Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T21:22:35.722Z Has data issue: false hasContentIssue false

5 - Site of synthesis, mechanism of transport and selective deposition of hydrocarbons

from Part I - Chemistry, Biochemistry, and Physiology

Published online by Cambridge University Press:  18 May 2010

Gary J. Blomquist
Affiliation:
University of Nevada, Reno
Anne-Geneviève Bagnères
Affiliation:
CNRS - Université de Tours
Get access

Summary

Our understanding of the site of synthesis, transport and deposition of insect cuticular hydrocarbons has undergone a paradigm shift in the last few decades. In the model that prevailed until the early 1980s, newly synthesized hydrocarbons exited the epidermal cells where they were synthesized, were transported through pore canals and then formed an outer layer on the cuticle (Locke, 1965; Hadley, 1981). The picture presented polar head groups of fatty acids interacting with the cuticle, with the hydrocarbons layered on top of the acyl chains of fatty acids. This served as an excellent model in which to test a number of hypotheses, many of which are still unanswered. However, it is now clear that cuticular hydrocarbons are synthesized by oenocytes, either associated with epidermal cells or within the peripheral fat body, and that the newly synthesized hydrocarbons are taken up by lipophorin and transported via the hemolymph. The mechanism of how they get transferred from lipophorin to epidermal cells, cross the epidermal cells and then to the surface of the insect and to specific glands is unknown. There is great selectivity in the process, as a number of lepidopterans are able to selectively transport shorter-chain hydrocarbon pheromones and pheromone precursors to the pheromone gland on the abdomen, whereas longer-chain cuticular hydrocarbons are transported to cover the entire cuticle (Schal et al., 1998a; Jurenka et al., 2003).

Type
Chapter
Information
Insect Hydrocarbons
Biology, Biochemistry, and Chemical Ecology
, pp. 75 - 99
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×