Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-24T01:16:36.118Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Taras Gerya
Affiliation:
Swiss Federal Institute of Technology (ETH-Zurich)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, M. (2000) A local mesh refinement multigrid method for 3D convection problems with strongly variable viscosity. Journal of Computational Physics, 160, 126–50.CrossRefGoogle Scholar
Amestoy, P., Duff, I., Koster, J. andL'Excellent, A. (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23 (1), 15–41.CrossRefGoogle Scholar
Anderson, O. L. (1995) Equations of State for Solids in Geophysics and Ceramic Science. Oxford University Press.Google Scholar
Andrews, E. R. andBillen, M. I. (2009) Rheologic controls on the dynamics of slab detachment, Tectonophysics, 464, 60–9.CrossRefGoogle Scholar
Asphaug, E., Agnor, C. B. and Williams, Q. (2006) Hit-and-run planetary collisions, Nature, 439, 155–60, doi: 10.1038/nature04311.CrossRefGoogle ScholarPubMed
Bagdassarov, N. S. and Fradkov, A. S. (1993) Evolution of double diffusion convection in a felsic magma chamber. Journal of Volcanology and Geothermal Research, 54, (3–4), 291–308.CrossRefGoogle Scholar
Barazangi, M., Isacks, B. L., Oliver, J., Dubois, J. and Pascal, G. (1973) Descent of lithosphere beneath New Hebrides, Tonga–Fiji and New Zealand: evidence for detached slabs. Nature, 242 (5393), 98–101.CrossRefGoogle Scholar
Baumann, C., Gerya, T. V. and Connolly, J. A. D. (2009) Numerical modelling of spontaneous slab breakoff dynamics during continental collision. In Advances in Interpretation of Geological Processes: Refinement of Multi-scale Data and Integration in Numerical Modelling. Geological Society of London Special Publication, (in press).Google Scholar
Baumgardner, J. R. (1985) Three-dimensional treatment of convective flow in the Earth's mantle. Journal of Statistical Physics, 39, 501–11.CrossRefGoogle Scholar
Beaumont, C., Jamieson, R. A., Nguyen, M. H. and Lee, B. (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414, 738–42.CrossRefGoogle ScholarPubMed
Belytschko, T., Liu, W. K. and Moran, B. (2000) Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons.Google Scholar
Benz, W., Slattery, W. and Cameron, A. G. W. (1986) The origin of the moon and the single-impact hypothesis.1. Icarus, 66, 515.CrossRefGoogle Scholar
Ben-Zion, Y. (2008) Collective behavior of earthquakes and faults: continuum-discrete transitions, evolutionary changes and corresponding dynamic regimes. Review of Geophysics, 46, RG4006, doi:10.1029/2008RG000260.CrossRefGoogle Scholar
Bercovici, D. (ed.) (2007) Mantle Dynamics. Treatise on Geophysics, Volume 7, (editor-in-chief: Schubert, Gerald), Elsevier.
Bergantz, G. W. (2000) On the dynamics of magma mixing by reintrusion: implications for pluton assembly processes. Journal of Structural Geology, 22, 1297–309.CrossRefGoogle Scholar
Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-bib-88754-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445–522.CrossRefGoogle Scholar
Berner, H., Ramberg, H. and Stephanson, O. (1972) Diapirism in theory and experiment. Tectonophysics, 15, 197–218.CrossRefGoogle Scholar
Best, M. G. and Christiansen, E. H. (2001) Igneous Petrology. Blackwell Science.Google Scholar
Birch, F. 1947. Finite elastic strain of cubic crystals. Physical Review, 71, 809–24.CrossRefGoogle Scholar
Bird, P. (1978) Finite elements modeling of lithosphere deformation: The Zagros collision orogeny, Tectonophysics, 50, 307–36.CrossRefGoogle Scholar
Bittner, D. and Schmeling, H. (1995) Numerical modeling of melting processes and induced diapirism in the lower crust. Geophysical Journal International, 123, 59–70.CrossRefGoogle Scholar
Blankenbach, B., Busse, F., Christensen, U., et al. (1989) A benchmark comparison for mantle convection codes, Geophysical Journal International, 98 (1), 23–38.CrossRefGoogle Scholar
Boris, J. P. and Book, D. L. (1973) Flux-Corrected Transport. I. SHASTA, A Fluid transport algorithm that works, Journal of Computational Physics, 11, 38–69.CrossRefGoogle Scholar
Brace, W. F., Kohlstedt, D. T. (1980) Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research, 85, 6248–52.CrossRefGoogle Scholar
Braun, J. and Sambridge, M. (1997) Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization: Basin Research, 9, 27–52.CrossRefGoogle Scholar
Braun, J., Thieulot, C., Fullsack, P., et al. (2008) DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems. Physics of the Earth and Planetary Interiors, 171, 76–91.CrossRefGoogle Scholar
Buiter, S. J. H., Govers, R. and Wortel, M. J. R. (2002) Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophysics, 354, 195–210.CrossRefGoogle Scholar
Buiter, S. J. H., Babeyko, A., Yu., Ellis, S., et al. (2006) The numerical sandbox: Comparison of model results for a shortening and an extension experiment. In Buiter, S. J. H. and Schreurs, G. (eds.) 2006. Analogue and Numerical Modelling of Crustal-Scale Processes. Geological Society, London, Special Publications, 253, 29–64.Google Scholar
Burg, J.-P. and Gerya, T. V. (2005) The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. Journal of Metaphorphic Geology, 23, 75–95.CrossRefGoogle Scholar
Burg, J.-P., Bodinier, J.-L., Gerya, T., et al. (2009) Translithospheric mantle diapirism: geological evidence and numerical modelling of the Kondyor zoned ultramafic complex (Russian Far-East). Journal of Petrology, 50, 289–321.CrossRefGoogle Scholar
Burov, E. B. and Cloetingh, S. (1997) Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth and Planetary Science Letters, 150, 7–26.CrossRefGoogle Scholar
Burov, E. and Poliakov, A. (2001) Erosion and rheology controls on synrift and postrift evolution: Verifying old and new ideas using a fully coupled numerical model. Journal of Geophysical Research–Solid Earth, 106 (B8), 16461–81.CrossRefGoogle Scholar
Burov, E., Jolivet, L., Pourhiet, L. and Poliakov, A. (2001) A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts, Tectonophysics, 342, 113–36.CrossRefGoogle Scholar
Burov, E., Jaupart, C. and Guillou-Frottier, L. (2003) Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. Journal of Geophysical Research–Solid Earth, 108, Article Number: 2177.CrossRefGoogle Scholar
Busse, F. H., Christensen, U., Clever, R., et al. (1994) 3-D convection at infinite Prandtl number in Cartesian geometry – a benchmark comparison. Geophysical and Astrophysical Fluid Dynamics, 75, 39–59.CrossRefGoogle Scholar
Byerlee, J. D. (1978) Friction of rocks. Pure Applied Geophysics, 116, 615–26.CrossRefGoogle Scholar
Canup, R. M. (2004) Simulations of a late lunar-forming impact. Icarus, 168, 433–56.CrossRefGoogle Scholar
Canup, R. M. and Asphaug, E. (2001) Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708.CrossRefGoogle Scholar
Caricchi, L., Burlini, L., Ulmer, P., et al. (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth and Planetary Science Letters, 264, 402–19.CrossRefGoogle Scholar
Carslaw, H. S. and Jaeger, J. C. (1986) Conduction of Heat in Solids. Oxford University Press.Google Scholar
Castro, A. and Gerya, T. V. (2007) Magmatic implications of mantle wedge plumes: Experimental study. Lithos, 103, 138–48.CrossRefGoogle Scholar
Chambers, J. E. (2001) Making More Terrestrial Planets. Icarus, 152, 205–24.CrossRefGoogle Scholar
Chambers, J. E. and Wetherill, G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304–27.CrossRefGoogle Scholar
Chapman, B., Jost, G. and Pas, R. (2007) Using OpenMP: Portable Shared Memory Parallel Programming. The MIT Press.Google Scholar
Chemenda, A. I., Burg, J.-P. and Mattauer, M. (2000) Evolutionary model of the Himalaya-Tibet system: geopoem based on new modelling, geological and geophysical data. Earth and Planetary Science Letters, 174, 397–409.CrossRefGoogle Scholar
Chen, S., Zhang, H., Yuen, D., Zhang, S., Zhang, J., Shi, Y. (2008) Volume rendering visualization of 3D spherical mantle convection with an unstructured mesh. Visual Geosciences, 13, 97–104.CrossRefGoogle Scholar
Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contributions to Mineralogy and Petrology, 86, 107–18.CrossRefGoogle Scholar
Chopin, C. (2003) Ultrahigh-pressure metamorphism: tracing continental crust into mantle, Earth and Planetary Science Letters, 212, 1–14.CrossRefGoogle Scholar
Christensen, U. (1982) Phase boundaries in finite amplitude mantle convection. Geophysical Journal of the Royal Astronomical Society, 68, 487–97.CrossRefGoogle Scholar
Christensen, U. R. and Yuen, D. A. (1985) Layered convection induced by phase changes. Journal of Geophysical Research, 90, 10291–300.CrossRefGoogle Scholar
Chung, W.-Y. and Kanamori, H. (1976) Source process and tectonic implications of the Spanish deep-focus earthquake of March 29, 1954. Physics of the Earth and Planetary Interiors, 13 (2), 85–96.CrossRefGoogle Scholar
Clauser, C. and Huenges, E. (1995) Thermal conductivity of rocks and minerals. In Rock Physics and Phase Relations. AGU Reference Shelf 3. (ed. Ahrens, T. J.), American Geophysical Union, pp. 105–26.Google Scholar
Clemens, J. D. and Mawer, C. K. (1992) Granitic magma transport by fracture propagation. Tectonophysics, 204, 339–60.CrossRefGoogle Scholar
Cloetingh, S. A. P. L., Ziegler, P. A., Bogaard, P. J. F., et al. (2007) TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 58, 1–118.CrossRefGoogle Scholar
Cloos, M. (1982) Flow melanges – numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California. Geological Society of America Bulletin, 93, 330–45.2.0.CO;2>CrossRefGoogle Scholar
Cohen, R. E. (ed.) (2005) High-Performance Computing Requirements for the Computational Solid Earth Sciences. www.geo-prose.com/computational_SES.html
Connolly, J. A. D. (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and an application to subduction zone decarbonation. Earth and Planetary Science Letters, 236, 524–41.CrossRefGoogle Scholar
Connolly, J. A. D. and Kerrick, D. M. (1987) An algorithm and computer program for calculating composition phase diagrams, CALPHAD, 11, 1–55.CrossRefGoogle Scholar
Connolly, J. A. D. and Podladchikov, Y. Y. (1998) Compaction-driven fluid flow in viscoelastic rock. Geodinamica Acta, 11, 55–84.CrossRefGoogle Scholar
Cserepes, L., Rabinowicz, M. and Rosemberg-Borot, C. (1988) Three-dimensional infinite Prandtl number convection in one and two layers and implications for the Earth's gravity field. Journal of Geophysical Research, 93, 12009–25.CrossRefGoogle Scholar
Dabrowski, M., Krotkiewski, M. and Schmid, D. W. (2008) MILAMIN: MATLAB-based finite element method solver for large problems,. Geochemistry Geophysics, and Geosystems, 9, Q04030, doi:10.1029/2007GC001719.CrossRefGoogle Scholar
Daignières, M., Fremond, M. and Friaa, A. (1978) Modèle de type Norton-Hoff généralisé pour l'étude des déformations lithosphériques (exemple: la collision Himalayenne), Comptes Reudus Hebdomadaires des Séances de l'Academie de Sciences, 268B, 371–74.Google Scholar
Damon, M., Kameyama, M. C., Knox, M., et al. (2008) Interactive visualization of 3D mantle convection. Visual Geosciences, 13, 49–57.CrossRefGoogle Scholar
Davies, G. F. (1985) Heat Deposition and Retention in a Solid Planet Growing by Impacts, Icarus, 63, 45–68.CrossRefGoogle Scholar
Davies, J. H. and Von Blanckenburg, F. (1995) Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129, 85–102.CrossRefGoogle Scholar
Capitani, C. and Brown, H. (1987) The computation of chemical equilibrium in complex systems containing non-ideal solid solutions. Geochimica et Cosmochimica Acta, 51, 2639–52.CrossRefGoogle Scholar
DePaolo, D. J., Cerling, T. E., Hemming, S. R., et al. (2008) Origin and Evolution of Earth: Research Questions for a Changing Planet. Committee on Grand Research Questions in the Solid-Earth Sciences, Board on Earth Sciences and Resources, Division on Earth and Life Studies, National Research Council of the National Academies, The National Academies Press, Washington, DC.Google Scholar
Deubelbeiss, Y. and Kaus, B. J. P. (2008) Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity. Physics of the Earth and Planetary Interiors, 171, 92–111.CrossRefGoogle Scholar
Dobrzhinetskaya, L. F., Eide, E. A., Larsen, R. B., et al. (1995) Microdiamond in high-grade metamorphic rocks of the Western Gneiss Region, Norway. Geology, 2, 597–600.2.3.CO;2>CrossRefGoogle Scholar
Dorogokupets, P. I. and Karpov, I. K. (1984) Thermodynamics of Minerals and Mineral Equilibria. Nauka (in Russian).Google Scholar
Driesner, T. and Geiger, S. (2007) Numerical simulation of multiphase fluid flow in hydrothermal systems. Fluid-Fluid Interactions, 65, 187–212.Google Scholar
Driesner, T., Geiger, S. and Heinrich, C. A. (2006) Modeling multiphase flow of H2O-NaCl fluids by combining CSP5.0 with SoWat2.0. Geochimica et Cosmochimica Acta, 70 (18), A147–A147.CrossRefGoogle Scholar
Ellenberger, F. (1994) Histoire de la Géologie. La grande éclosion et ses prémices. Petite collection d'histoire des sciences, 2. Technique et Documentation (Lavoisier), Paris.Google Scholar
Elsasser, W. M. (1963) Early history of the Earth. In Geiss, J. and Goldberg, E. (eds.) Earth Science and Meteoritics. North-Holland, pp. 1–30.Google Scholar
Evans, B. and Goetze, C. (1979) The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. Journal of Geophysical Research, 84, 5505–24.CrossRefGoogle Scholar
Faccenda, M., Burlini, L., Gerya, T. V. and Mainprice, D. (2008a) Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455, 1097–101.CrossRefGoogle Scholar
Faccenda, M., Gerya, T. V. and Chakraborty, S. (2008b) Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production. Lithos, 103, 257–87.CrossRefGoogle Scholar
Faccenna, C., Bellier, O., Martinod, J., Piromallo, C. and Regard, V. (2006) Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 242, 85–97.CrossRefGoogle Scholar
Fedorenko, R. P. (1964) The speed of convergence of one iterative process. USSR Journal of Computational Mathematics and Mathematical Physics, 4 (3), 227–35.CrossRefGoogle Scholar
Fornberg, B. (1995) A Practical Guide to Pseudospectral Methods. Cambridge University Press.Google Scholar
Frehner, M., Schmalholz, S. M., Saenger, E. H. and Steeb, H. (2008) Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves. Physics of the Earth and Planetary Interiors, 171, 112–21.CrossRefGoogle Scholar
Fuchs, K., Bonjer, K.-P., Bock, G., et al. (1979) The Romanian earthquake of March 4, 1977: II, aftershocks and migration of seismic activity. Tectonophysics, 53 (3–4), 225–47.CrossRefGoogle Scholar
Gerya, T. V. and Burg, J.-P. (2007) Intrusion of ultramatic magmatic bodies into the continental crust: Numerical simulation. Physics of the Earth and Planetary Interiors, 160, 124–42.CrossRefGoogle Scholar
Gerya, T. V. and Maresch, W. V. (2004) Metapelites of the Kanskiy granulite complex, (Eastern Siberia): kinked P-T paths and geodynamic model. Journal of Petrology, 45, 1393–412.CrossRefGoogle Scholar
Gerya, T. V. and Stoeckhert, B. (2006) 2-D numerical modeling of tectonic and metamorphic histories at active continental margins. International Journal of Earth Sciences, 95, 250–74.CrossRefGoogle Scholar
Gerya, T. V. andYuen, D. A. (2003a) Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, 140, 293–318.CrossRefGoogle Scholar
Gerya, T. V. and Yuen, D. A. (2003b) Rayleigh–Taylor instabilities from hydration and melting propel cold plumes at subduction zones. Earth and Planetary Science Letters, 212, 47–62.CrossRefGoogle Scholar
Gerya, T. V. and Yuen, D. A. (2007) Robust characteristics method for modelling multiphase visbib-88754-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163, 83–105.CrossRefGoogle Scholar
Gerya, T. V., Perchuk, L. L., Reenen, D. D.and Smit, C. A. (2000) Two-dimensional numerical modeling of pressure-temperature-time paths for the exhumation of some granulite facies terrains in the Precambrian. Journal of Geodynamics, 29, 17–35.CrossRefGoogle Scholar
Gerya, T. V., Maresch, W. V., Willner, A. P., Reenen, D. D. and Smit, C. A. (2001) Inherent gravitational instability of thickened continental crust with regionally developed low- to medium-pressure granulite facies metamorphism. Earth and Planetary Science Letters, 190, 221–35.CrossRefGoogle Scholar
Gerya, T. V., Stoeckhert, B. andPerchuk, A. L. (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel – a numerical simulation. Tectonics, 21, Article Number: 1056.CrossRefGoogle Scholar
Gerya, T. V., Yuen, D. A. and Maresch, W. V. (2004a) Thermomechanical modeling of slab detachment. Earth and Planetary Science Letters, 226, 101–116.CrossRefGoogle Scholar
Gerya, T. V., Yuen, D. A. and Sevre, E. O. D. (2004b) Dynamical causes for incipient magma chambers above slabs. Geology, 32, 89–92.CrossRefGoogle Scholar
Gerya, T. V., Perchuk, L. L., Maresch, W. V. and Willner, A. P. (2004c) Inherent gravitational instability of hot continental crust: implication for doming and diapirism in granulite facies terrains. In Gneiss Domes in Orogeny, edited by Whitney, D. and Teyssier, C. and Siddoway, C.S., GSA Special Paper 380, 97–115.CrossRefGoogle Scholar
Gerya, T. V., Podlesskii, K. K., Perchuk, L. L. and Maresch, W. V. (2004d) Semi-empirical Gibbs free energy formulations for minerals and fluids. Physics and Chemistry of Minerals, 31 (7), 429–55.CrossRefGoogle Scholar
Gerya, T. V., Connolly, J. A. D., Yuen, D. A., Gorczyk, W. and Capel, A. M. (2006) Sesmic implications of mantle wedge plumes. Physics of the Earth and Planetary Interiors, 156, 59–74.CrossRefGoogle Scholar
Gerya, T. V., Connolly, J. A. D. and Yuen, D. A. (2008a) Why is terrestrial subduction one-sided? Geology, 36, 43–6.CrossRefGoogle Scholar
Gerya, T. V., Perchuk, L. L. and Burg, J.-P. (2008b) Transient hot channels: Perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts. Lithos, 103, 236–56.CrossRefGoogle Scholar
Golabek, G. J., Gerya, T. V. and Tackley, P. J. (2008a) Rheological controls on the terrestrial core formation mechanism. European Planetary Science Congress Abstracts, 3, EPSC-2008-A-00 087.Google Scholar
Golabek, G. J., Schmeling, H. and Tackley, P. J. (2008b) Earth's core formation aided by flow channelling instabilities induced by iron diapirs. Earth and Planetary Science Letters, 271, 24–33.CrossRefGoogle Scholar
Gorczyk, W., Gerya, T. V., Connolly, J. A. D., Yuen, D. A. and Rudolph, M. (2006) Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography. Geochemistry, Geophysics, and Geosystems, 7, doi:10.1029/2005GC001075.CrossRefGoogle Scholar
Gorczyk, W., Guillot, S., Gerya, T. V. and Hattori, K. (2007a) Asthenospheric upwelling, oceanic slab retreat and exhumation of UHP mantle rocks: insights from Greater Antilles. Geophysical Research Letters, 34, Article Number: L21309.CrossRefGoogle Scholar
Gorczyk, W., Gerya, T. V., Connolly, J. A. D. and Yuen, D. A. (2007b) Growth and mixing dynamics of mantle wedge plumes. Geology, 35, 587–90.CrossRefGoogle Scholar
Gupta, A. (2000) WSMP: Watson Sparse Matrix Package (Part-II: direct solution of general sparse systems). Technical Report RC 21888 (98472), IBM T.J. Watson Research Center, Yorktown Heights, NY.Google Scholar
Gustafsson, B. (2008) High Order Finite-Difference Methods for Time-dependent PDE, Springer-Verlag.Google Scholar
Hager, B. H., O'Connell, R. J. (1981) A simple global model of plate dynamics and mantle convection. Journal of Geophysical Research, 86, 4843–67.CrossRefGoogle Scholar
Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L. and Muller, R. D. (2003) Catastrophic initiation of subduction following forced convergence across fractures zones. Earth and Planetary Science Letters, 212, 15–30.CrossRefGoogle Scholar
Hansen, U., Yuen, D. A. (1988) Numerical simulations of thermal-chemical instabilities at the core–mantle boundary. Nature, 334, 237–40.CrossRefGoogle Scholar
Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science, 278A.Google Scholar
Hess, P. C. (1989) Origin of Igneous Rocks. Harvard University Press.Google Scholar
Hirschmann, M. M. (2000) Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, and Geosystems, 1 (10), 1042, doi:10.1029/2000GC000070.CrossRefGoogle Scholar
Hofmeister, A. M. (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699–706.CrossRefGoogle ScholarPubMed
Holland, T. J. B. and Powell, R. (1990) An enlarged and updated internally consistent thermodynamic data set with uncertainties and correlations: the system K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2–C–H2–O2. Journal of Metamorphic Geology, 8, 309–43.CrossRefGoogle Scholar
Holland, T. J. B. and Powell, R. (1998) Internally consistent thermodynamic data set for phases of petrlogical interest. Journal of Metamorphic Geology, 16, 309–44.CrossRefGoogle Scholar
Honda, R., Mizutani, H. and Yamamoto, T. (1993) Numerical simulation of Earth's core formation. Journal of Geophysical Research, 98, 2075–89.CrossRefGoogle Scholar
Houseman, G. (1988) The dependence of convection planform on mode of heating. Nature, 332, 346–9.CrossRefGoogle Scholar
Ida, S., Nakagawa, Y. and Nakazawa, K. (1987) The Earth's core formation due to the Rayleigh-Taylor instability. Icarus, 69, 239–48.CrossRefGoogle Scholar
Isacks, B. and Molnar, P. (1969) Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223, 1121–4.CrossRefGoogle Scholar
Jamieson, R. A., Beaumont, C., Nguyen, M. H. and Lee, B. (2002) Interaction of metamorphism, deformation, and exhumation in large convergent orogens. Journal of Metamorphic Geology, 20, 9–24.CrossRefGoogle Scholar
Johannes, W. (1985) The significance of experimental studies for the formation of migmatites. In Ashworth, V. A. (ed.), Migmatites, Blackie, pp. 36–85.CrossRefGoogle Scholar
Kadlec, B., Dorn, G., Tufo, H. and Yuen, D. (2008) Interactive 3-D computation of fault surfaces using level sets. Visual Geosciences, 13, 133–8.CrossRefGoogle Scholar
Kameyama, M., Yuen, D. A., Karato, S. (1999) Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth and Planetary Science Letters, 168, 159–72.CrossRefGoogle Scholar
Karato, S. (2008) Deformation of Earth Materials. Cambridge University Press.CrossRefGoogle Scholar
Karato, S. and Wu, P. (1993) Rheology of the upper mantle: a synthesis. Science, 260, 771–8.CrossRefGoogle ScholarPubMed
Karato, S., Riedel, M. R.Yuen, D. A. (2001) Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127, 83–108.CrossRefGoogle Scholar
Karniadakis, G. E., Kirby, R. M. (2003) A Seamless Approach to Parallel Algorithms and their Implementation. Cambridge University Press.Google Scholar
Karpov, I. K., Kiselev, A. I. and Letnikov, F. A. (1976) Computer Modeling of Natural Mineral Formation. ‘Nedra’ Press (in Russian).Google Scholar
Katayama, I. and Karato, S. (2008) Low-temperature, high-stress deformation of olivine under water-saturated conditions. Physics of the Earth and Planetary Interiors, 168, 125–33.CrossRefGoogle Scholar
Katz, R. F. (2008) Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. Journal of Petrology, 49, 2099–121.CrossRefGoogle Scholar
Kaus, B. J. P. and Becker, T. W. (2007) Effects of elasticity on the Rayleigh-Taylor instability: implications for large-scale geodynamics. Geophysical Journal International, 168, 843–62.CrossRefGoogle Scholar
Kaus, B. J. P. and Podladchikov, Y. Y. (2006) Initiation of localized shear zones in viscoelastoplastic rocks. Journal of Geophysical Research-Solid Earth, 111, Article Number: B04412.CrossRefGoogle Scholar
Kaus, B. J. P. and Schmalholz, S. M. (2006) 3D finite amplitude folding: Implications for stress evolution during crustal and lithospheric deformation. Geophysical Research Letters, 33, Article Number: L14309.CrossRefGoogle Scholar
Kaus, B. J. P., Connolly, J. A. D., Podladchikov, Y. Y. and Schmalholz, S. M. (2005) Effect of mineral phase transitions on sedimentary basin subsidence and uplift. Earth and Planetary Science Letters, 233, 213–28.CrossRefGoogle Scholar
Kaus, B. J. P., Gerya, T. V., Schmid, D. W. (eds.) (2008a) Recent advances in computational geodynamics: Theory, numerics and applications. Physics of the Earth and Planetary Interiors, 171, Issue: 1–4, Special Issue.CrossRef
Kaus, B. J. P., Steedman, C. and Becker, T. W. (2008b) From passive continental margin to mountain belt: Insights from analytical and numerical models and application to Taiwan. Physics of the Earth and Planetary Interiors, 171, 235–251.CrossRefGoogle Scholar
Keondzhyan, V. P. and Monin, A. S. (1977) Continental drift and large-scale wandering of the Earth's pole. Izvestiya Physics of the Solid Earth, 13, 760–72.Google Scholar
Keondzhyan, V. P. and Monin, A. S. (1980) Compositional convection in the Earth's Mantle. Dokladi Akademii Nauk SSSR, 253, 78–81.Google Scholar
Khan, A., Connolly, J. A. D. and Olsen, N. (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. Journal of Geophysical Research, 111, B10102.CrossRefGoogle Scholar
Kocks, U. F., Argon, A. S. and Ashby, M. F. (1975) Thermodynamics and kinetics of slip. Progress in Materials Science, 19, 1–291.Google Scholar
Kooi, H. and Beaumont, C. (1994) Escarpment evolution on high-elevation rifted margins – insights derived from a surface processes model that combines diffusion, advection, and reaction. Journal of Geophysical Research-Solid Earth, 99 (B6), 12191–209.CrossRefGoogle Scholar
Krotkiewski, M., Dabrowski, M. and Podladchikov, Y. Y. (2008) Fractional Steps methods for transient problems on commodity computer architectures. Physics of the Earth and Planetary Interiors, 171, 122–36.CrossRefGoogle Scholar
Kundu, P. K. and Cohen, I. M. (2002) Fluid Mechanics. Academic.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1987) Fluid Mechanics. 2nd English edition. Pergamon Press.Google Scholar
Larsen, T. B., Yuen, D. A. and Malevsky, A. V. (1995) Dynamical consequences on fast subducting slabs from a self-regulating mechanism due to viscous heating in variable viscosity convection. Geophysical Research Letters, 22, 1277–80.CrossRefGoogle Scholar
LeVeque, R. (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.CrossRefGoogle Scholar
Levin, V., Shapiro, N., Park, J. and Ritzwoller, M. (2002) Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature, 418, 763–7.CrossRefGoogle ScholarPubMed
Lin, J.-R., Gerya, T. V., Tackley, P. J., Yuen, D. A., Golabek, G. J. (2009) Protocore destabilization during planetary accretion: Influence of a deforming planetary surface. Icarus, (in press).CrossRefGoogle Scholar
Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I. and Maruyama, S. (2004) Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. International Geology Review, 46, 1–27.CrossRefGoogle Scholar
Longo, A., Vassalli, M., Papale, P. and Barsanti, M. (2006) Numerical simulation of convection and mixing in magma chambers replenished with CO2-rich magma. Geophysical Research Letters, 33 (21).CrossRefGoogle Scholar
Lynch, D. R. (2005) Numerical Partial Differential Equations for Environmental Scientists and Engineers: A Practical First Course. Springer-Verlag.Google Scholar
Machetel, P., Rabinowicz, M. and Bernardet, P. (1986) Three-dimensional convection in spherical shells. Geophysical and Astrophysical Fluid Dynamics, 37, 57–84.CrossRefGoogle Scholar
MacPherson, G. J., Davis, A. M. and Zinner, E. K. (1995) The distribution of aluminium-26 in the early Solar system – A reappraisal. Meteoritics, 30, 365–86.CrossRefGoogle Scholar
Marsh, B. D. (1982) On the mechanics of igneous diapirism, stoping, and zone melting. American Journal of Science, 282, 808–55.CrossRefGoogle Scholar
Massonne, H.-J. (1999) A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution, Proc. 7th Int. Kimberlite Conf., 533–9.
Melnik, O. (2000) Dynamics of two-phase conduit flow of high viscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bulletin of Volcanology, 62, 153–70.CrossRefGoogle Scholar
Melnik, O. and Sparks, R. S. J. (1999) Nonlinear dynamics of lava dome extrusion. Nature, 402, 37–41.CrossRefGoogle Scholar
Melosh, H. J. (1990) Giant impacts and the thermal state of the early Earth. In Newsome, H. E. and Jones, J. H. (eds.) Origin of the Earth, Oxford University Press, pp. 69–83.Google Scholar
Melosh, H. J. (2008) Did an impact blast away half of the martian crust? Nature Geoscience, 1, 412–14.CrossRefGoogle Scholar
Miller, S. A., Collettini, C., Chiaraluce, L., et al. (2004) Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427, 724–7.CrossRefGoogle ScholarPubMed
Minear, J. W., Toksöz, M. N. (1970) Thermal regime of a downgoing slab and new global tectonics. Journal of Geophysical Research, 75, 1397–419.CrossRefGoogle Scholar
Mishin, Y. A., Gerya, T. V., Burg, J.-P. and Connolly, J. A. D. (2008) Dynamics of double subduction: Numerical modeling. Physics of the Earth and Planetary Interiors, 171, 280–95.CrossRefGoogle Scholar
Moresi, L., Zhong, S., Gurnis, M. (1996) The accuracy of finite element solutions of Stokes' flow with strongly varying viscosity. Physics of the Earth and Planetary Interiors, 97, 83–94.CrossRefGoogle Scholar
Moresi, L., Dufour, F., Mühlhaus, H.-B. (2003) A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics, 184, 476–97.CrossRefGoogle Scholar
Moresi, L., Quenette, S., Lemiale, V., et al. (2007) Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors, 163, 69–82.CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N.Ohishi, Y. (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–8.CrossRefGoogle ScholarPubMed
Murnaghan, F. D. (1944) The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30, 244–7.CrossRefGoogle ScholarPubMed
Nikolaeva, K., Gerya, T. V. and Connolly, J. A. D. (2008) Numerical modelling of crustal growth in intraoceanic volcanic arcs. Physics of the Earth and Planetary Interiors, 171, 336–56.CrossRefGoogle Scholar
Oganov, A. R. and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer. Nature, 430, 445–8.CrossRefGoogle Scholar
Oldenburg, C. M., Spera, F. J. and Yuen, D. A. (1990) Self-organization in convective magma mixing. Earth-Science Reviews, 29, 331–48.CrossRefGoogle Scholar
Papale, P. (1999) Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–8.CrossRefGoogle ScholarPubMed
Papale, P. (2001) Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. Journal of Geophysical Research, 106, 11043–65.CrossRefGoogle Scholar
Pascal, G., Dubois, J., Barazangi, M., Isacks, B. L. and Oliver, J. (1973) Seismic velocity anomalies beneath the New Hebrides island arc: evidence for a detached slab in the upper mantle. Journal of Geophysical Research, 78 (29), 6998–7004.CrossRefGoogle Scholar
Patankar, S. V. (1980) Numerical Heat Transfer and Fluid Flow. McGraw-Hill.Google Scholar
Pergler, T. and Matyska, C. (2008) A hybrid spectral and finite element method for coseismic and postseismic deformation. Physics of the Earth and Planetary Interiors, 163, 122–48.CrossRefGoogle Scholar
Petford, N., Cruden, A. R., McCaffrey, K. J. and Vigneresse, J.-L. (2000) Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408, 669–73.CrossRefGoogle ScholarPubMed
Petrini, K., Connolly, J. A. D. and Podladchikov, Y. Y (2001) A coupled petrological-tectonic model for sedimentary basin evolution: the influence of metamorphic reactions on basin subsidence. Terra Nova, 13, 354–59.CrossRefGoogle Scholar
Pinkerton, H. and Stevenson, R. J. (1992) Methods of determining the rheological properties of magmas at subliquidus temperatures. Journal of Volcanology and Geothermal Research, 53, 47–66.CrossRefGoogle Scholar
Pitcher, W. S. (1979) The nature, ascent and emplacement of granitic magma. Journal of the Geological Society (London), 136, 627–62.CrossRefGoogle Scholar
Poli, S. and Schmidt, M. W. (2002) Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences, 30, 207–35.CrossRefGoogle Scholar
Popov, A. A. and Sobolev, S. V. (2008) SLIM3D: A tool for three-dimensional thermomechanical modeling of lithospheric deformation with elasto-visco-plastic rheology. Physics of the Earth and Planetary Interiors, 171, 55–75.CrossRefGoogle Scholar
Pysklywec, R. N. (2006) Surface erosion control on the evolution of the deep lithosphere. Geology, 34, 225–8.CrossRefGoogle Scholar
Ramberg, H. (1968) Instability of layered system in the field of gravity. Physics of the Earth and Planetary Interiors, 1, 427–74.CrossRefGoogle Scholar
Ramberg, H. (1981) The role of gravity in orogenic belts. In McClay, K. R., Price, N. J. (eds.), Thrust and Nappe Tectonics. Geol. Soc. Special Publication, London, pp. 125–40.Google Scholar
Ranalli, G. (1995) Rheology of the Earth. Chapman & Hall.Google Scholar
Ranero, C. R., Phipps Morgan, J. andReichert, C. (2003) Bending-realted faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367–73.CrossRefGoogle ScholarPubMed
Ranero, C. R., Villaseñor, A., Phipps Morgan, J. and Weinribe, W. (2005) Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics and Geosystems, 6, doi:10.1029/2005GC000997.CrossRefGoogle Scholar
Regenauer-Lieb, K. and Yuen, D. A. (2008) Multiscale Brittle-Ductile Coupling and Genesis of Slow Earthquakes. Pure and Applied Geophysics, 165, 523–43.CrossRefGoogle Scholar
Revenaugh, J. andParsons, B. (1987) Dynamic topography and gravity anomalies for fluid layers whose viscosity varies exponentially with depth. Geophysical Journal of the Royal Astronomical Society, 90, 349–68.CrossRefGoogle Scholar
Ricard, Y., Bercovici, D. andSchubert, G. (2001) A two-phase model for compaction and damage 2. Applications to compaction, deformation, and the role of interfacial surface tension. Journal of Geophysical Research, 106, 8907–24.CrossRefGoogle Scholar
Ricard, Y., Šrámek, O. andDubuffet, F. (2009) Runaway core-mantle segregation of terrestrial planets, Earth and Planetary Science Letters, in revision.CrossRefGoogle Scholar
Richter, F. M. (1973) Finite amplitude convection through a phase boundary. Geophysical Journal of the Royal Astronomical Society, 35, 265–76.CrossRefGoogle Scholar
Richter, F. M. (1978) Mantle convection models. Annual Review of Earth and Planetary Sciences, 6, 9–19.CrossRefGoogle Scholar
Rosen, O. M., Zorin, Y. M. and Zayachkovsky, A. A. (1972) A find of a diamond linked with eclogites of the Precambrian Kokchetav massif. Dokladi Akademii Nauk SSSR, 203, 674–76 (in Russian).Google Scholar
Rudolph, M. L., Gerya, T. V.Yuen, D. A. and DeRosier, S. (2004) Visualization of multiscale dynamics of hydrous cold plumes at subduction zones. Visual Geosciences, doi.org/10.1007/s10069–004-0017–2.
Ruprecht, P., Bergantz, G. W. andDufek, J. (2008) Modeling of gas-driven magmatic overturn: Tracking of phenocryst dispersal and gathering during magma mixing. Geochemistry, Geophysics, and Geosystems, 9, Article Number: Q07017.CrossRefGoogle Scholar
Sacks, P. E. and Secor, D. T. (1990) Delamination in collisional orogens. Geology, 18, 999–1002.2.3.CO;2>CrossRefGoogle Scholar
Samuel, H., Tackley, P. J. (2008) Dynamics of core formation and equilibration by negative diapirism. Geochemistry, Geophysics, and Geosystems, 9, Q06011, doi:10.1029/2007GC001896.CrossRefGoogle Scholar
Scambelluri, M. andPhilippot, P. (2001) Deep fluids in subduction zones. Lithos, 55, 213–27.CrossRefGoogle Scholar
Schenk, O. andGärtner, K. (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Journal of Future Generation Computer Systems, 20, 475–87.CrossRefGoogle Scholar
Schenk, O. andGärtner, K. (2006) On fast factorization pivoting methods for symmetric indefinite systems. Electronic Transactions on Numerical Analysis, 23, 158–79.Google Scholar
Schmeling, H. (1987) On the relation between initial conditions and late stages of Rayleigh-Taylor instabilities. Tectonophysics, 133, 65–80.CrossRefGoogle Scholar
Schmeling, H. (2000) Partial melting and melt segregation in a convecting mantle. In Bagdassarov, N., Laporte, D. and Thompson, A. B. (eds.) Physics and Chemistry of Partially Molten Rocks. Kluwer Academic Publisher, pp. 141–78.CrossRefGoogle Scholar
Schmeling, H., Babeyko, A. Y.Enns, A., et al. (2008) A benchmark comparison of spontaneous subduction models – Towards a free surface. Physics of the Earth and Planetary Interiors, 171, 198–223.CrossRefGoogle Scholar
Schmid, D. W. and Podladchikov, Y. Y. (2003) Analytical solutions for deformable elliptical inclusions in general shear. Geophysical Journal International, 155, 269–88.CrossRefGoogle Scholar
Schmidt, M. W. and Poli, S. (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163, 361–79.CrossRefGoogle Scholar
Schubert, G. (1992) Numerical models of mantle convection. Annual Review of Fluid Mechanics, 1992. 24, 359–94.CrossRefGoogle Scholar
Schubert, G., Yuen, D. A. and Turcotte, D. L. (1975) Role of phase transitions in a dynamic mantle. Geophysical Journal of the Royal Astronomical Society, 42, 705–35.CrossRefGoogle Scholar
Scott, D. R. and Stevenson, D. J. (1986) Magma ascent by porous flow. Journal of Geophysical Research, 91, 9283–96.CrossRefGoogle Scholar
Senshu, H., Kuramoto, K. and Matsui, T. (2002) Thermal evolution of a growing Mars. Journal of Geophysical Research, 107, E12, 5118, doi:10.1029/2001JE001819.CrossRefGoogle Scholar
Shabana, A. A. (2008) Computational Continuum Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Shukla, K. N. (2005) Mathematical Principles of Heat Transfer. Begell House Inc.Google Scholar
Simakin, A. and Botcharnikov, R. (2001) Degassing of stratified magma by compositional convection. Journal of Volcanology and Geothermal Research, 105, 207–24.CrossRefGoogle Scholar
Smith, D. C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310, 641–4.CrossRefGoogle Scholar
Sobolev, N. V. and Shatsky, V. S. (1990) Diamond inclusions in garnets from metamorphic rocks: an environment for diamond formation. Nature, 343, 742–5.CrossRefGoogle Scholar
Sobolev, S. V. and Babeyko, A. Y. (1994) Modeling of mineralogical composition, density and elastic-wave velocities in anhydrous magmatic rocks. Surveys in Geophysics, 15, 515–44.CrossRefGoogle Scholar
Sobolev, S. V. and Babeyko, A. Y. (2005) What drives orogeny in the Andes?Geology, 33, 617–20.CrossRefGoogle Scholar
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. and Nikogosian, I. K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature, 434, 590–7.CrossRefGoogle ScholarPubMed
Souza de Neto, E. A., Periæ, D. and Owen, D. R. J. (2009) Computational Methods for Plasticity: Theory and Applications, Wiley.Google Scholar
Spakman, W., Wortel, M. J. R. and Vlaar, N. J. (1988) The Hellenic subduction zone: a tomographic image and its geodynamic implications. Geophysical Research Letters, 15, 60–3.CrossRefGoogle Scholar
Spera, F. J., Oldenburg, C. M., Christensen, C., Todesco, M. (1995) Simulations of convection with crystallization in the system KAlSi2O6-CaMgSi2O6: Implications for compositionally zoned magma bodies. American Mineralogist, 80 (11–12), 1188–207.CrossRefGoogle Scholar
Spiegelman, M. and Kelemen, P. B. (2003) Extreme chemical variability as a consequence of channelized melt transport. Geochemistry, Geophysics, and Geosystems, 4, Art. No. 1055.CrossRefGoogle Scholar
Stevenson, D. J. (1981) Models of the Earth's core. Science, 214, 611–19.CrossRefGoogle ScholarPubMed
Stevenson, D. J. (2008) A planetary perspective on the deep Earth. Nature, 451, 261–5.CrossRefGoogle ScholarPubMed
Stixrude, L. and Bukowinski, M. S. T. (1990) Fundamental thermodynamic relations and silicate melting with implications for the constitution of D″. Journal of Geophysical Research, 95, 19311–25.CrossRefGoogle Scholar
Stixrude, L. and Lithgow-Bertelloni, C. (2005) Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone. Journal of Geophysical Research, 110, B03204.CrossRefGoogle Scholar
Stoeckhert, B. and Gerya, T. V. (2005) Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: a numerical simulation. Terra Nova, 17, 102–10.CrossRefGoogle Scholar
Tackley, P. J. (1993) Effects of strongly temperature-dependent viscosity on time-dependent, 3-dimensional models of mantle convection. Geophysical Research Letters, 20, 2187–90.CrossRefGoogle Scholar
Tackley, P. J. (2000) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations Part 1: Pseudo-plastic yielding. Geochemistry, Geophysics, and Geosystems, 1, Paper No 2000GC000036.Google Scholar
Tackley, P. J. (2008) Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors, 171, 7–18.CrossRefGoogle Scholar
Tikhonov, A. N. and Samarsky, A. A. (1972) Equations of Mathematical Physics. Nauka (in Russian).Google Scholar
Tonks, W. B. and Melosh, H. J. (1992) Core formation by Giant Impacts, Icarus, 100, 326–46.CrossRefGoogle Scholar
Toro, E. F. (1999) Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag.CrossRefGoogle Scholar
Torrance, K. E. and Turcotte, D. L. (1971) Thermal convection with large viscosity variations. Journal of Fluid Mechanics, 47, 113–25.CrossRefGoogle Scholar
Turcotte, D. L., Schubert, G. (2002) Geodynamics. Cambridge University Press.CrossRefGoogle Scholar
Ueda, K., Gerya, T. and Sobolev, S. V. (2008) Subduction initiation by thermal-chemical plumes: Numerical studies. Physics of the Earth and Planetary Interiors, 171, 296–312.CrossRefGoogle Scholar
Keken, P. E., King, S., Schmeling, H., et al. (1997) A comparison of methods for the modeling of thermochemical convection. Journal of Geophysical Research, 102, 22477–95.CrossRefGoogle Scholar
Keken, P. E., Currie, C., King, S. D., et al. (2008) A community benchmark for subduction zone modeling. Physics of the Earth and Planetary Interiors, 171, 187–97.CrossRefGoogle Scholar
Vance, D., Bickle, M., Ivy-Ochs, S. and Kubik, P. W. (2003) Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth and Planetary Science Letters, 206, 273–88.CrossRefGoogle Scholar
Vasilyev, O. V., Podladchikov, Y. Y. and Yuen, D. A. (1998) Modeling of compaction driven flow in poro-viscoelastic medium using adaptive wavelet collocation method. Geophysical Research Letters, 25, 3239–42.CrossRefGoogle Scholar
Vasilyev, O. V., Gerya, T. V. and Yuen, D. A. (2004) The application of multidimensional wavelets to unveiling multi-phase diagrams and in situ physical properties of rocks. Earth and Planetary Science Letters, 223, 49–64.CrossRefGoogle Scholar
Blanckenburg, F. and Davies, J. H. (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps, Tectonics, 14, 120–31.CrossRefGoogle Scholar
Wada, K., Kokubo, E. and Makino, J. (2006) High-resolution simulations of a Moon-forming impact and postimpact evolution. Astrophysical Journal, 638, 1180–86.CrossRefGoogle Scholar
Warren, C. J., Beaumont, C. and Jamieson, R. A. (2008) Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision, Earth and Planetary Science Letters, 267, 129–45.CrossRefGoogle Scholar
Weinberg, R. B. and Shmelling, H. (1992) Polydiapirs: multiwavelength gravity structures. Journal of Structural Geology, 14, 425–36.CrossRefGoogle Scholar
Wesseling, P. (1992) An Introduction to Multigrid Methods. John Wiley & Sons.Google Scholar
Willett, S. D. (1999) Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research-Solid Earth, 104 (B12), 28957–81.CrossRefGoogle Scholar
Woidt, W. D. (1978) Finite-element calculations applied to salt dome analysis. Tectonophysics, 50 (2–3), 369–86.CrossRefGoogle Scholar
Wong, ATon, S. Y. M. and Wortel, M. J. R. (1997) Slab detachment in continental collision zones: an analysis of controlling parameters. Geophysical Research Letters, 24 (16), 2095–98.CrossRefGoogle Scholar
Wortel, M. J. R. and Spakman, W. (1992) Structure and Dynamics of Subducted Lithosphere in the Mediterranean Region. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 95, pp. 325–47.Google Scholar
Wortel, M. J. R. and Spakman, W. (2000) Geophysics – subduction and slab detachment in the Mediterranean-Carpathian region. Science, 290, 1910–17.CrossRefGoogle Scholar
Xie, S. and Tackley, P. J. (2004a) Evolution of helium and argon isotopes in a convecting mantle. Physics of the Earth and Planetary Interiors, 146, 417–39.CrossRefGoogle Scholar
Xie, S. and Tackley, P. J. (2004b) Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection, Journal of Geophysical Research, 109, B11204, doi:10.1029/2004JB003176.CrossRefGoogle Scholar
Xu, P. F., Sun, R. M., Liu, F. T., Wang, Q. and Cong, B. (2000) Seismic tomography showing, subduction and slab breakoff of the Yangtze block beneath the Dabie–Sulu orogenic belt. Chinese Science Bulletin, 45, 70–4.CrossRefGoogle Scholar
Yamato, P., Burov, E., Agard, P., Pourhiet, L. and Jolivet, L. (2008) HP-UHP exhumation during slow continental subduction: Self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth and Planetary Science Letters, 271, 63–74.CrossRefGoogle Scholar
Yoshioka, S., Wortel, M. J. R. (1995) Three-dimensional numerical modeling of detachment of subducted lithosphere. Journal of Geophysical Research, 100, 20233–44.CrossRefGoogle Scholar
Yoshioka, S., Yuen, D. A. and Larsen, T. B. (1995) Slab weakening: thermal and mechanical consequences for slab detachment. Island Arc, 40, 89–103.CrossRefGoogle Scholar
Yuen, D. A., Balachandar, S. and Hansen, U. (2000) Modelling mantle convection: A significant challenge in geophysical fluid dynamics. In Fox, P. A. and Kerr, R. M. (eds.) Geophysical and Astrophysical Convection, Gordon and Breach Science Publishers, pp. 257–94.Google Scholar
Yuen, D. A. and Zhang, H. (eds.) (2007) Computational challenges in the earth sciences. Physics of the Earth and Planetary Interiors, 161, 1–4, special issue.CrossRef
Zhong, S. (1996) Analytic solutions for Stokes' flow with lateral variations in viscosity. Geophysical Journal International, 124, 18–28.CrossRefGoogle Scholar
Zhong, S. and Gurnis, M. (1994) The role of plates and temperature-dependent viscosity in phase change dynamics. Journal of Geophysical Research, 99, 15903–17.CrossRefGoogle Scholar
Zhong, S. J., Yuen, D. A. and Moresi, L. N. (2007) Numerical methods in mantle convection. In Bercovici, D. (ed.) Treatise in Geophysics, Volume 7, (editor-in-chief: Schubert, Gerard), Elsevier, pp. 227–52.CrossRefGoogle Scholar
Zhong, S., McNamara, A., Tan, E., Moresi, L. and Gurnis, M. (2008) A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochemistry, Geophysics and Geosystems, 9, Q10017, doi:10.1029/2008GC002048.CrossRefGoogle Scholar
Zhu, G., Gerya, T., Yuen, D., et al. (2009) 3D dynamics of hydrous thermal-chemical plumes in intra-oceanic subduction zones. Geochemistry, Geophysics and Geosystems (in press).
Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z. (2005) The Finite Element Method: Its Basis and Fundamentals, sixth edition. Butterworth and Heinemann Inc.Google Scholar
Zlotnik, S., Fernandez, M., Diez, P. and Verges, J. (2008) Modelling gravitational instabilities: slab break–off and Rayleigh–Taylor diapirism. Pure and Applied Geophysics, 165, 1491–510.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Taras Gerya
  • Book: Introduction to Numerical Geodynamic Modelling
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809101.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Taras Gerya
  • Book: Introduction to Numerical Geodynamic Modelling
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809101.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Taras Gerya
  • Book: Introduction to Numerical Geodynamic Modelling
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809101.021
Available formats
×