPubMed
Rozhko, A. Y., Podladchikov, Y. Y., Renard, F. (2007) Failure patterns caused by localized rise in pore-fluid overpressure and effective strength of rocks. Geophysical Research Letters, 34, L22304.CrossRefGoogle Scholar
Rubin, A. M., Ampuero, J. (2005) Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research, 110, B11312.CrossRefGoogle Scholar
Rubinstein, R., Atluri, S. N. (1983) Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses. Computer Methods in Applied Mechanics and Engineering, 36, 277290.CrossRefGoogle Scholar
Rudge, J. F., Bercovici, D., Spiegelman, M. (2011) Disequilibrium melting of a two phase multicomponent mantle. Geophysical Journal International, 184, 699718.CrossRefGoogle Scholar
Rudi, J., Malossiy, A. C. I., Isaac, T., Stadler, G., Gurnis, M., Staary, P. W. J, Ineicheny, Y., Bekasy, C., Curioniy, A., Ghattas, O. (2015) An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in Earth’s mantle. SC ’15, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Article No. 5, doi.org/10.1145/2807591.2807675.CrossRefGoogle Scholar
Rudolph, M. L., Gerya, T. V., Yuen, D. A., DeRosier, S. (2004) Visualization of multiscale dynamics of hydrous cold plumes at subduction zones. Visual Geosciences, 9 (1), 59, doi.org/10.1007/s10069-004–0017-2.CrossRefGoogle Scholar
Ruina, A. (1983) Slip instability and state variable friction laws. Journal of Geophysical Research, 88, 1035910370.CrossRefGoogle Scholar
Ruprecht, P., Bergantz, G. W., Dufek, J. (2008) Modeling of gas-driven magmatic overturn: tracking of phenocryst dispersal and gathering during magma mixing. Geochemistry, Geophysics, Geosystems, 9, Q07017.CrossRefGoogle Scholar
Sacks, P. E., Secor, D. T. (1990) Delamination in collisional orogens. Geology, 18, 9991002.2.3.CO;2>CrossRefGoogle Scholar
Samuel, H., Tackley, P. J. (2008) Dynamics of core formation and equilibration by negative diapirism. Geochemistry, Geophysics, Geosystems, 9, Q06011, doi:10.1029/2007GC001896.CrossRefGoogle Scholar
Scambelluri, M., Philippot, P. (2001) Deep fluids in subduction zones. Lithos, 55, 213227.CrossRefGoogle Scholar
Schenk, O., Gärtner, K. (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Journal of Future Generation Computer Systems, 20, 475487.CrossRefGoogle Scholar
Schenk, O., Gärtner, K. (2006) On fast factorization pivoting methods for symmetric indefinite systems. Electronic Transactions on Numerical Analysis, 23, 158179.Google Scholar
Schmeling, H. (1987) On the relation between initial conditions and late stages of Rayleigh-Taylor instabilities. Tectonophysics, 133, 6580.CrossRefGoogle Scholar
Schmeling, H. (2000). Partial melting and melt segregation in a convecting mantle. In: Bagdassarov, N., Laporte, D., Thompson, A. B. (editors), Physics and Chemistry of Partially Molten Rocks. Kluwer Academic, Dordrecht pp. 141178.CrossRefGoogle Scholar
Schmeling, H., Babeyko, A. Y., Enns, A., Faccenna, C., Funiciello, F., Gerya, T., Golabek, G. J., Grigull, S., Kaus, B. J. P., Morra, G., Schmalholz, S. M., van Hunen, J. (2008) A benchmark comparison of spontaneous subduction models – towards a free surface. Physics of the Earth and Planetary Interiors, 171, 198223.CrossRefGoogle Scholar
Schmeling, H., Kruse, J. P., Richard, G. (2012) Mineral physics, rheology, heat flow and volcanology. Effective shear and bulk viscosity of partially molten rock based on elastic moduli theory of a fluid filled poroelastic medium. Geophysical Journal International, 190, 15711578.CrossRefGoogle Scholar
Schmeling, H., Marquart, G., Grebe, M. (2018) A porous flow approach to model thermal non-equilibrium applicable to melt migration. Geophysical Journal International, 212, 119138.CrossRefGoogle Scholar
Schmid, D. W., Podladchikov, Y. Y. (2003) Analytical solutions for deformable elliptical inclusions in general shear. Geophysical Journal International, 155, 269288.CrossRefGoogle Scholar
Schmidt, M. W., Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361379.CrossRefGoogle Scholar
Schubert, G. (1992) Numerical models of mantle convection. Annual Review of Fluid Mechanics, 24, 359394.CrossRefGoogle Scholar
Schubert, G., Yuen, D. A., Turcotte, D. L. (1975) Role of phase transitions in a dynamic mantle. Geophysical Journal of the Royal Astronomical Society, 42, 705735.CrossRefGoogle Scholar
Schubert, M., Driesner, T., Gerya, T. V., Ulmer, P. (2013) Mafic injection as a trigger for felsic magmatism: a numerical study. Geochemistry, Geophysics, Geosystems, 14, 19101928.CrossRefGoogle Scholar
Scott, D. R., Stevenson, D. J. (1984) Magma solitons. Geophysical Research Letters, 11, 6164.CrossRefGoogle Scholar
Scott, D. R., Stevenson, D. J. (1986) Magma ascent by porous flow. Journal of Geophysical Research, 91, 92839296.CrossRefGoogle Scholar
Senshu, H., Kuramoto, K., Matsui, T. (2002) Thermal evolution of a growing Mars. Journal of Geophysical Research, 107, E12, 5118, doi:10.1029/2001JE001819.CrossRefGoogle Scholar
Shabana, A. A. (2008) Computational Continuum Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Shukla, K. N. (2005) Mathematical Principles of Heat Transfer. Begell House, New York.CrossRefGoogle Scholar
Simakin, A., Botcharnikov, R. (2001) Degassing of stratified magma by compositional convection. Journal of Volcanology and Geothermal Research, 105, 207224.CrossRefGoogle Scholar
Simpson, G. (2017) Practical Finite Element Modeling in Earth Science Using Matlab. Wiley-Blackwell.CrossRefGoogle Scholar
Simpson, G., Spiegelman, M. (2011) Solitary wave benchmarks in magma dynamics. Journal of Scientific Computing, 49, 268290.CrossRefGoogle Scholar
Simpson, G., Spiegelman, M., Weinstein, M. (2010a) A multiscale model of partial melts: 1. Effective equations. Journal of Geophysical Research, 115, B04410.Google Scholar
Simpson, G., Spiegelman, M., Weinstein, M. (2010b) A multiscale model of partial melts: 2. Numerical results. Journal of Geophysical Research, 115, B04411.Google Scholar
Sizova, E., Gerya, T., Brown, M., Perchuk, L. L. (2010) Subduction styles in the Precambrian: insight from numerical experiments. Lithos, 116, 209229.CrossRefGoogle Scholar
Sizova, E., Gerya, T., Brown, M. (2012) Exhumation mechanisms of melt-bearing ultrahigh pressure crustal rocks during collision of spontaneously moving plates. Journal of Metamorphic Geology, 30, 927955.CrossRefGoogle Scholar
Sizova, E. V., Gerya, T. V., Brown, M. (2014) Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Research, 25, 522545.CrossRefGoogle Scholar
Sizova, E., Gerya, T., Stuewe, K., Brown, M. (2015) Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Research, 271, 198224.CrossRefGoogle Scholar
Sleep, N. H. (1974) Segregation of a magma from a mostly crystalline mush. Geological Society of America Bulletin, 85, 12251232.2.0.CO;2>CrossRefGoogle Scholar
Sleep, N. H. (1995) Ductile creep, compaction, and rate and state dependent friction within major fault zones. Journal of Geophysical Research, 100, 1306513080.CrossRefGoogle Scholar
Sleep, N. H. (1997) Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization. Journal of Geophysical Research, 102, 28752895.CrossRefGoogle Scholar
Smith, D. C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310, 641644.CrossRefGoogle Scholar
Sobolev, S. V., Babeyko, A. Y. (1994) Modeling of mineralogical composition, density and elastic-wave velocities in anhydrous magmatic rocks. Surveys in Geophysics, 15, 515544.CrossRefGoogle Scholar
Sobolev, S. V., Babeyko, A. Y. (2005) What drives orogeny in the Andes? Geology, 33, 617620.CrossRefGoogle Scholar
Sobolev, S. V., Muldashev, I. A. (2017) Modeling seismic cycles of great megathrust earthquakes across the scales with focus at postseismic phase. Geochemistry, Geophysics, Geosystems, 18, 43874408.CrossRefGoogle Scholar
Sobolev, N. V., Shatsky, V. S. (1990) Diamond inclusions in garnets from metamorphic rocks: an environment for diamond formation. Nature, 343, 742745.CrossRefGoogle Scholar
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A., Vasiliev, Y. R. (2011) Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477, 312316.CrossRefGoogle ScholarPubMed
Souza de Neto, E. A., Periæ, D., Owen, D. R. J. (2009) Computational Methods for Plasticity: Theory and Applications. Wiley.Google Scholar
Spakman, W., Wortel, M. J. R., Vlaar, N. J. (1988) The Hellenic subduction zone: a tomographic image and its geodynamic implications. Geophysical Research Letters, 15, 6063.CrossRefGoogle Scholar
Spera, F. J., Oldenburg, C. M., Christensen, C., Todesco, M. (1995) Simulations of convection with crystallization in the system KAlSi2O6-CaMgSi2O6: implications for compositionally zoned magma bodies. American Mineralogist, 80 (11–12), 11881207.CrossRefGoogle Scholar
Spiegelman, M. (1993) Flow in deformable porous media. Part 1. Simple analysis. Journal of Fluid Mechanics, 247, 1738.CrossRefGoogle Scholar
Spiegelman, M., Katz, R. F. (2006) A semi-Lagrangian Crank-Nicolson algorithm for the numerical solution of advection-diffusion problems. Geochemistry, Geophysics, Geosystems, 7, Q04014.CrossRefGoogle Scholar
Spiegelman, M., Kelemen, P. B. (2003) Extreme chemical variability as a consequence of channelized melt transport. Geochemistry, Geophysics, Geosystems, 4, Article No. 1055.CrossRefGoogle Scholar
Spiegelman, M., May, D. A., Wilson, C. R. (2016) On the solvability of incompressible Stokes with viscoplastic rheologies in geodynamics. Geochemistry, Geophysics, Geosyststems, 17, 22132238.CrossRefGoogle Scholar
Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., Ghattas, O. (2010) The dynamics of plate tectonics and mantle flow: from local to global scales. Science, 329, 10331038.CrossRefGoogle ScholarPubMed
Stern, R. J. (2016) Is plate tectonics needed to evolve technological species on exoplanets? Geoscience Frontiers, 7, 573580.CrossRefGoogle Scholar
Stern, R. J., Gerya, T. (2018) Subduction initiation in nature and models: a review. Tectonophysics, 746, 173198.CrossRefGoogle Scholar
Stevenson, D. J. (1980) Self regulation and melt migration (can magma oceans exist?). Transactions American Geophysical Union EOS, 61, 1021.Google Scholar
Stevenson, D. J. (1981) Models of the Earth’s core. Science, 214, 611619.CrossRefGoogle ScholarPubMed
Stevenson, D. J. (2008) A planetary perspective on the deep Earth. Nature, 451, 261265.CrossRefGoogle ScholarPubMed
Stevenson, D., Scott, D. (1991) Mechanics of fluid-rock systems. Annual Review of Fluid Mechanics, 23, 305339.CrossRefGoogle Scholar
Stixrude, L., Bukowinski, M. S. T. (1990) Fundamental thermodynamic relations and silicate melting with implications for the constitution of D”. Journal of Geophysical Research, 95, 1931119325.CrossRefGoogle Scholar
Stixrude, L., Lithgow-Bertelloni, C. (2005) Thermodynamics of mantle minerals – I. Physical properties. Geophysical Journal International, 162, 610632.CrossRefGoogle Scholar
Stixrude, L., Lithgow-Bertelloni, C. (2011) Thermodynamics of mantle minerals – II. Phase equilibria. Geophysical Journal International, 184, 11801213.CrossRefGoogle Scholar
Stoeckhert, B., Gerya, T. V. (2005) Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: a numerical simulation. Terra Nova, 17, 102110.CrossRefGoogle Scholar
Tackley, P. J. (1993) Effects of strongly temperature-dependent viscosity on time-dependent, 3-dimensional models of mantle convection. Geophysical Research Letters, 20, 21872190.CrossRefGoogle Scholar
Tackley, P. J. (2000) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations Part 1: Pseudo-plastic yielding. Geochemistry, Geophysics, Geosystems, 1, 2000GC000036.Google Scholar
Tackley, P. J. (2008) Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors, 171, 718.CrossRefGoogle Scholar
Tackley, P. J. (2012) Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth Science Reviews, 110, 125.CrossRefGoogle Scholar
Tackley, P. J., Ammann, M., Brodholt, J. P., Dobson, D. P., Valencia, D. (2014) Habitable planets: interior dynamics and long-term evolution. In: Haghighipour, N. (editor), Formation, Detection and Characterization of Extrasolar Habitable Planets, Proceedings IAU Symposium No. 293, 2012. Cambridge University Press, pp. 339349.Google Scholar
Tamura, Y. (1994) Genesis of island arc magmas by mantle derived bimodal magmatism: evidence from the Shirahama Group, Japan. Journal of Petrology, 35, 619645.CrossRefGoogle Scholar
Thieulot, C. (2014) ELEFANT: a user-friendly multipurpose geodynamics code. Solid Earth Discussion, 6, 19492096.Google Scholar
Thieulot, C. (2017) Analytical solution for viscous incompressible Stokes flow in a spherical shell. Solid Earth, 8, 11811191.CrossRefGoogle Scholar
Tikhonov, A. N., Samarsky, A. A. (1972) Equations of Math Physics. Nauka, Moscow (in Russian).Google Scholar
Tonks, W. B., Melosh, H. J. (1992) Core formation by giant impacts. Icarus, 100, 326346.CrossRefGoogle Scholar
Toro, E. F. (1999) Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag.CrossRefGoogle Scholar
Torrance, K. E., Turcotte, D. L. (1971) Thermal convection with large viscosity variations. Journal of Fluid Mechanics 47, 113125.CrossRefGoogle Scholar
Tosi, N., Stein, C., Noack, L., Hüttig, C., Maierová, P., Samuel, H., Davies, D. R., Wilson, C. R., Kramer, S. C., Thieulot, C., Glerum, A., Fraters, M., Spakman, W., Rozel, A., Tackley, P. J. (2015) A community benchmark for viscoplastic thermal convection in a 2-D square box. Geochemistry, Geophysics, Geosystems, 16, 21752196.CrossRefGoogle Scholar
Turcotte, D. L., Schubert, G. (2002) Geodynamics. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Turcotte, D. L., Schubert, G. (2014) Geodynamics, 3rd Edition. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Ueda, K., Gerya, T., Sobolev, S. V. (2008) Subduction initiation by thermal-chemical plumes: numerical studies. Physics of the Earth and Planetary Interiors, 171, 296312.CrossRefGoogle Scholar
Ueda, K., Gerya, T. V., Burg, J.-P. (2012) Delamination in collisional orogens: thermomechanical modelling. Journal of Geophysical Research, 117, B08202.CrossRefGoogle Scholar
Ueda, K., Willett, S. D., Gerya, T., Ruh, J. (2015) Geomorphological-thermo-mechanical modeling: application to orogenic wedge dynamics. Tectonophysics, 659, 1230.CrossRefGoogle Scholar
Vance, D., Bickle, M., Ivy-Ochs, S., Kubik, P. W. (2003) Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth and Planetary Science Letters, 206, 273288.CrossRefGoogle Scholar
van Dinther, Y., Gerya, T. V., Dalguer, L. A., Corbi, F., Funiciello, F., Mai, P. M. (2013a) The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models. Journal of Geophysical Research, 118, 15021525.CrossRefGoogle Scholar
van Dinther, Y., Gerya, T. V., Dalguer, L. A., Mai, P. M., Morra, G., Giardini, D. (2013b) The seismic cycle at subduction thrusts: insights from seismo-thermo-mechanical models. Journal of Geophysical Reasearch, 118, 61836202.Google Scholar
van Dinther, Y., Gerya, T. V., Dalguer, L. A., Corbi, F., Funiciello, F., Mai, P. M. (2014) Modeling the seismic cycle in subduction zones: the role and spatiotemporal occurrence of off-megathrust earthquakes. Geophysical Research Letters, 41, 11941201.CrossRefGoogle Scholar
van Dinther, Y., Kuensch, H. R., Fichtner, A. (2019) Ensemble data assimilation for earthquake sequences: probabilistic estimation and forecasting of fault stresses. Geophysical Journal International, DOI: https://doi.org/10.1093/gji/ggz063.CrossRefGoogle Scholar
van Heck, H., Tackley, P. J. (2011) Plate tectonics on super-Earths: equally or more likely than on Earth. Earth and Planetary Science Letters, 310, 252261.CrossRefGoogle Scholar
van Hunen, J., Allen, M. B. (2011) Continental collision and slab break-off: a comparison of 3D numerical models with observations. Earth and Planetary Science Letters, 302, 2737.CrossRefGoogle Scholar
van Hunen, J., Moyen, J.-F. (2012) Archean subduction: fact or fiction? Annual Review of Earth and Planetary Sciences, 40, 195219.CrossRefGoogle Scholar
van Hunen, J., van den Berg, A. (2008) Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103, 217235.CrossRefGoogle Scholar
van Keken, P., King, S., Schmeling, H., Christensen, U., Neumeister, D., Doin, M.-P. (1997) A comparison of methods for the modeling of thermochemical convection. Journal of Geophysical Research, 102, 2247722495.CrossRefGoogle Scholar
van Keken, P. E., Currie, C., King, S. D., Behn, M. D., Cagnioncle, A., He, J., Katz, R. F., Lin, S.-C., Parmentier, E. M., Spiegelman, M., Wang, K. (2008) A community benchmark for subduction zone modeling. Physics of the Earth and Planetary Interiors, 171, 187197.CrossRefGoogle Scholar
van Thienen, P., van den Berg, A. P., Vlaar, N. J. (2004) Production and recycling of oceanic crust in the early Earth. Tectonophysics, 386, 4165.CrossRefGoogle Scholar
Vasilyev, O. V., Podladchikov, Y. Y., Yuen, D. A. (1998) Modeling of compaction driven flow in poro-viscoelastic medium using adaptive wavelet collocation method. Geophysical Research Letters, 25, 32393242.CrossRefGoogle Scholar
Vasilyev, O. V., Gerya, T. V., Yuen, D. A. (2004) The application of multidimensional wavelets to unveiling multi-phase diagrams and in situ physical properties of rocks. Earth and Planetary Science Letters, 223, 4964.CrossRefGoogle Scholar
Vogt, K., Gerya, T. V., Castro, A. (2012) Crustal growth at active continental margins: numerical modeling. Physics of the Earth and Planetary Interiors, 192193, 120.CrossRefGoogle Scholar
Vogt, K., Castro, A., Gerya, T. (2013) Numerical modeling of geochemical variations caused by crustal relamination. Geochemistry, Geophysics, Geosystems, 14, 11311155.CrossRefGoogle Scholar
Von Blanckenburg, F., Davies, J. H. (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14, 120131.CrossRefGoogle Scholar
Wada, K., Kokubo, E., Makino, J. (2006) High-resolution simulations of a Moon-forming impact and postimpact evolution. Astrophysical Journal, 638, 11801186.CrossRefGoogle Scholar
Wang, K. (2007) Elastic and Viscoelastic Models of Crustal Deformation in Subduction Earthquake Cycles. Columbia University Press, New York.CrossRefGoogle Scholar
Wang, H., Agrusta, R., van Hunen, J. (2015) Advantages of a conservative velocity interpolation (CVI) scheme for particle-in-cell methods with application in geodynamic modeling. Geochemistry, Geophysics, Geosystems, 16, 20152023.CrossRefGoogle ScholarPubMed
Warren, C. J., Beaumont, C., Jamieson, R. A. (2008) Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth and Planetary Science Letters, 267, 129145.CrossRefGoogle Scholar
Weinberg, R. B., Schmeling, H. (1992) Polydiapirs: multiwavelength gravity structures. Journal of Structural Geology, 14, 425436.CrossRefGoogle Scholar
Weis, P., Driesner, T., Heinrich, C. A. (2012) Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science, 338, 16131616.CrossRefGoogle ScholarPubMed
Wesseling, P. (1992) An Introduction to Multigrid Methods. John Wiley & Sons, Chichester.Google Scholar
Willett, S. D. (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. Journal of Geophysical Research, 104 (B12), 2895728981.CrossRefGoogle Scholar
Woidt, W. D. (1978) Finite-element calculations applied to salt dome analysis. Tectonophysics, 50 (2–3), 369386.CrossRefGoogle Scholar
Wong A Ton, S. Y. M., Wortel, M. J. R. (1997) Slab detachment in continental collision zones: an analysis of controlling parameters. Geophysical Research Letters, 24 (16), 20952098.CrossRefGoogle Scholar
Wortel, M. J. R., Spakman, W. (1992) Structure and dynamics of subducted lithosphere in the Mediterranean region. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Volume 95, pp. 325347.Google Scholar
Wortel, M. J. R., Spakman, W. (2000) Geophysics – subduction and slab detachment in the Mediterranean-Carpathian region. Science, 290, 19101917.CrossRefGoogle Scholar
Xie, S., Tackley, P. J. (2004a) Evolution of helium and argon isotopes in a convecting mantle. Physics of the Earth and Planetary Interiors, 146, 417439.CrossRefGoogle Scholar
Xie, S., Tackley, P. J. (2004b) Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection. Journal of Geophysics Research, 109, B11204, doi:10.1029/2004JB003176.CrossRefGoogle Scholar
Xu, P. F., Sun, R. M., Liu, F. T., Wang, Q., Cong, B. (2000) Seismic tomography showing, subduction and slab breakoff of the Yangtze block beneath the Dabie–Sulu orogenic belt. Chinese Science Bulletin, 45, 7074.CrossRefGoogle Scholar
Yamato, P., Burov, E., Agard, P., Le Pourhiet, L., Jolivet, L. (2008) HP-UHP exhumation during slow continental subduction: self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth and Planetary Science Letters, 271, 6374.CrossRefGoogle Scholar
Yarushina, V. M., Podladchikov, Y. Y. (2015) (De)compaction of porous viscoelastoplastic media: model formulation. Journal of Geophysical Research, 120, 41464170.CrossRefGoogle Scholar
Yarushina, V. M., Bercovici, D., Oristaglio, M. L. (2013) Rock deformation models and fluid leak-off in hydraulic fracturing. Geophysical Journal International, 194, 15141526.CrossRefGoogle Scholar
Yarushina, V. M., Bercovici, D., Michaut, C. (2015) Two-phase dynamics of volcanic eruptions: particle size distribution and the conditions for choking. Journal of Geophysical Research, 120, 15031522.CrossRefGoogle Scholar
Yarushina, V. M., Podladchikov, Y. Y., Minakov, A., Rass, L. (2017) On the mechanisms of stress-triggered seismic events during fluid injection. In: Vandamme, M., Dangla, P., Pereira, J. M., Ghabezloo, S. (editors), Poromechanics VI: Proceedings of the Sixth Biot Conference on Poromechanics, pp. 795800.CrossRefGoogle Scholar
Yoshioka, S., Wortel, M. J. R. (1995) Three-dimensional numerical modeling of detachment of subducted lithosphere. Journal of Geophysical Research, 100, 2023320244.CrossRefGoogle Scholar
Yoshioka, S., Yuen, D. A., Larsen, T. B. (1995) Slab weakening: thermal and mechanical consequences for slab detachment. Island Arc, 40, 89103.CrossRefGoogle Scholar
Yuen, D. A., Balachandar, S., Hansen, U. (2000) Modelling mantle convection: a significant challenge in geophysical fluid dynamics. In: Fox, P. A., Kerr, R. M. (editors), Geophysical and Astrophysical Convection. CRC Press, pp. 257294.Google Scholar
Zeng, Q., Lia, K., Fen-Chong, T., Dangla, P. (2012) Effect of porosity on thermal expansion coefficient of cement pastes and mortars. Construction and Building Materials, 28, 468475.CrossRefGoogle Scholar
Zhang, D. Z., Prosperetti, A. (1994) Averaged equations for inviscid disperse two-phase flow. Journal of Fluid Mechanics, 267, 185219.CrossRefGoogle Scholar
Zheng, L., Zhang, H., Gerya, T., Knepley, M., Yuen, D. A., Shi, Y. (2013) Implementation of a multigrid solver on a GPU for Stokes equations with strongly variable viscosity based on Matlab and CUDA. International Journal of High Performance Computing Applications, doi:10.1177/1094342013478640.CrossRefGoogle Scholar
Zhigadla, D. (2015) Numerical modeling of meteorite impacts with continuum-based approach. MSc Thesis, ETH-Zurich.Google Scholar
Zhong, S. (1996) Analytic solutions for Stokes’ flow with lateral variations in viscosity. Geophysical Journal International, 124, 1828.CrossRefGoogle Scholar
Zhong, S., Gurnis, M. (1994) The role of plates and temperature-dependent viscosity in phase change dynamics. Journal of Geophysical Research, 99, 1590315917.CrossRefGoogle Scholar
Zhong, S. J., Yuen, D. A., Moresi, L. N. (2007) Numerical methods in mantle convection. In: Schubert, G., Bercovici, D. (editors), Treatise in Geophysics, Volume 7. Elsevier, pp. 227252.CrossRefGoogle Scholar
Zhong, S., McNamara, A., Tan, E., Moresi, L., Gurnis, M. (2008) A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochemistry, Geophysics, Geosystems, 9, Q10017, doi:10.1029/2008GC002048.CrossRefGoogle Scholar
Zhu, W., David, C., Wong, T.-F. (1995) Network modelling of permeability evolution during cementation and hot isostatic pressing. Journal of Geophysical Research, 100, 1545115464.CrossRefGoogle Scholar
Zhu, G., Gerya, T. V., Yuen, D. A., Honda, S., Yoshida, T., Connolly, J. A. D. (2009) 3-D Dynamics of hydrous thermal-chemical plumes in oceanic subduction zones. Geochemistry, Geophysics, Geosystems, 10, Q11006.CrossRefGoogle Scholar
Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z. (2005) The Finite Element Method: Its Basis and Fundamentals, 6th Edition. Butterworth and Heinemann Inc.Google Scholar
Zlotnik, S., Fernandez, M., Diez, P., Verges, J. (2008) Modelling gravitational instabilities: slab break-off and Rayleigh–Taylor diapirism. Pure and Applied Geophysics, 165, 14911510.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Taras Gerya, Swiss Federal University (ETH), Zürich
  • Book: Introduction to Numerical Geodynamic Modelling
  • Online publication: 14 May 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Taras Gerya, Swiss Federal University (ETH), Zürich
  • Book: Introduction to Numerical Geodynamic Modelling
  • Online publication: 14 May 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Taras Gerya, Swiss Federal University (ETH), Zürich
  • Book: Introduction to Numerical Geodynamic Modelling
  • Online publication: 14 May 2019
Available formats
×