Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T00:11:57.327Z Has data issue: false hasContentIssue false

6 - Hydrogels with dynamically tunable properties

from Part I - Micro-nano techniques in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 90 - 109
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anseth, K. S., Metters, A. T., Bryant, S. J., Martens, P. J., Elisseeff, J. H. and Bowman, C. N. (2002). “In situ forming degradable networks and their application in tissue engineering and drug delivery.” Journal of Controlled Release 78: 199209.CrossRefGoogle ScholarPubMed
Barradas, A. M. C., Fernandes, H. A. M., Groen, N., Chai, Y. C., Schrooten, J., van de Peppel, J., van Leeuwen, J., van Blitterswijk, C. A. and de Boer, J. (2012). “A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells.” Biomaterials 33: 32053215.CrossRefGoogle ScholarPubMed
Bath, J. and Turberfield, A. J. (2007). “DNA nanomachines.” Nature Nanotechnology 2: 275284.CrossRefGoogle ScholarPubMed
Burdick, J. A. and Prestwich, G. D. (2011). “Hyaluronic acid hydrogels for biomedical applications.” Advanced Materials 23: H41H56.CrossRefGoogle ScholarPubMed
Cheng, E. J., Xing, Y. Z., Chen, P., Yang, Y., Sun, Y. W., Zhou, D. J., Xu, L. J., Fan, Q. H. and Liu, D. S. (2009). “A pH-triggered, fast-responding DNA hydrogel.” Angewandte Chemie-International Edition 48: 76607663.CrossRefGoogle ScholarPubMed
Choi, S., Yu, X. H., Jongpaiboonkit, L., Hollister, S. J. and Murphy, W. L. (2013). “Inorganic coatings for optimized non-viral transfection of stem cells.” Scientific Reports 3: 1587.CrossRefGoogle ScholarPubMed
Daley, W. P., Peters, S. B. and Larsen, M. (2008). “Extracellular matrix dynamics in development and regenerative medicine.” Journal of Cell Science 121: 255264.CrossRefGoogle ScholarPubMed
de Groot, C. J., van Luyn, M. J. A., van Dijk-Wolthuis, W. N. E., Cadee, J. A., Plantinga, J. A., Den Otter, W. and Hennink, W. E. (2001). “In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts.” Biomaterials 22: 11971203.CrossRefGoogle ScholarPubMed
DeForest, C. A. and Anseth, K. S. (2011). “Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions.” Nature Chemistry 3: 925931.CrossRefGoogle ScholarPubMed
DeForest, C. A., Polizzotti, B. D. and Anseth, K. S. (2009). “Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments.” Nature Materials 8: 659664.CrossRefGoogle ScholarPubMed
Dietz, H., Douglas, S. M. and Shih, W. M. (2009). “Folding DNA into twisted and curved nanoscale shapes.” Science 325: 725730.CrossRefGoogle ScholarPubMed
Discher, D. E., Mooney, D. J. and Zandstra, P. W. (2009). “Growth factors, matrices, and forces combine and control stem cells.” Science 324: 16731677.CrossRefGoogle ScholarPubMed
Dixon, J. E., Shah, D. A., Rogers, C., Hall, S., Weston, N., Parmenter, C. D. J., McNally, D., et al. (2014). “Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation.” Proceedings of the National Academy of Sciences USA 111: 55805585.CrossRefGoogle ScholarPubMed
Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K. and Okano, T. (2008). “The effect of extensible PEG tethers on shielding between grafted thermo-responsive polymer chains and integrin-RGD binding.” Biomaterials 29: 36503655.CrossRefGoogle ScholarPubMed
Ellis-Davies, G. C. R. (2007). “Caged compounds: photorelease technology for control of cellular chemistry and physiology.” Nature Methods 4: 619628.CrossRefGoogle ScholarPubMed
Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. (2006). “Matrix elasticity directs stem cell lineage specification.” Cell 126: 677689.CrossRefGoogle ScholarPubMed
Gawel, K. and Stokke, B. T. (2011). “Logic swelling response of DNA-polymer hybrid hydrogel.” Soft Matter 7: 46154618.CrossRefGoogle Scholar
Georges, P. C., Hui, J. J., Gombos, Z., Mccormick, M. E., Wang, A. Y., Uemura, M., Mick, R., et al. (2007). “Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis.” American Journal of Physiology-Gastrointestinal and Liver Physiology 293: G1147G1154.CrossRefGoogle ScholarPubMed
Gillette, B. M., Jensen, J. A., Wang, M. X., Tchao, J. and Sia, S. K. (2010). “Dynamic hydrogels: switching of 3D microenvironments using two-component naturally derived extracellular matrices.” Advanced Materials 22: 686691.CrossRefGoogle ScholarPubMed
Gobin, A. S. and West, J. L. (2002). “Cell migration through defined, synthetic extracellular matrix analogues.” Faseb Journal 16: 751753.CrossRefGoogle Scholar
Grieshaber, S. E., Jha, A. K., Farran, A. J. E. and Jia, X. Q. (2011). “Hydrogels in tissue engineering.” In Biomaterials for Tissue Engineering Applications: A Review of the Past and Future Trends, Burdick, J. A. and Mauck, R. L., eds. New York: Springer, 946.CrossRefGoogle Scholar
Griffin, D. R. and Kasko, A. M. (2012). “Photodegradable macromers and hydrogels for live cell encapsulation and release.” Journal of the American Chemical Society 134: 1310313107.CrossRefGoogle ScholarPubMed
Guvendiren, M. and Burdick, J. A. (2012). “Stiffening hydrogels to probe short– and long-term cellular responses to dynamic mechanics.” Nature Communications 3: 792.CrossRefGoogle Scholar
Guvendiren, M., Perepelyuk, M., Wells, R. G. and Burdick, J. A. (2014). “Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells.” Journal of the Mechanical Behavior of Biomedical Materials 38: 198208.CrossRefGoogle ScholarPubMed
Guvendiren, M., Purcell, B. and Burdick, J. A. (2012).“Photopolymerizable systems.” In Polymer Science: A Comprehensive Reference, vol. 9, Krzysztof, M. and Martin, M., eds. Amsterdam: Elsevier, 413438.CrossRefGoogle Scholar
Hadjipanayi, E., Mudera, V. and Brown, R. A. (2009). “Guiding cell migration in 3D: a collagen matrix with graded directional stiffness.” Cell Motility and the Cytoskeleton 66: 121128.CrossRefGoogle ScholarPubMed
Hahn, M. S., Miller, J. S. and West, J. L. (2006). “Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior.” Advanced Materials 18: 26792684.CrossRefGoogle Scholar
Han, D. R., Pal, S., Nangreave, J., Deng, Z. T., Liu, Y. and Yan, H. (2011). “DNA origami with complex curvatures in three-dimensional space.” Science 332: 342346.CrossRefGoogle ScholarPubMed
He, X. J., Weiz, B. and Mi, Y. L. (2010). “Aptamer based reversible DNA induced hydrogel system for molecular recognition and separation.” Chemical Communications 46: 63086310.CrossRefGoogle ScholarPubMed
Hoffman, A. S. and Stayton, P. S. (2007). “Conjugates of stimuli-responsive polymers and proteins.” Progress in Polymer Science 32: 922932.CrossRefGoogle Scholar
Hoffman, A. S., Stayton, P. S., Shimoboji, T., Chen, G. H., Ding, Z. L., Chilkoti, A., Long, C., et al. (1997). “Conjugates of stimuli-responsive polymers and biomolecules: Random and site-specific conjugates of temperature-sensitive polymers and proteins.” Macromolecular Symposia 118: 553563.CrossRefGoogle Scholar
Hou, X. and Jiang, L. (2009). “Learning from nature: building bio-inspired smart nanochannels.” Acs Nano 3: 33393342.CrossRefGoogle ScholarPubMed
Huang, S. and Ingber, D. E. (2005). “Cell tension, matrix mechanics, and cancer development.” Cancer Cell 8: 175176.CrossRefGoogle ScholarPubMed
Ifkovits, J. L. and Burdick, J. A. (2007). “Review: photopolymerizable and degradable biomaterials for tissue engineering applications.” Tissue Engineering 13: 23692385.CrossRefGoogle ScholarPubMed
Jiang, F. X., et al. (2010a). “Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel.” Tissue Engineering Part A 16: 18731889.CrossRefGoogle ScholarPubMed
Jiang, F. X., et al. (2010b). “The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel.” Biomaterials 31: 11991212.CrossRefGoogle ScholarPubMed
Jo, S., Shin, H. and Mikos, A. G. (2001). “Modification of oligo(poly(ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks.” Biomacromolecules 2: 255261.CrossRefGoogle ScholarPubMed
Kang, H. Z., Liu, H. P., Zhang, X. L., Yan, J. L., Zhu, Z., Peng, L., Yang, H. H., et al. (2011). “Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy.” Langmuir 27: 399408.CrossRefGoogle ScholarPubMed
Khetan, S. and Burdick, J. A. (2010). “Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels.” Biomaterials 31: 82288234.CrossRefGoogle ScholarPubMed
Khetan, S., Guvendiren, M., Legant, W. R., Cohen, D. M., Chen, C. S. and Burdick, J. A. (2013). “Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels.” Nature Materials 12: 458465.CrossRefGoogle ScholarPubMed
Khetan, S., Katz, J. S. and Burdick, J. A. (2009). “Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels.” Soft Matter 5: 16011606.CrossRefGoogle Scholar
Kim, H. S. and Yoo, H. S. (2010). “MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation.” Journal of Controlled Release 145: 264271.CrossRefGoogle ScholarPubMed
Kim, S. and Healy, K. E. (2003). “Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links.” Biomacromolecules 4: 12141223.CrossRefGoogle ScholarPubMed
Klouda, L. and Mikos, A. G. (2008). “Thermoresponsive hydrogels in biomedical applications.” European Journal of Pharmaceutics and Biopharmaceutics 68: 3445.CrossRefGoogle ScholarPubMed
Kloxin, A. M., Benton, J. A. and Anseth, K. S. (2010a). “In situ elasticity modulation with dynamic substrates to direct cell phenotype.” Biomaterials 31: 18.CrossRefGoogle ScholarPubMed
Kloxin, A. M., Tibbett, M. W. and Anseth, K. S. (2010b). “Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms.” Nature Protocols 5: 18671887.CrossRefGoogle ScholarPubMed
Kloxin, A. M., Kasko, A. M., Salinas, C. N. and Anseth, K. S. (2009). “Photodegradable hydrogels for dynamic tuning of physical and chemical properties.” Science 324: 5963.CrossRefGoogle ScholarPubMed
Krishnan, Y. and Simmel, F. C. (2011). “Nucleic acid based molecular devices.” Angewandte Chemie-International Edition 50: 31243156.CrossRefGoogle ScholarPubMed
Liedl, T., et al. (2007a). “Controlled trapping and release of quantum dots in a DNA-switchable hydrogel.” Small 3: 16881693.CrossRefGoogle Scholar
Liedl, T., Sobey, T. L. and Simmel, F. C. (2007b). “DNA-based nanodevices.” Nano Today 2: 3641.CrossRefGoogle Scholar
Lin, D. C., Yurke, B. and Langrana, N. A. (2004). “Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel.” Journal of Biomechanical Engineering 126: 104110.CrossRefGoogle ScholarPubMed
Lin, D. C., Yurke, B. and Langrana, N. A. (2005). “Inducing reversible stiffness changes in DNA-crosslinked gels.” Journal of Materials Research 20: 14561464.CrossRefGoogle Scholar
Liu, D. S. and Balasubramanian, S. (2003). “A proton-fuelled DNA nanomachine.” Angewandte Chemie-International Edition 42: 57345736.CrossRefGoogle ScholarPubMed
Liu, D. S., Cheng, E. J. and Yang, Z. Q. (2011). “DNA-based switchable devices and materials.” NPG Asia Materials 3: 109114.CrossRefGoogle Scholar
Luo, Y. and Shoichet, M. S. (2004). “A photolabile hydrogel for guided three-dimensional cell growth and migration.” Nature Materials 3: 249253.CrossRefGoogle ScholarPubMed
Lutolf, M. P. and Hubbell, J. A. (2005). “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.” Nature Biotechnology 23: 4755.CrossRefGoogle ScholarPubMed
Lutolf, M. P., et al. (2003a). “Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics.” Proceedings of the National Academy of Sciences USA 100: 54135418.CrossRefGoogle ScholarPubMed
Lutolf, M. P., et al. (2003b). “Cell-responsive synthetic hydrogels.” Advanced Materials 15: 888892.CrossRefGoogle Scholar
Marklein, R. A. and Burdick, J. A. (2010). “Spatially controlled hydrogel mechanics to modulate stem cell interactions.” Soft Matter 6: 136143.CrossRefGoogle Scholar
Marklein, R. A., Soranno, D. E. and Burdick, J. A. (2012). “Magnitude and presentation of mechanical signals influence adult stem cell behavior in 3-dimensional macroporous hydrogels.” Soft Matter 8: 81138120.CrossRefGoogle Scholar
Martens, P., Holland, T. and Anseth, K. S. (2002). “Synthesis and characterization of degradable hydrogels formed from acrylate modified poly(vinyl alcohol) macromers.” Polymer 43: 60936100.CrossRefGoogle Scholar
Mather, B. D., Viswanathan, K., Miller, K. M. and Long, T. E. (2006). “Michael addition reactions in macromolecular design for emerging technologies.” Progress in Polymer Science 31: 487531.CrossRefGoogle Scholar
Metters, A. and Hubbell, J. (2005). “Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions.” Biomacromolecules 6: 290301.CrossRefGoogle ScholarPubMed
Metters, A. T., Anseth, K. S. and Bowman, C. N. (2000). “Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel.” Polymer 41: 39934004.CrossRefGoogle Scholar
Mosiewicz, K. A., Kolb, L., van der Vlies, A. J., Martino, M. M., Lienemann, P. S., Hubbell, J. A., Ehrbar, M., et al. (2013). “In situ cell manipulation through enzymatic hydrogel photopatterning.” Nature Materials 12: 10711077.CrossRefGoogle ScholarPubMed
Murakami, Y. and Maeda, M. (2005). “DNA-responsive hydrogels that can shrink or swell.” Biomacromolecules 6: 29272929.CrossRefGoogle ScholarPubMed
Nagahara, S. and Matsuda, T. (1996). “Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers.” Polymer Gels and Networks 4: 111127.CrossRefGoogle Scholar
Nichol, J. W., Koshy, S. T., Bae, H., Hwang, C. M., Yamanlar, S. and Khademhosseini, A. (2010). “Cell-laden microengineered gelatin methacrylate hydrogels.” Biomaterials 31: 55365544.CrossRefGoogle ScholarPubMed
Patterson, J. and Hubbell, J. A. (2010). “Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2.” Biomaterials 31: 78367845.CrossRefGoogle ScholarPubMed
Phelps, E. A., Enemchukwu, N. O., Fiore, V. F., Sy, J. C., Murthy, N., Sulchek, T. A., Barker, T. H., et al. (2012). “Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery.” Advanced Materials 24: 6470.CrossRefGoogle ScholarPubMed
Pratt, A. B., Weber, F. E., Schmoekel, H. G., Muller, R. and Hubbell, J. A. (2004). “Synthetic extracellular matrices for in situ tissue engineering.” Biotechnology and Bioengineering 86: 2736.CrossRefGoogle ScholarPubMed
Purcell, B. P., Lobb, D., Charati, M. B., Dorsey, S. M., Wade, R. J., Zellars, K. N., Doviak, H., et al. (2014). “Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition.” Nature Materials 13: 653661.CrossRefGoogle ScholarPubMed
Raeber, G. P., Lutolf, M. P. and Hubbell, J. A. (2005). “Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration.” Biophysical Journal 89: 13741388.CrossRefGoogle ScholarPubMed
Sahoo, S., Chung, C., Khetan, S. and Burdick, J. A. (2008). “Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.” Biomacromolecules 9: 10881092.CrossRefGoogle ScholarPubMed
Salinas, C. N. and Anseth, K. S. (2008). “The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities.” Biomaterials 29: 23702377.CrossRefGoogle ScholarPubMed
Seliktar, D., Zisch, A. H., Lutolf, M. P., Wrana, J. L. and Hubbell, J. A. (2008). “MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing.” Journal of Biomedical Materials Research 68A: 704716.CrossRefGoogle Scholar
Shikanov, A., Smith, R. M., Xu, M., Woodruff, T. K. and Shea, L. D. (2011). “Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture.” Biomaterials 32: 25242531.CrossRefGoogle ScholarPubMed
Simmel, F. C. and Dittmer, W. U. (2005). “DNA nanodevices.” Small 1: 284299.CrossRefGoogle ScholarPubMed
Sugiura, S., Cha, J. M., Yanagawa, F., Zorlutuna, P., Bae, H. and Khademhosseini, A. (2013). “Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.” Journal of Tissue Engineering and Regenerative Medicine: n/a-n/a.Google Scholar
Sun, J., Xiao, W. Q., Tang, Y. J., Li, K. F. and Fan, H. S. (2012). “Biomimetic interpenetrating polymer network hydrogels based on methacrylated alginate and collagen for 3D pre-osteoblast spreading and osteogenic differentiation.” Soft Matter 8: 23982404.CrossRefGoogle Scholar
Tauro, J. R. and Gemeinhart, R. A. (2005). “Matrix metalloprotease triggered delivery of cancer chemotherapeutics from hydrogel matrixes.” Bioconjugate Chemistry 16: 11331139.CrossRefGoogle ScholarPubMed
Wang, H., Haeger, S. M., Kloxin, A. M., Leinwand, L. A. and Anseth, K. S. (2012). “Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus.” PloS One 7(7): e39969.CrossRefGoogle ScholarPubMed
Wang, N., Butler, J. P. and Ingber, D. E. (1993). “Mechanotrunsduction across the cell surface and through the cytoskeleton.” Science 260: 11241127.CrossRefGoogle ScholarPubMed
Watson, K. J., Park, S. J., Im, J. H., Nguyen, S. T. and Mirkin, C. A. (2001). “DNA-block copolymer conjugates.” Journal of the American Chemical Society 123: 55925593.CrossRefGoogle ScholarPubMed
Wosnick, J. H. and Shoichet, M. S. (2008). “Three-dimensional chemical patterning of transparent hydrogels.” Chemistry of Materials 20: 5560.CrossRefGoogle Scholar
Wylie, R. G., Ahsan, S., Aizawa, Y., Maxwell, K. L., Morshead, C. M. and Shoichet, M. S. (2011). “Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels.” Nature Materials 10: 799806.CrossRefGoogle ScholarPubMed
Xing, Y. Z., Cheng, E. J., Yang, Y., Chen, P., Zhang, T., Sun, Y. W., Yang, Z. Q., et al. (2011). “Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness.” Advanced Materials 23: 11171121.CrossRefGoogle ScholarPubMed
Yamato, M. and Okano, T. (2004). “Cell sheet engineering.” Materials Today 7: 4247.CrossRefGoogle Scholar
Yoshikawa, H. Y., Rossetti, F. F., Kaufmann, S., Kaindl, T., Madsen, J., Engel, U., Lewis, A. L., et al. (2011). “Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels.” Journal of the American Chemical Society 133: 13671374.CrossRefGoogle ScholarPubMed
Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. and Neumann, J. L. (2000). “A DNA-fuelled molecular machine made of DNA.” Nature 406: 605608.CrossRefGoogle ScholarPubMed
Zhang, R., et al. (2013a). “A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells.” Nature Communications 4.Google ScholarPubMed
Zhang, W. J., et al. (2013b). “The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration.” Biomaterials 34: 31843195.CrossRefGoogle ScholarPubMed
Zisch, A. H., Lutolf, M. P., Ehrbar, M., Raeber, G. P., Rizzi, S. C., Davies, N., Schmokel, H., et al. (2003). “Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth.” FASEB Journal 17: 22602262.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×