Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T16:23:55.706Z Has data issue: false hasContentIssue false

8 - Laser ablation to investigate cell and tissue mechanics in vivo

from Part I - Micro-nano techniques in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 128 - 147
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aist, J. R. and Berns, M. W. (1981). “Mechanics of chromosome separation during mitosis in Fusarium (Fungi imperfecti): new evidence from ultrastructural and laser microbeam experiments.” J Cell Biol 91: 446458.CrossRefGoogle ScholarPubMed
Aist, J. R., Liang, H. and Berns, M. W. (1993). “Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study.” J Cell Sci 104(4): 12071216.CrossRefGoogle Scholar
Aliee, M., Roper, J. C., Landsberg, K. P., Pentzold, C., Widmann, T. J., Julicher, F. and Dahmann, C. (2012). “Physical mechanisms shaping the Drosophila dorsoventral compartment boundary.” Curr Biol 22: 967976.CrossRefGoogle ScholarPubMed
Bambardekar, K., Clement, R., Blanc, O., Chardes, C. and Lenne, P. F. (2015). “Direct laser manipulation reveals the mechanics of cell contacts in vivo.” Proc Natl Acad Sci USA 112(5): 14161421.CrossRefGoogle ScholarPubMed
Behrndt, M., Salbreux, G., Campinho, P., Hauschild, R., Oswald, F., Roensch, J., Grill, S. W., et al. (2012). “Forces driving epithelial spreading in zebrafish gastrulation.” Science 338: 257260.CrossRefGoogle ScholarPubMed
Bertet, C., Sulak, L. and Lecuit, T. (2004). “Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation.” Nature 10: 667671.CrossRefGoogle Scholar
Blanchard, G. B., Murugesu, S., Adams, R. J., Martinez-Arias, A. and Gorfinkiel, N. (2010). “Cytoskeletal dynamics and supracellular organisation of cell shape fluctuations during dorsal closure.” Development 137: 27432752.CrossRefGoogle ScholarPubMed
Blankenship, J. T., Backovic, S. T., Sanny, J. S. P., Weitz, O. and Zallen, J. A. (2006). “Multicellular rosette formation links planar cell polarity to tissue morphogenesis.” Dev Cell 11: 459470.CrossRefGoogle ScholarPubMed
Bonnet, I., Marcq, P., Bosveld, F., Fetler, L., Bellaiche, Y. and Graner, F. (2012). “Mechanical state, material properties and continuous description of an epithelial tissue.” J R Soc Interface 9: 26142623.CrossRefGoogle ScholarPubMed
Brugues, J., Nuzzo, V., Mazur, E. and Needleman, D. J. (2012). “Nucleation and transport organize microtubules in metaphase spindles.” Cell 149: 554564.CrossRefGoogle ScholarPubMed
Campas, O., Mammoto, T., Hasso, S., Sperling, R. A., O’Connell, D., Bischof, A. G., Maas, R., et al. (2014). “Quantifying cell-generated mechanical forces within living embryonic tissues.” Nat Methods 11: 183189.CrossRefGoogle ScholarPubMed
Campinho, P., Behrndt, M., Ranft, J., Risler, T., Minc, N. and Heisenberg, C. P. (2013). “Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly.” Nat Cell Biol 15: 14051414.CrossRefGoogle ScholarPubMed
Classen, A. K., Anderson, K. I., Marois, E. and Eaton, S. (2005). “Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway.” Dev Cell 9: 805817.CrossRefGoogle ScholarPubMed
Daniels, B. R., Masi, B. C. and Wirtz, D. (2006). “Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos.” Biophys J 90: 47124719.CrossRefGoogle ScholarPubMed
David, D. J., Tishkina, A. and Harris, T. J. (2010). “The PAR complex regulates pulsed actomyosin contractions during amnioserosa apical constriction in Drosophila.” Development 137: 16451655.CrossRefGoogle ScholarPubMed
del Alamo, J. C., Norwich, G. N., Li, Y. S., Lasheras, J. C. and Chien, S. (2008). “Anisotropic rheology and directional mechanotransduction in vascular endothelial cells.” Proc Natl Acad Sci USA 105: 1541115416.CrossRefGoogle ScholarPubMed
Farhadifar, R., Röper, J.-C., Aigouy, B., Eaton, S. and Jülicher, F. (2007). “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing.” Curr Biol 17(24): 20952104.CrossRefGoogle ScholarPubMed
Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J. C., Eaton, S. and Zallen, J. A. (2009). “Myosin II dynamics are regulated by tension in intercalating cells.” Dev Cell 17: 736743.CrossRefGoogle ScholarPubMed
Fernandez-Gonzalez, R. and Zallen, J. A. (2013). “Wounded cells drive rapid epidermal repair in the early Drosophila embryo.” Mol Biol Cell 24: 32273237.CrossRefGoogle ScholarPubMed
Fischer, S. C., Blanchard, G. B., Duque, J., Adams, R. J., Arias, A. M., Guest, S. D. and Gorfinkiel, N. (2014). “Contractile and mechanical properties of epithelia with perturbed actomyosin dynamics.” PLoS One 9: e95695.CrossRefGoogle ScholarPubMed
Forgacs, G., Foty, R. A., Shafrir, Y. and Steinberg, M. S. (1998). “Viscoelastic properties of living embryonic tissues: a quantitative study.” Biophys J 74: 22272234.CrossRefGoogle ScholarPubMed
Grill, S. W., Gonczy, P., Stelzer, E. H. and Hyman, A. A. (2001). “Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo.” Nature 409: 630633.CrossRefGoogle ScholarPubMed
Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H. and Hyman, A. A. (2003). “The distribution of active force generators controls mitotic spindle position.” Science 301: 518521.CrossRefGoogle ScholarPubMed
Heisterkamp, A., Maxwell, I. Z., Mazur, E., Underwood, J. M., Nickerson, J. A., Kumar, S. and Ingber, D. E. (2005). “Pulse energy dependence of subcellular dissection by femtosecond laser pulses.” Opt Express 13: 36903696.CrossRefGoogle ScholarPubMed
Heller, E., Kumar, K. V., Grill, S. W. and Fuchs, E. (2014). “Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis.” Dev Cell 28: 617632.CrossRefGoogle ScholarPubMed
Herszterg, S., Leibfried, A., Bosveld, F., Martin, C. and Bellaiche, Y. (2013). “Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue.” Dev Cell 24: 256270.CrossRefGoogle ScholarPubMed
Hunter, G. L., Crawford, J. M., Genkins, J. Z. and Kiehart, D. P. (2014). “Ion channels contribute to the regulation of cell sheet forces during Drosophila dorsal closure.” Development 141: 325334.CrossRefGoogle Scholar
Hutson, M. S. and Ma, X. (2007). “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo.” Phys Rev Lett 99: 158104.CrossRefGoogle ScholarPubMed
Hutson, M. S., Tokutake, Y., Chang, M.-S., Bloor, J. W., Venakides, S., Kiehart, D. P. and Edwards, G. S. (2003). “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling.” Science 300: 145149.CrossRefGoogle ScholarPubMed
Irvine, K. D. and Wieschaus, E. (1994). “Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes.” Development 120: 827841.CrossRefGoogle ScholarPubMed
Kasza, K. E., Farrell, D. L. and Zallen, J. A. (2014). “Spatiotemporal control of epithelial remodeling by regulated myosin phosphorylation.” Proc Natl Acad Sci USA 111: 1173211737.CrossRefGoogle ScholarPubMed
Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. and Montague, R. A. (2000). “Multiple forces contribute to cell sheet morphogenesisfor dorsal closure in Drosophila.” J Cell Biol 149: 471490.CrossRefGoogle ScholarPubMed
Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., Salanga, M., Mazur, E., et al. (2006). “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.” Biophys J 90: 37623773.CrossRefGoogle ScholarPubMed
Landsberg, K. P., Farhadifar, R., Ranft, J., Umetsu, D., Widmann, T. J., Bittig, T., Said, A., et al. (2009). “Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary.” Curr Biol 19: 19501955.CrossRefGoogle ScholarPubMed
Lau, K., Tao, H., Liu, H., Wen, J., Sturgeon, K., Sorfazlian, N., Lazic, S., et al. (2015). “Anisotropic stress orients remodelling of mammalian limb bud ectoderm.” Nat Cell Biol 17: 569579.CrossRefGoogle ScholarPubMed
Ma, X., Lynch, H. E., Scully, P. C. and Hutson, M. S. (2009). “Probing embryonic tissue mechanics with laser hole drilling.” Phys Biol 6: 036004.CrossRefGoogle ScholarPubMed
Mainardi, F. and Spada, G. (2011). “Creep, relaxation and viscosity properties for basic fractional models in rheology.” EPJ-Special Topics 193: 133160.CrossRefGoogle Scholar
Major, R. J. and Irvine, K. D. (2005). “Influence of Notch on dorsoventral compartmentalization and actin organization in the Drosophila wing.” Development 132: 38233833.CrossRefGoogle ScholarPubMed
Major, R. J. and Irvine, K. D. (2006). “Localization and requirement for Myosin II at the dorsal-ventral compartment boundary of the Drosophila wing.” Dev Dyn 235: 30513058.CrossRefGoogle ScholarPubMed
Marinari, E., Mehonic, A., Curran, S., Gale, J., Duke, T. and Baum, B. (2012). “Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding.” Nature 484(7395): 542545.CrossRefGoogle ScholarPubMed
Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. and Wieschaus, E. F. (2010). “Integration of contractile forces during tissue invagination.” J Cell Biol 188: 735749.CrossRefGoogle ScholarPubMed
Martin, A. C., Kaschube, M. and Wieschaus, E. F. (2009). “Pulsed contractions of an actin-myosin network drive apical constriction.” Nature 457: 495499.CrossRefGoogle ScholarPubMed
Martin, P. and Lewis, J. (1992). “Actin cables and epidermal movement in embryonic wound healing.” Nature 360: 179183.CrossRefGoogle ScholarPubMed
Mayer, M., Depken, M., Bois, J. S., Julicher, F. and Grill, S. W. (2010). “Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows.” Nature 467: 617621.CrossRefGoogle ScholarPubMed
McNeill, H. (2000). “Sticking together and sorting things out: adhesion as a force in development.” Nat Rev Genet 1: 100108.CrossRefGoogle ScholarPubMed
Niemz, M. H. (2004). Laser-Tissue Interactions: Fundamentals of Microscopy. Berlin: Springer.Google Scholar
Purcell, E. M. (1977). “Life at low Reynolds number.” Am J Phys 45: 311.CrossRefGoogle Scholar
Quinto-Su, P. A. and Venugopalan, V. (2007). “Mechanisms of laser cellular microsurgery.” Methods Cell Biol 82: 113151.Google ScholarPubMed
Raffel, M., Willert, C. E. and Kompenhans, J. (1998). Particle Image Velocimetry: a Practical Guide. Berlin and New York: Springer.CrossRefGoogle Scholar
Rauzi, M. and Lenne, P. F. (2011). “Cortical forces in cell shape changes and tissue morphogenesis.” Curr Top Dev Biol 95: 93144.CrossRefGoogle ScholarPubMed
Rauzi, M., Verant, P., Lecuit, T. and Lenne, P. F. (2008). “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis.” Nat Cell Biol 10: 14011410.CrossRefGoogle ScholarPubMed
Schaffer, C. B., Brodeur, A. and Mazur, E. (2001). “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses.” Meas Sci Technol 12: 17841794.CrossRefGoogle Scholar
Schotz, E. M., Burdine, R. D., Julicher, F., Steinberg, M. S., Heisenberg, C. P. and Foty, R. A. (2008). “Quantitative differences in tissue surface tension influence zebrafish germ layer positioning.” HFSP J 2: 4256.CrossRefGoogle ScholarPubMed
Shindo, A. and Wallingford, J. B. (2014). “PCP and septins compartmentalize cortical actomyosin to direct collective cell movement.” Science 343: 649652.CrossRefGoogle ScholarPubMed
Simoes, S., Mainieri, A. and Zallen, J. A. (2014). “Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension.” J Cell Biol 204: 575589.CrossRefGoogle ScholarPubMed
Sokolow, A., Toyama, Y., Kiehart, D. P. and Edwards, G. S. (2012). “Cell ingression and apical shape oscillations during dorsal closure in Drosophila.” Biophys J 102: 969979.CrossRefGoogle ScholarPubMed
Solon, J., Kaya-Copur, A., Colombelli, J. and Brunner, D. (2009). “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure.” Cell 137: 13311342.CrossRefGoogle ScholarPubMed
Stephens, R. E. (1965). “Analysis of muscle contraction by ultraviolet microbeam disruption of sarcomere structure.” J Cell Biol 25: 129139.CrossRefGoogle ScholarPubMed
Tepass, U., Godt, D. and Winklbauer, R. (2002). “Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries.” Curr Opin Genet Dev 12: 572582.CrossRefGoogle ScholarPubMed
Tseng, Y., Kole, T. P. and Wirtz, D. (2002). “Micromechanical mapping of live cells by multiple-particle-tracking microrheology.” Biophys J 83(6): 31623176:CrossRefGoogle ScholarPubMed
Umetsu, D., Aigouy, B., Aliee, M., Sui, L., Eaton, S., Julicher, F. and Dahmann, C. (2014). “Local increases in mechanical tension shape compartment boundaries by biasing cell intercalations.” Curr Biol 24: 17981805.CrossRefGoogle ScholarPubMed
Vogel, A. and Venugopalan, V. (2003). “Mechanisms of pulsed laser ablation of biological tissues.” Chem Rev 103: 577644.CrossRefGoogle ScholarPubMed
Zallen, J. A. and Wieschaus, E. (2004). “Patterned gene expression directs bipolar planar polarity in Drosophila.” Dev Cell 6: 343355.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×