Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T01:46:22.112Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2015

Daniel Baumann
Affiliation:
University of Cambridge
Liam McAllister
Affiliation:
Cornell University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Supernova Cosmology Project Collaboration, S., Perlmutter et al., “Measurements of Omega and Lambda from 42 High Redshift Supernovae,”Astrophys. J. 517 (1999) 565–586, arXiv:astro-ph/9812133 [astro-ph].
[2] Supernova Search Team Collaboration, A., Riess et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,”Astron.J. 116 (1998) 1009–1038, arXiv:astro-ph/9805201 [astro-ph].
[3] WMAP Collaboration, D., Spergel et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters,”Astrophys. J. Suppl. 148 (2003) 175–194, arXiv:astro-ph/0302209 [astro-ph].
[4] WMAP Collaboration, D., Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) Three-Year Results: Implications for Cosmology,”Astrophys. J. Suppl. 170 (2007) 377, arXiv:astro-ph/0603449 [astro-ph].
[5] WMAP Collaboration, E., Komatsu et al., “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,”Astrophys. J. Suppl. 180 (2009) 330–376, arXiv:0803.0547 [astro-ph].
[6] WMAP Collaboration, E., Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,”Astrophys. J. Suppl. 192 (2011) 18, arXiv:1001.4538 [astro-ph.CO].
[7] WMAP Collaboration, G., Hinshaw et al., “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results,” arXiv:1212.5226 [astro-ph.CO].
[8] Planck Collaboration, P., Ade et al., “Planck 2013 Results. XVI. Cosmological Parameters,” arXiv:1303.5076 [astro-ph.CO].
[9] Planck Collaboration, P., Ade et al., “Planck 2013 Results. XXII. Constraints on Inflation,” arXiv:1303.5082 [astro-ph.CO].
[10] Planck Collaboration, P., Ade et al., “Planck 2013 Results. XXIV. Constraints on Primordial Non-Gaussianity,” arXiv:1303.5084 [astro-ph.CO].
[11] SDSS Collaboration, K., Abazajian et al., “The Seventh Data Release of the Sloan Digital Sky Survey,”Astrophys. J. Suppl. 182 (2009) 543–558, arXiv:0812.0649 [astro-ph].
[12] V., Mukhanov and G., Chibisov, “Quantum Fluctuation and Nonsingular Universe. (In Russian),”JETP Lett. 33 (1981) 532–535.
[13] G., Chibisov and V., Mukhanov, “Galaxy Formation and Phonons,”Mon. Not. Roy. Astron. Soc. 200 (1982) 535–550.
[14] A., Guth and S., Pi, “Fluctuations in the New Inflationary Universe,”Phys. Rev. Lett. 49 (1982) 1110–1113.
[15] S., Hawking, “The Development of Irregularities in a Single Bubble Inflationary Universe,”Phys. Lett. B115 (1982) 295.CrossRef
[16] A., Starobinsky, “Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations,”Phys. Lett. B117 (1982) 175–178.CrossRef
[17] J., Bardeen, P., Steinhardt, and M., Turner, “Spontaneous Creation of Almost Scale-Free Density Perturbations in an Inflationary Universe,”Phys. Rev. D28 (1983) 679.
[18] A., Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,”Phys. Rev. D23 (1981) 347–356.
[19] A., Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,”Phys. Lett. B108 (1982) 389–393.Google Scholar
[20] A., Albrecht and P., Steinhardt, “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking,”Phys. Rev. Lett. 48 (1982) 1220–1223.Google Scholar
[21] Z., Bern, “Perturbative Quantum Gravity and its Relation to Gauge Theory,”Living Rev. Rel. 5 (2002) 5, arXiv:gr-qc/0206071 [gr-qc].Google Scholar
[22] D., Baumann and L., McAllister, “Advances in Inflation in String Theory,”Ann. Rev. Nucl. Part. Sci. 59 (2009) 67–94, arXiv:0901.0265 [hep-th].Google Scholar
[23] L., McAllister and E., Silverstein, “String Cosmology: A Review,”Gen. Rel. Grav. 40 (2008) 565–605, arXiv:0710.2951 [hep-th].Google Scholar
[24] C., Burgess, “Lectures on Cosmic Inflation and its Potential Stringy Realizations,”Class. Quant. Grav. 24 (2007) S795, arXiv:0708.2865 [hep-th].Google Scholar
[25] R., Kallosh, “On Inflation in String Theory,”Lect. Notes Phys. 738 (2008) 119–156, arXiv:hep-th/0702059 [HEP-TH].CrossRefGoogle Scholar
[26] CMBPol Study Team Collaboration, D., Baumann et al., “CMBPol Mission Concept Study: Probing Inflation with CMB Polarization,”AIP Conf. Proc. 1141 (2009) 10–120, arXiv:0811.3919 [astro-ph].Google Scholar
[27] D., Baumann, “TASI Lectures on Inflation,” arXiv:0907.5424 [hep-th].
[28] A., Linde, “Inflation and String Cosmology,”Prog. Theor. Phys. Suppl. 163 (2006) 295–322, arXiv:hep-th/0503195 [hep-th].CrossRefGoogle Scholar
[29] F., Quevedo, “Lectures on String/Brane Cosmology,”Class. Quant. Grav. 19 (2002) 5721–5779, arXiv:hep-th/0210292 [hep-th].CrossRefGoogle Scholar
[30] J., Erdmenger, String Cosmology: Modern String Theory Concepts from the Cosmic Structure. Wiley, New York, NY, 2009.
[31] M., Cicoli and F., Quevedo, “String Moduli Inflation: An Overview,”Class. Quant. Grav. 28 (2011) 204001, arXiv:1108.2659 [hep-th].Google Scholar
[32] C., Burgess, M., Cicoli, and F., Quevedo, “String Inflation After Planck 2013,” arXiv:1306.3512 [hep-th].
[33] E., Silverstein, “Les Houches Lectures on Inflationary Observables and String Theory,” arXiv:1311.2312 [hep-th].
[34] A., Linde, “Chaotic Inflation,”Phys. Lett. B129 (1983) 177–181.CrossRefGoogle Scholar
[35] L., McAllister, E., Silverstein, and A., Westphal, “Gravity Waves and Linear Inflation from Axion Monodromy,”Phys. Rev. D82 (2010) 046003, arXiv:0808.0706 [hep-th].CrossRefGoogle Scholar
[36] K., Freese, J., Frieman, and A., Olinto, “Natural Inflation with Pseudo-Nambu-Goldstone Bosons,”Phys. Rev. Lett. 65 (1990) 3233–3236.CrossRefGoogle Scholar
[37] R., Flauger, L., McAllister, E., Pajer, A., Westphal, and G., Xu, “Oscillations in the CMB from Axion Monodromy Inflation,”JCAP 1006 (2010) 009, arXiv:0907.2916 [hep-th].Google Scholar
[38] R., Flauger and E., Pajer, “Resonant Non-Gaussianity,”JCAP 1101 (2011) 017, arXiv:1002.0833 [hep-th].Google Scholar
[39] E., Silverstein and D., Tong, “Scalar Speed Limits and Cosmology: Acceleration from D-cceleration,”Phys. Rev. D70 (2004) 103505, arXiv:hep-th/0310221 [hep-th].CrossRefGoogle Scholar
[40] C., Armendariz-Picon, T., Damour, and V., Mukhanov, “k-Inflation,”Phys. Lett. B458 (1999) 209–218, arXiv:hep-th/9904075 [hep-th].CrossRefGoogle Scholar
[41] M., Alishahiha, E., Silverstein, and D., Tong, “DBI in the Sky,”Phys. Rev. D70 (2004) 123505, arXiv:hep-th/0404084 [hep-th].CrossRefGoogle Scholar
[42] S., Kachru et al., “Towards Inflation in String Theory,”JCAP 0310 (2003) 013, arXiv:hep-th/0308055 [hep-th].Google Scholar
[43] D., Baumann, A., Dymarsky, S., Kachru, I., Klebanov, and L., McAllister, “D3-brane Potentials from Fluxes in AdS/CFT,”JHEP 1006 (2010) 072, arXiv:1001.5028 [hep-th].Google Scholar
[44] M., Cicoli, C., Burgess, and F., Quevedo, “Fibre Inflation: Observable Gravity Waves from IIB String Compactifications,”JCAP 0903 (2009) 013, arXiv:0808.0691 [hep-th].Google Scholar
[45] M., Douglas and S., Kachru, “Flux Compactification,”Rev. Mod. Phys. 79 (2007) 733–796, arXiv:hep-th/0610102 [hep-th].CrossRefGoogle Scholar
[46] F., Denef and M., Douglas, “Computational Complexity of the Landscape. I.,”Annals Phys. 322 (2007) 1096–1142, arXiv:hep-th/0602072 [hep-th].Google Scholar
[47] T., Banks, M., Dine, P., Fox, and E., Gorbatov, “On the Possibility of Large Axion Decay Constants,”JCAP 0306 (2003) 001, arXiv:hep-th/0303252 [hep-th].Google Scholar
[48] P., Svrcek and E., Witten, “Axions In String Theory,”JHEP 0606 (2006) 051, arXiv:hep-th/0605206 [hep-th].Google Scholar
[49] D., Marsh, L., McAllister, and T., Wrase, “The Wasteland of Random Supergravities,”JHEP 1203 (2012) 102, arXiv:1112.3034 [hep-th].Google Scholar
[50] P., Creminelli, M., Luty, A., Nicolis, and L., Senatore, “Starting the Universe: Stable Violation of the Null Energy Condition and Non-Standard Cosmologies,”JHEP 0612 (2006) 080, arXiv:hep-th/0606090 [hep-th].Google Scholar
[51] C., Cheung, P., Creminelli, A., Fitzpatrick, J., Kaplan, and L., Senatore, “The Effective Field Theory of Inflation,”JHEP 0803 (2008) 014, arXiv:0709.0293 [hep-th].Google Scholar
[52] C., Lineweaver, “Inflation and the Cosmic Microwave Background,” arXiv:astro-ph/0305179 [astro-ph].
[53] P., Dirac, “The Relation between Mathematics and Physics,”Proc. R. Soc. Edinburgh 59 (1939).Google Scholar
[54] S., Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications. Cambridge University Press, 2005.
[55] S., Weinberg, “Adiabatic Modes in Cosmology,”Phys. Rev. D67 (2003) 123504, arXiv:astro-ph/0302326 [astro-ph].Google Scholar
[56] K., Hinterbichler, L., Hui, and J., Khoury, “Conformal Symmetries of Adiabatic Modes in Cosmology,” arXiv:1203.6351 [hep-th].
[57] S., Dodelson, Modern Cosmology. Academic Press, 2003.
[58] V., Mukhanov, Physical Foundations of Cosmology. Cambridge University Press, 2005.
[59] T., Jacobson, “Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect,” arXiv:gr-qc/0308048 [gr-qc].
[60] S., Hollands and R., Wald, “An Alternative to Inflation,”Gen. Rel. Grav. 34 (2002) 2043–2055, arXiv:gr-qc/0205058 [gr-qc].CrossRefGoogle Scholar
[61] A., Starobinsky, “Relict Gravitation Radiation Spectrum and Initial State of the Universe. (In Russian),”JETP Lett. 30 (1979) 682–685.Google Scholar
[62] W., Hu, “Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination,” arXiv:0802.3688 [astro-ph].
[63] A., Penzias and R., Wilson, “A Measurement of Excess Antenna Temperature at 4080Mc/s,”Astrophys. J. 142 (1965) 419–421.CrossRefGoogle Scholar
[64] D., Fixsen, “The Temperature of the Cosmic Microwave Background,”Astrophys. J. 707 (2009) 916–920, arXiv:0911.1955 [astro-ph. CO].Google Scholar
[65] A., Guth and S.-Y., Pi, “The Quantum Mechanics of the Scalar Field in the New Inflationary Universe,”Phys. Rev. D32 (1985) 1899–1920.Google Scholar
[66] D., Polarski and A., Starobinsky, “Semiclassicality and Decoherence of Cosmological Perturbations,”Class. Quant. Grav. 13 (1996) 377–392, arXiv:gr-qc/9504030 [gr-qc].CrossRefGoogle Scholar
[67] A., Perez, H., Sahlmann, and D., Sudarsky, “On the Quantum Origin of the Seeds of Cosmic Structure,”Class. Quant. Grav. 23 (2006) 2317–2354, arXiv:gr-qc/0508100 [gr-qc].CrossRefGoogle Scholar
[68] C., Burgess, R., Holman, and D., Hoover, “Decoherence of Inflationary Primordial Fluctuations,”Phys. Rev. D77 (2008) 063534, arXiv:astro-ph/0601646 [astro-ph].Google Scholar
[69] C., Kiefer and D., Polarski, “Why do cosmological perturbations look classical to us?,”Adv. Sci. Lett. 2 (2009) 164–173, arXiv:0810.0087 [astro-ph].CrossRefGoogle Scholar
[70] U., Seljak and M., Zaldarriaga, “A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies,”Astrophys. J. 469 (1996) 437–444, arXiv:astro-ph/9603033 [astro-ph].CrossRefGoogle Scholar
[71] A., Lewis, A., Challinor, and A., Lasenby, “Efficient Computation of CMB Anisotropies in Closed FRW Models,”Astrophys. J. 538 (2000) 473–476, arXiv:astro-ph/9911177 [astro-ph].CrossRefGoogle Scholar
[72] M., Rees, “Polarization and Spectrum of the Primeval Radiation in an Anisotropic Universe,”Astrophys. J. 153 (July, 1968) L1.Google Scholar
[73] A., Polnarev, “Polarization and Anisotropy Induced in the Microwave Background by Cosmological Gravitational Waves,”Soviet Astronomy 29 (Dec., 1985) 607–613.Google Scholar
[74] W., Hu and M., White, “A CMB Polarization Primer,”New Astron. 2 (1997) 323, arXiv:astro-ph/9706147 [astro-ph].CrossRefGoogle Scholar
[75] S., Chandrasekhar, Radiative Transfer. Courier Dover Publications, 2013.
[76] E., Newman and R., Penrose, “Note on the Bondi-Metzner-Sachs Group,”J. Math. Phys. 7 (1966) 863–870.Google Scholar
[77] M., Kamionkowski, A., Kosowsky, and A., Stebbins, “Statistics of Cosmic Microwave Background Polarization,”Phys. Rev. D55 (1997) 7368–7388, arXiv:astro-ph/9611125 [astro-ph].CrossRefGoogle Scholar
[78] M., Zaldarriaga and U., Seljak, “An All-Sky Analysis of Polarization in the Microwave Background,”Phys. Rev. D55 (1997) 1830–1840, arXiv:astro-ph/9609170 [astro-ph].CrossRefGoogle Scholar
[79] G., Lemaitre, “The Expanding Universe,”Mon. Not. Roy. Astron. Soc. 91 (1931) 490–501.CrossRefGoogle Scholar
[80] F., Bernardeau, S., Colombi, E., Gaztanaga, and R., Scoccimarro, “Large-Scale Structure of the Universe and Cosmological Perturbation Theory,”Phys. Rept. 367 (2002) 1–248, arXiv:astro-ph/0112551 [astro-ph].Google Scholar
[81] V., Springel, “The Cosmological Simulation Code GADGET-2,”Mon. Not. Roy. Astron. Soc. 364 (2005) 1105–1134, arXiv:astro-ph/0505010[astro-ph].CrossRefGoogle Scholar
[82] M., Bartelmann and P., Schneider, “Weak Gravitational Lensing,”Phys. Rept. 340 (2001) 291–472, arXiv:astro-ph/9912508 [astro-ph].Google Scholar
[83] A., Refregier, “Weak Gravitational Lensing by Large-Scale Structure,”Ann. Rev. Astron. Astrophys. 41 (2003) 645–668, arXiv:astro-ph/0307212 [astro-ph].CrossRefGoogle Scholar
[84] A., Lewis and A., Challinor, “Weak Gravitational Lensing of the CMB,”Phys. Rept. 429 (2006) 1–65, arXiv:astro-ph/0601594 [astro-ph].Google Scholar
[85] R., Hlozek et al., “The Atacama Cosmology Telescope: a Measurement of the Primordial Power Spectrum,”Astrophys. J. 749 (2012) 90, arXiv:1105.4887 [astro-ph. CO].Google Scholar
[86] A., Sanchez et al., “The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological Implications of the Large-Scale Two-Point Correlation Function,” arXiv:1203.6616 [astro-ph. CO].
[87] 2dFGRS Collaboration, S., Cole et al., “The 2dF Galaxy Redshift Survey: Power Spectrum Analysis of the Final Dataset and Cosmological Implications,”Mon. Not. Roy. Astron. Soc. 362 (2005) 505–534, arXiv:astro-ph/0501174 [astro-ph].Google Scholar
[88] SDSS Collaboration, D., Eisenstein et al., “Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies,”Astrophys. J. 633 (2005) 560–574, arXiv:astro-ph/0501171 [astro-ph].CrossRefGoogle Scholar
[89] SDSS Collaboration, W., Percival et al., “Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample,”Mon. Not. Roy. Astron. Soc. 401 (2010) 2148–2168, arXiv:0907.1660 [astro-ph. CO].CrossRefGoogle Scholar
[90] N., Padmanabhan et al., “A 2%Distanceto z = 0.35 by Reconstructing Baryon Acoustic Oscillations: Methods and Application to the Sloan Digital Sky Survey,” arXiv:1202.0090 [astro-ph. CO].
[91] L., Anderson et al., “The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample,”Mon. Not. Roy. Astron. Soc. 428 (2013) 1036–1054, arXiv:1203.6594 [astro-ph. CO].Google Scholar
[92] C., Blake et al., “The WiggleZ Dark Energy Survey: Mapping the Distance-Redshift Relation with Baryon Acoustic Oscillations,”Mon. Not. Roy. Astron. Soc. 418 (2011) 1707–1724, arXiv:1108.2635 [astro-ph. CO].Google Scholar
[93] F., Beutler et al., “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,”Mon. Not. Roy. Astron. Soc. 416 (2011) 3017–3032, arXiv:1106.3366 [astro-ph. CO].Google Scholar
[94] D., Weinberg et al., “Observational Probes of Cosmic Acceleration,” arXiv:1201.2434 [astro-ph. CO].
[95] G., Jungman, M., Kamionkowski, A., Kosowsky, and D., Spergel, “Cosmological Parameter Determination with Microwave Background Maps,”Phys. Rev. D54 (1996) 1332–1344, arXiv:astro-ph/9512139 [astro-ph].CrossRefGoogle Scholar
[96] G., Jungman, M., Kamionkowski, A., Kosowsky, and D., Spergel, “Weighing the Universe with the Cosmic Microwave Background,”Phys. Rev. Lett. 76 (1996) 1007–1010, arXiv:astro-ph/9507080 [astro-ph].CrossRefGoogle Scholar
[97] J., Bond, G., Efstathiou, and M., Tegmark, “Forecasting Cosmic Parameter Errors from Microwave Background Anisotropy Experiments,”Mon. Not. Roy. Astron. Soc. 291 (1997) L33–L41, arXiv:astro-ph/9702100 [astro-ph].Google Scholar
[98] M., Zaldarriaga, D., Spergel, and U., Seljak, “Microwave Background Constraints on Cosmological Parameters,”Astrophys. J. 488 (1997) 1–13, arXiv:astro-ph/9702157 [astro-ph].CrossRefGoogle Scholar
[99] S., Das et al., “The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey,”Astrophys. J. 729 (2011) 62, arXiv:1009.0847 [astro-ph. CO].Google Scholar
[100] J., Sievers et al., “The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data,” arXiv:1301.0824 [astro-ph. CO].
[101] R., Keisler et al., “A Measurement of the Damping Tail of the Cosmic Microwave Back-ground Power Spectrum with the South Pole Telescope,”Astrophys. J. 743 (2011) 28, arXiv:1105.3182 [astro-ph. CO].CrossRefGoogle Scholar
[102] K., Story et al., “A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-Square-Degree SPT-SZ Survey,” arXiv:1210.7231 [astro-ph. CO].
[103] Planck Collaboration, P., Ade et al., “Planck 2013 Results. XVII. Gravitational Lensing by Large-Scale Structure,” arXiv:1303.5077 [astro-ph. CO].
[104] Planck Collaboration, P., Ade et al., “Planck 2013 Results. XXIII. Isotropy and Statistics of the CMB,” arXiv:1303.5083 [astro-ph. CO].
[105] D., Spergel and M., Zaldarriaga, “CMB Polarization as a Direct Test of Inflation,”Phys. Rev. Lett. 79 (1997) 2180–2183, arXiv:astro-ph/9705182 [astro-ph].CrossRefGoogle Scholar
[106] S., Dodelson, “Coherent Phase Argument for Inflation,”AIP Conf. Proc. 689 (2003) 184–196, arXiv:hep-ph/0309057 [hep-ph].Google Scholar
[107] A., Albrecht, D., Coulson, P., Ferreira, and J., Magueijo, “Causality and the Microwave Background,”Phys. Rev. Lett. 76 (1996) 1413–1416, arXiv:astro-ph/9505030 [astro-ph].CrossRefGoogle Scholar
[108] N., Turok, “A Causal Source Which Mimics Inflation,”Phys. Rev. Lett. 77 (1996) 4138–4141, arXiv:astro-ph/9607109 [astro-ph].Google Scholar
[109] R., Durrer, M., Kunz, and A., Melchiorri, “Cosmic Structure Formation with Topological Defects,”Phys. Rept. 364 (2002) 1–81, arXiv:astro-ph/0110348 [astro-ph].CrossRefGoogle Scholar
[110] L., Knox, “Determination of Inflationary Observables by Cosmic Microwave Background Anisotropy Experiments,”Phys. Rev. D52 (1995) 4307–4318, arXiv:astro-ph/9504054 [astro-ph].CrossRefGoogle Scholar
[111] E., Komatsu et al., “Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe,” arXiv:0902.4759 [astro-ph. CO].
[112] X., Chen, “Primordial Non-Gaussianities from Inflation Models,”Adv. Astron. 2010 (2010) 638979, arXiv:1002.1416 [astro-ph. CO].Google Scholar
[113] Y., Wang, “Inflation, Cosmic Perturbations and Non-Gaussianities,” arXiv:1303.1523 [hep-th].
[114] C., Bennett et al., “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results,” arXiv:1212.5225 [astro-ph. CO].
[115] L., Senatore, K., Smith, and M., Zaldarriaga, “Non-Gaussianities in Single-Field Inflation and their Optimal Limits from the WMAP 5-Year Data,”JCAP 1001 (2010) 028, arXiv:0905.3746 [astro-ph. CO].Google Scholar
[116] A., Gangui, F., Lucchin, S., Matarrese, and S., Mollerach, “The Three-Point Correlation Function of the Cosmic Microwave Background in Inflationary Models,”Astrophys. J. 430 (1994) 447–457, arXiv:astro-ph/9312033 [astro-ph].CrossRefGoogle Scholar
[117] L., Verde, L.-M., Wang, A., Heavens, and M., Kamionkowski, “Large-Scale Structure, the Cosmic Microwave Background, and Primordial Non-Gaussianity,”Mon. Not. Roy. Astron. Soc. 313 (2000) L141–L147, arXiv:astro-ph/9906301 [astro-ph].Google Scholar
[118] E., Komatsu and D., Spergel, “Acoustic Signatures in the Primary Microwave Background Bispectrum,”Phys. Rev. D63 (2001) 063002, arXiv:astro-ph/0005036 [astro-ph].CrossRefGoogle Scholar
[119] J., Maldacena, “Non-Gaussian Features of Primordial Fluctuations in Single Field Inflationary Models,”JHEP 0305 (2003) 013, arXiv:astro-ph/0210603 [astro-ph].Google Scholar
[120] P., Creminelli and M., Zaldarriaga, “Single-Field Consistency Relation for the Three-Point Function,”JCAP 0410 (2004) 006, arXiv:astro-ph/0407059 [astro-ph].Google Scholar
[121] V., Assassi, D., Baumann, and D., Green, “On Soft Limits of Inflationary Correlation Functions,”JCAP 1211 (2012) 047, arXiv:1204.4207 [hep-th].Google Scholar
[122] K., Hinterbichler, L., Hui, and J., Khoury, “An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology,” arXiv:1304.5527 [hep-th].
[123] W., Goldberger, L., Hui, and A., Nicolis, “One-Particle-Irreducible Consistency Relations for Cosmological Perturbations,” arXiv:1303.1193 [hep-th].
[124] X., Chen, M.-x., Huang, S., Kachru, and G., Shiu, “Observational Signatures and Non-Gaussianities of General Single-Field Inflation,”JCAP 0701 (2007) 002, arXiv:hep-th/0605045 [hep-th].Google Scholar
[125] D., Seery and J. E., Lidsey, “Primordial Non-Gaussianities in Single-Field Inflation,”JCAP 0506 (2005) 003, arXiv:astro-ph/0503692 [astro-ph].Google Scholar
[126] D., Babich, P., Creminelli, and M., Zaldarriaga, “The Shape of Non-Gaussianities,”JCAP 0408 (2004) 009, arXiv:astro-ph/0405356 [astro-ph].Google Scholar
[127] P., Creminelli, R., Emami, M., Simonović, and G., Trevisan, “ISO(4,1) Symmetry in the EFT of Inflation,”JCAP 1307 (2013) 037, arXiv:1304.4238 [hep-th].
[128] W., Hu and M., White, “Acoustic Signatures in the Cosmic Microwave Background,”Astrophys. J. 471 (1996) 30–51, arXiv:astro-ph/9602019 [astro-ph].CrossRefGoogle Scholar
[129] W., Hu, D., Spergel, and M., White, “Distinguishing Causal Seeds from Inflation,”Phys. Rev. D55 (1997) 3288–3302, arXiv:astro-ph/9605193 [astro-ph].CrossRefGoogle Scholar
[130] WMAP Collaboration, H., Peiris et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation,”Astrophys. J. Suppl. 148 (2003) 213, arXiv:astro-ph/0302225 [astro-ph].Google Scholar
[131] D., Seckel and M., Turner, “Isothermal Density Perturbations in an Axion Dominated Inflationary Universe,”Phys. Rev. D32 (1985) 3178.CrossRefGoogle Scholar
[132] A., Linde, “Axions in Inflationary Cosmology,”Physics Letters B 259 (Apr., 1991) 38–47.Google Scholar
[133] M., Turner and F., Wilczek, “Inflationary Axion Cosmology,”Phys. Rev. Lett. 66 (1991) 5–8.CrossRefGoogle Scholar
[134] D., Lyth and D., Wands, “Generating the Curvature Perturbation without an Inflaton,”Phys. Lett. B524 (2002) 5–14, arXiv:hep-ph/0110002 [hep-ph].CrossRefGoogle Scholar
[135] T., Moroi and T., Takahashi, “Effects of Cosmological Moduli Fields on Cosmic Microwave Background,”Phys. Lett. B522 (2001) 215–221, arXiv:hep-ph/0110096 [hep-ph].CrossRefGoogle Scholar
[136] S., Weinberg, “Must cosmological perturbations remain non-adiabatic after multi-field inflation?,”Phys. Rev. D70 (2004) 083522, arXiv:astro-ph/0405397 [astro-ph].Google Scholar
[137] BICEP2 Collaboration, P., Ade et al., “BICEP2 I: Detection of B-mode Polarization at Degree Angular Scales,” arXiv:1403.3985 [astro-ph. CO].
[138] D., Baumann and M., Zaldarriaga, “Causality and Primordial Tensor Modes,”JCAP 0906 (2009) 013, arXiv:0901.0958 [astro-ph. CO].Google Scholar
[139] H., Chiang et al., “Measurement of CMB Polarization Power Spectra from Two Years of BICEP Data,”Astrophys. J. 711 (2010) 1123–1140, arXiv:0906.1181 [astro-ph. CO].CrossRefGoogle Scholar
[140] K., Smith et al., “On Quantifying and Resolving the BICEP2/Planck Tension Over Gravitational Waves,” arXiv:1404.0373 [astro-ph. CO].
[141] C., Dvorkin, M., Wyman, D., Rudd, and W., Hu, “Neutrinos help reconcile Planck measurements with both early and local universe,” arXiv:1403.8049 [astro-ph. CO].
[142] M., Mortonson and U., Seljak, “A Joint Analysis of Planck and BICEP2 B-modes Including Dust Polarization Uncertainty,” arXiv:1405.5857 [astro-ph. CO].
[143] R., Flauger, J., Hill, and D., Spergel, “Toward an Understanding of Foreground Emission in the BICEP2 Region,” arXiv:1405.7351 [astro-ph. CO].
[144] BICEP2 Collaboration, P., Ade et al., “BICEP2 II: Experiment and Three-Year Data Set,” arXiv:1403.4302 [astro-ph. CO].
[145] B., Reichborn-Kjennerud et al., “EBEX: A Balloon-Borne CMB Polarization Experiment,” arXiv:1007.3672 [astro-ph. CO].
[146] A., Fraisse et al., “SPIDER: Probing the Early Universe with a Suborbital Polarimeter,”JCAP 1304 (2013) 047, arXiv:1106.3087 [astro-ph. CO].Google Scholar
[147] T., Essinger-Hileman et al., “The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers,” arXiv:1008.3915 [astro-ph. IM].
[148] J., Eimer et al., “The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design,”Proc. SPIE Int. Soc. Opt. Eng. 8452 (2012) 845220, arXiv:1211.0041 [astro-ph. IM].Google Scholar
[149] Z., Kermish et al., “The POLARBEAR Experiment,” arXiv:1210.7768 [astro-ph. IM].
[150] J., Austermann et al., “SPTpol: An Instrument for CMB Polarization Measurements with the South Pole Telescope,”Proc. SPIE Int. Soc. Opt. Eng. 8452 (2012) 84520E, arXiv:1210.4970 [astro-ph. IM].Google Scholar
[151] M., Niemack et al., “ACTPol: A Polarization-Sensitive Receiver for the Atacama Cosmology Telescope,”Proc. SPIE Int. Soc. Opt. Eng. 7741 (2010) 77411S, arXiv:1006.5049 [astro-ph. IM].Google Scholar
[152] N., Katayama and E., Komatsu, “Simple Foreground Cleaning Algorithm for Detecting Primordial B-mode Polarization of the Cosmic Microwave Background,”Astrophys. J. 737 (2011) 78, arXiv:1101.5210 [astro-ph. CO].Google Scholar
[153] J., Caligiuri and A., Kosowsky, “Inflationary Tensor Perturbations After BICEP,” arXiv:1403.5324 [astro-ph. CO].
[154] S., Dodelson, “How much can we learn about the physics of inflation?,” arXiv:1403.6310 [astro-ph. CO].
[155] P., Creminelli, D., Nacir, M., Simonović, G., Trevisan, and M., Zaldarriaga, “φ2 or not φ2: Checking the Simplest Universe,” arXiv:1404.1065 [astro-ph. CO].
[156] DESI Collaboration, M., Levi et al., “The DESI Experiment, a Whitepaper for Snowmass 2013,” arXiv:1308.0847 [astro-ph. CO].
[157] PRISM Collaboration, P., André et al., “PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An Extended White Paper,”JCAP 1402 (2014) 006, arXiv:1310.1554 [astro-ph. CO].Google Scholar
[158] COrE Collaboration, F., Bouchet et al., “COrE (Cosmic Origins Explorer) A White Paper,” arXiv:1102.2181 [astro-ph. CO].
[159] A., Kogut et al., “The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations,”JCAP 1107 (2011) 025, arXiv:1105.2044 [astro-ph. CO].Google Scholar
[160] T., Matsumura et al., “Mission Design of LiteBIRD,” arXiv:1311.2847 [astro-ph. IM].
[161] M., Takada, E., Komatsu, and T., Futamase, “Cosmology with High-Redshift Galaxy Survey: Neutrino Mass and Inflation,”Phys. Rev. D73 (2006) 083520, arXiv:astro-ph/0512374 [astro-ph].CrossRefGoogle Scholar
[162] P., Adshead, R., Easther, J., Pritchard, and A., Loeb, “Inflation and the Scale-Dependent Spectral Index: Prospects and Strategies,”JCAP 1102 (2011) 021, arXiv:1007.3748 [astro-ph. CO].Google Scholar
[163] C., Rimes and A., Hamilton, “Information Content of the Non-Linear Matter Power Spectrum,”Mon. Not. Roy. Astron. Soc. 360 (2005) 82–86, arXiv:astro-ph/0502081 [astro-ph].CrossRefGoogle Scholar
[164] M., Crocce and R., Scoccimarro, “Memory of Initial Conditions in Gravitational Clustering,”Phys. Rev. D73 (2006) 063520, arXiv:astro-ph/0509419 [astro-ph].CrossRefGoogle Scholar
[165] Euclid Theory Working Group Collaboration, L., Amendola et al., “Cosmology and Fundamental Physics with the Euclid Satellite,”Living Rev. Rel. 16 (2013) 6, arXiv:1206.1225 [astro-ph. CO].Google Scholar
[166] D., Baumann, A., Nicolis, L., Senatore, and M., Zaldarriaga, “Cosmological Non-Linearities as an Effective Fluid,”JCAP 1207 (2012) 051, arXiv:1004.2488 [astro-ph. CO].Google Scholar
[167] J., Carrasco, M., Hertzberg, and L., Senatore, “The Effective Field Theory of Cosmological Large Scale Structures,”JHEP 1209 (2012) 082, arXiv:1206.2926 [astro-ph. CO].Google Scholar
[168] J., Carrasco, S., Foreman, D., Green, and L., Senatore, “The Effective Field Theory of Large Scale Structures at Two Loops,” arXiv:1310.0464 [astro-ph. CO].
[169] R., Porto, L., Senatore, and M., Zaldarriaga, “The Lagrangian-Space Effective Field Theory of Large Scale Structures,” arXiv:1311.2168 [astro-ph. CO].
[170] S., Carroll, S., Leichenauer, and J., Pollack, “A Consistent Effective Theory of Long-Wavelength Cosmological Perturbations,” arXiv:1310.2920 [hep-th].
[171] L., Mercolli and E., Pajer, “On the Velocity in the Effective Field Theory of Large Scale Structures,” arXiv:1307.3220 [astro-ph. CO].
[172] E., Pajer and M., Zaldarriaga, “On the Renormalization of the Effective Field Theory of Large Scale Structures,”JCAP 1308 (2013) 037, arXiv:1301.7182 [astro-ph. CO].Google Scholar
[173] M., Hertzberg, “The Effective Field Theory of Dark Matter and Structure Formation: Semi-Analytical Results,” arXiv:1208.0839 [astro-ph. CO].
[174] G., Dvali, A., Gruzinov, and M., Zaldarriaga, “A New Mechanism for Generating Density Perturbations from Inflation,”Phys. Rev. D69 (2004) 023505, arXiv:astro-ph/0303591 [astro-ph].CrossRefGoogle Scholar
[175] M., Zaldarriaga, “Non-Gaussianities in Models with a Varying Inflaton Decay Rate,”Phys. Rev. D69 (2004) 043508, arXiv:astro-ph/0306006 [astro-ph].CrossRefGoogle Scholar
[176] L., Kofman, “Probing String Theory with Modulated Cosmological Fluctuations,” arXiv:astro-ph/0303614 [astro-ph].
[177] A., Linde and V., Mukhanov, “Non-Gaussian Isocurvature Perturbations from Inflation,”Phys. Rev. D56 (1997) 535–539, arXiv:astro-ph/9610219 [astro-ph].CrossRefGoogle Scholar
[178] D., Lyth, C., Ungarelli, and D., Wands, “The Primordial Density Perturbation in the Curvaton Scenario,”Phys. Rev. D67 (2003) 023503, arXiv:astro-ph/0208055 [astro-ph].CrossRefGoogle Scholar
[179] K., Abazajian et al., “Inflation Physics from the Cosmic Microwave Background and Large Scale Structure,” arXiv:1309.5381 [astro-ph. CO].
[180] T., Giannantonio, C., Porciani, J., Carron, A., Amara, and A., Pillepich, “Constraining Primordial Non-Gaussianity with Future Galaxy Surveys,”Mon. Not. Roy. Astron. Soc. 422 (2012) 2854–2877, arXiv:1109.0958 [astro-ph. CO].CrossRefGoogle Scholar
[181] C., Burgess, “Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory,”Living Rev. Rel. 7 (2004) 5, arXiv:gr-qc/0311082 [gr-qc].Google Scholar
[182] D. B., Kaplan, “Five Lectures on Effective Field Theory,” arXiv:nucl-th/0510023 [nucl-th].
[183] W., Skiba, “TASI Lectures on Effective Field Theory and Precision Electroweak Measurements,” arXiv:1006.2142 [hep-ph].
[184] C., Burgess, “Introduction to Effective Field Theory,”Ann. Rev. Nucl. Part. Sci. 57 (2007) 329–362, arXiv:hep-th/0701053 [hep-th].Google Scholar
[185] C., Burgess and D., London, “Uses and Abuses of Effective Lagrangians,”Phys. Rev. D48 (1993) 4337–4351, arXiv:hep-ph/9203216 [hep-ph].Google Scholar
[186] L., Susskind, “Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory,”Phys. Rev. D 20 (Nov, 1979) 2619–2625.Google Scholar
[187] T., Appelquist and J., Carazzone, “Infrared Singularities and Massive Fields,”Phys. Rev. D11 (1975) 2856.Google Scholar
[188] H., Murayama, “Supersymmetry Phenomenology,” arXiv:hep-ph/0002232 [hep-ph].
[189] G., Giudice, “Naturally Speaking: The Naturalness Criterion and Physics at the LHC,” arXiv:0801.2562 [hep-ph].
[190] V., Weisskopf, “On the Self-Energy and the Electromagnetic Field of the Electron,”Phys. Rev. 56 (1939) 72–85.Google Scholar
[191] M., Gaillard and B., Lee, “Rare Decay Modes of the K-Mesons in Gauge Theories,”Phys. Rev. D10 (1974) 897.Google Scholar
[192] D., Kaplan, M., Savage, and M., Wise, “Two Nucleon Systems from Effective Field Theory,”Nucl. Phys. B534 (1998) 329–355, arXiv:nucl-th/9802075 [nucl-th].CrossRefGoogle Scholar
[193] P., Bedaque and U., van Kolck, “Effective Field Theory for Few Nucleon Systems,”Ann. Rev. Nucl. Part. Sci. 52 (2002) 339–396, arXiv:nucl-th/0203055 [nucl-th].Google Scholar
[194] S., Weinberg, “Nuclear Forces from Chiral Lagrangians,”Phys. Lett. B251 (1990) 288–292.CrossRefGoogle Scholar
[195] S., Weinberg, “Effective Chiral Lagrangians for Nucleon-Pion Interactions and Nuclear Forces,”Nucl. Phys. B363 (1991) 3–18.CrossRefGoogle Scholar
[196] S., Weinberg, “Three-Body Interactions among Nucleons and Pions,”Phys. Lett. B295 (1992) 114–121, arXiv:hep-ph/9209257 [hep-ph].CrossRefGoogle Scholar
[197] R., Bousso and J., Polchinski, “Quantization of Four-Form Fluxes and Dynamical Neutralization of the Cosmological Constant,”JHEP 0006 (2000) 006, arXiv:hep-th/0004134 [hep-th].Google Scholar
[198] S., Weinberg, “Anthropic Bound on the Cosmological Constant,”Phys. Rev. Lett. 59 (1987) 2607.Google Scholar
[199] G. 't, Hooft, “Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking,”NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 135.Google Scholar
[200] J., Donoghue, “Introduction to the Effective Field Theory Description of Gravity,” arXiv:gr-qc/9512024 [gr-qc].
[201] S., Weinberg, “Understanding the Fundamental Constituents of Matter,”Proceedings: International School of Subnuclear Physics (1978).Google Scholar
[202] D., Gross and E., Witten, “Superstring Modifications of Einstein's Equations,”Nucl. Phys. B277 (1986) 1.Google Scholar
[203] T., Banks and N., Seiberg, “Symmetries and Strings in Field Theory and Gravity,”Phys. Rev. D83 (2011) 084019, arXiv:1011.5120 [hep-th].CrossRefGoogle Scholar
[204] L., Abbott and M., Wise, “Wormholes and Global Symmetries,”Nucl. Phys. B325 (1989) 687.CrossRefGoogle Scholar
[205] S., Coleman and K.-M., Lee, “Wormholes Made Without Massless Matter Fields,”Nucl. Phys. B329 (1990) 387.Google Scholar
[206] R., Kallosh, A., Linde, D., Linde, and L., Susskind, “Gravity and Global Symmetries,”Phys. Rev. D52 (1995) 912–935, arXiv:hep-th/9502069 [hep-th].CrossRefGoogle Scholar
[207] J., Conlon, “Quantum Gravity Constraints on Inflation,”JCAP 1209 (2012) 019, arXiv:1203.5476 [hep-th].Google Scholar
[208] T., Banks and L., Dixon, “Constraints on String Vacua with Space-Time Supersymmetry,”Nucl. Phys. B307 (1988) 93–108.CrossRefGoogle Scholar
[209] H., Collins, R., Holman, and A., Ross, “Effective Field Theory in Time-Dependent Settings,” arXiv:1208.3255 [hep-th].
[210] C., Burgess and M., Williams, “Who You Gonna Call? Runaway Ghosts, Higher Derivatives and Time-Dependence in EFTs,” arXiv:1404.2236 [gr-qc].
[211] A., Avgoustidis et al., “Decoupling Survives Inflation: A Critical Look at Effective Field Theory Violations During Inflation,”JCAP 1206 (2012) 025, arXiv:1203.0016 [hep-th].Google Scholar
[212] C., Burgess, M., Horbatsch, and S., Patil, “Inflating in a Trough: Single-Field Effective Theory from Multiple-Field Curved Valleys,” arXiv:1209.5701 [hep-th].
[213] P., Steinhardt and M., Turner, “A Prescription for Successful New Inflation,”Phys. Rev. D29 (1984) 2162–2171.CrossRefGoogle Scholar
[214] A., Gefter, “What kind of bang was the big bang?,”New Scientist (2012).Google Scholar
[215] D., Lyth and A., Riotto, “Particle Physics Models of Inflation and the Cosmological Density Perturbation,”Phys. Rept. 314 (1999) 1–146, arXiv:hep-ph/9807278 [hep-ph].CrossRefGoogle Scholar
[216] D., Lyth and A., Liddle, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure. Cambridge University Press, 2009.
[217] D., Lyth, “Particle Physics Models of Inflation,”Lect.Notes Phys. 738 (2008) 81–81, arXiv:hep-th/0702128 [hep-th].CrossRef
[218] J., Martin, C., Ringeval, and V., Vennin, “Encyclopaedia Inflationaris,” arXiv:1303.3787 [astro-ph.CO].
[219] A. D., Linde, “Particle Physics and Inflationary Cosmology,”Contemp.Concepts Phys. 5 (1990) 1–1, arXiv:hep-th/0503203 [hep-th].
[220] R., Kallosh, A., Linde, and A., Westphal, “Chaotic Inflation in Supergravity after Planck and BICEP2,” arXiv:1405.0270 [hep-th].
[221] A., Linde, “Primordial Inflation without Primordial Monopoles,”Phys.Lett. B132 (1983) 317–317.CrossRef
[222] L., Boubekeur and D., Lyth, “Hilltop Inflation,”JCAP 0507 (2005) 010, arXiv:hep-ph/0502047 [hep-ph].Google Scholar
[223] L., Alabidi and D., Lyth, “Inflation Models and Observation,”JCAP 0605 (2006) 016, arXiv:astro-ph/0510441 [astro-ph].
[224] D., Baumann, A., Dymarsky, I., Klebanov, L., McAllister, and P., Steinhardt, “A Delicate Universe,”Phys.Rev.Lett. 99 (2007) 141601, arXiv:0705.3837 [hep-th].CrossRef
[225] D., Baumann, A., Dymarsky, I., Klebanov, and L., McAllister, “Towards an Explicit Model of D-brane Inflation,”JCAP 0801 (2008) 024, arXiv:0706.0360 [hep-th].
[226] R., Allahverdi, K., Enqvist, J., Garcia-Bellido, A., Jokinen, and A., Mazumdar, “MSSM Flat Direction Inflation: Slow Roll, Stability, Fine Tuning and Reheating,”JCAP 0706 (2007) 019, arXiv:hep-ph/0610134 [hep-ph].
[227] B., Sanchez, K., Dimopoulos, and D., Lyth, “A-term Inflation and the MSSM,”JCAP (2007) 015.Google Scholar
[228] A., Linde, “Hybrid Inflation,”Phys.Rev. D49 (1994) 748–748, arXiv:astro-ph/9307002 [astro-ph].CrossRef
[229] D. E., Kaplan and N., Weiner, “Little Inflatons and Gauge Inflation,”JCAP 0402 (2004) 005, arXiv:hep-ph/0302014 [hep-ph].
[230] N., Arkani-Hamed, H.- C., Cheng, P., Creminelli, and L., Randall, “Pseudonatural Inflation,”JCAP 0307 (2003) 003, arXiv:hep-th/0302034 [hep-th].
[231] A., Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,”Phys.Lett. B91 (1980) 99–99.
[232] R., Kallosh and A., Linde, “Superconformal Generalizations of the Starobinsky Model,”JCAP 1306 (2013) 028, arXiv:1306.3214 [hep-th].
[233] J., Ellis, D., Nanopoulos, and K., Olive, “A No-Scale Supergravity Realization of the Starobinsky Model,” arXiv:1305.1247 [hep-th].
[234] F., Farakos, A., Kehagias, and A., Riotto, “On the Starobinsky Model of Inflation from Supergravity,”Nucl.Phys. B876 (2013) 187–187, arXiv:1307.1137.CrossRef
[235] J., Ellis, D., Nanopoulos, and K., Olive, “Starobinsky-like Inflationary Models as Avatars of No-Scale Supergravity,” arXiv:1307.3537 [hep-th].
[236] S., Ferrara, A., Kehagias, and A., Riotto, “The Imaginary Starobinsky Model,” arXiv:1403.5531 [hep-th].
[237] J., Dowker and R., Critchley, “Effective Lagrangian and Energy Momentum Tensor in de Sitter Space,”Phys.Rev. D13 (1976) 3224.CrossRef
[238] C., Burgess, H., Lee, and M., Trott, “Power-Counting and the Validity of the Classical Approximation During Inflation,”JHEP 0909 (2009) 103, arXiv:0902.4465 [hep-ph].
[239] M., Hertzberg, “On Inflation with Non-Minimal Coupling,”JHEP 1011 (2010) 023, arXiv:1002.2995 [hep-ph].
[240] B., Spokoiny, “Inflation and Generation of Perturbations in Broken Symmetric Theory of Gravity,”Phys.Lett. B147 (1984) 39–39.CrossRef
[241] T., Futamase and K.-i., Maeda, “Chaotic Inflationary Scenario in Models Having Nonminimal Coupling With Curvature,”Phys.Rev. D39 (1989) 399–399.CrossRef
[242] D., Salopek, J., Bond, and J., Bardeen, “Designing Density Fluctuation Spectra in Inflation,”Phys.Rev. D40 (1989) 1753.CrossRef
[243] R., Fakir and W., Unruh, “Improvement on Cosmological Chaotic Inflation Through NonMinimal Coupling,”Phys.Rev. D41 (1990) 1783–1783.CrossRef
[244] D., Kaiser, “Primordial Spectral Indices from Generalized Einstein Theories,”Phys.Rev. D52 (1995) 4295–4295, arXiv:astro-ph/9408044 [astro-ph].
[245] E., Komatsu and T., Futamase, “Complete Constraints on a Non-Minimally Coupled Chaotic Inflationary Scenario from the Cosmic Microwave Background,”Phys.Rev. D59 (1999) 064029, arXiv:astro-ph/9901127 [astro-ph].CrossRef
[246] F., Bezrukov and M., Shaposhnikov, “The Standard Model Higgs Boson as the Inflaton,”Phys.Lett. B659 (2008) 703–703, arXiv:0710.3755 [hep-th].
[247] J., Garriga and V., Mukhanov, “Perturbations in k-Inflation,”Phys.Lett. B458 (1999) 219–219, arXiv:hep-th/9904176 [hep-th].CrossRef
[248] E., Copeland, A., Liddle, D., Lyth, E., Stewart, and D., Wands, “False Vacuum Inflation with Einstein Gravity,”Phys.Rev. D49 (1994) 6410–6410, arXiv:astro-ph/9401011 [astro-ph].
[249] D., Baumann and D., Green, “Signatures of Supersymmetry from the Early Universe,”Phys.Rev. D85 (2012) 103520, arXiv:1109.0292 [hep-th].
[250] N., Agarwal, R., Bean, L., McAllister, and G., Xu, “Universality in D-brane Inflation,”JCAP 1109 (2011) 002, arXiv:1103.2775 [astro-ph.CO].
[251] D., Baumann and D., Green, “Inflating with Baryons,”JHEP 1104 (2011) 071, arXiv:1009.3032 [hep-th].
[252] D., Lyth, “What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?,”Phys.Rev.Lett. 78 (1997) 1861–1861, arXiv:hep-ph/9606387 [hep-ph].
[253] R., Easther, W., Kinney, and B., Powell, “The Lyth Bound and the End of Inflation,”JCAP 0608 (2006) 004, arXiv:astro-ph/0601276 [astro-ph].
[254] D., Baumann and L., McAllister, “A Microscopic Limit on Gravitational Waves from D-brane Inflation,”Phys.Rev. D75 (2007) 123508, arXiv:hep-th/0610285 [hep-th].CrossRef
[255] M., Hertzberg, “Inflation, Symmetry, and B-Modes,” arXiv:1403.5253 [hep-th].
[256] L., Smolin, “Gravitational Radiative Corrections as the Origin of Spontaneous Symmetry Breaking!,”Phys.Lett. B93 (1980) 95.
[257] N., Arkani-Hamed, L., Motl, A., Nicolis, and C., Vafa, “The String Landscape, Black Holes and Gravity as the Weakest Force,”JHEP 0706 (2007) 060, arXiv:hep-th/0601001 [hep-th].
[258] I., Ben-Dayan and R., Brustein, “Cosmic Microwave Background Observables of Small Field Models of Inflation,”JCAP 1009 (2010) 007, arXiv:0907.2384 [astro-ph.CO].
[259] Q., Shafi and J., Wickman, “Observable Gravity Waves From Supersymmetric Hybrid Inflation,”Phys.Lett. B696 (2011) 438–438, arXiv:1009.5340 [hep-ph].CrossRef
[260] S., Hotchkiss, A., Mazumdar, and S., Nadathur, “Observable Gravitational Waves from Inflation with Small Field Excursions,”JCAP 1202 (2012) 008, arXiv:1110.5389 [astro-ph.CO].
[261] A., Hebecker, S., Kraus, and A., Westphal, “Evading the Lyth Bound in Hybrid Natural Inflation,” arXiv:1305.1947 [hep-th].
[262] S., Antusch and D., Nolde, “BICEP2 Implications for Single-Field Slow-Roll Inflation Revisited,” arXiv:1404.1821 [hep-ph].
[263] D., Baumann and D., Green, “A Field Range Bound for General Single-Field Inflation,”JCAP 1205 (2012) 017, arXiv:1111.3040 [hep-th].
[264] M., Berg, E., Pajer, and S., Sjors, “Dante's Inferno,”Phys.Rev. D81 (2010) 103535, arXiv:0912.1341 [hep-th].CrossRef
[265] L., McAllister, S., Renaux-Petel, and G., Xu, “A Statistical Approach to Multi-Field Inflation: Many-Field Perturbations Beyond Slow-Roll,” arXiv:1207.0317 [astro-ph.CO].
[266] G., Dvali, A., Gruzinov, and M., Zaldarriaga, “Cosmological Perturbations from Inhomogeneous Reheating, Freezeout, and Mass Domination,”Phys.Rev. D69 (2004) 083505, arXiv:astro-ph/0305548 [astro-ph].
[267] H., Collins, R., Holman, and T., Vardanyan, “Do Mixed States Save Effective Field Theory from BICEP?,” arXiv:1403.4592 [hep-th].
[268] A., Ashoorioon, K., Dimopoulos, M., Sheikh-Jabbari, and G., Shiu, “Non-Bunch-Davies Initial State Reconciles Chaotic Models with BICEP and Planck,” arXiv:1403.6099 [hep-th].
[269] A., Aravind, D., Lorshbough, and S., Paban, “Bogoliubov Excited States and the Lyth Bound,” arXiv:1403.6216 [astro-ph.CO].
[270] J., Cook and L., Sorbo, “Particle Production During Inflation and Gravitational Waves Detectable by Ground-Based Interferometers,”Phys.Rev. D85 (2012) 023534, arXiv:1109.0022 [astro-ph.CO].CrossRef
[271] L., Senatore, E., Silverstein, and M., Zaldarriaga, “New Sources of Gravitational Waves during Inflation,” arXiv:1109.0542 [hep-th].
[272] N., Barnaby et al., “Gravity Waves and Non-Gaussian Features from Particle Production in a Sector Gravitationally Coupled to the Inflaton,”Phys.Rev. D86 (2012) 103508, arXiv:1206.6117 [astro-ph.CO].CrossRef
[273] D., Carney, W., Fischler, E., Kovetz, D., Lorshbough, and S., Paban, “Rapid Field Excursions and the Inflationary Tensor Spectrum,”JHEP 1211 (2012) 042, arXiv:1209.3848 [hep-th].
[274] P., Creminelli, “On Non-Gaussianities in Single-Field Inflation,”JCAP 0310 (2003) 003, arXiv:astro-ph/0306122 [astro-ph].
[275] D., Baumann and D., Green, “Equilateral Non-Gaussianity and New Physics on the Horizon,”JCAP 1109 (2011) 014, arXiv:1102.5343 [hep-th].
[276] C., Burrage, C., de Rham, D., Seery, and A. J., Tolley, “Galileon Inflation,”JCAP 1101 (2011) 014, arXiv:1009.2497 [hep-th].
[277] V., Assassi, D., Baumann, D., Green, and L., McAllister, “Planck-Suppressed Operators,” arXiv:1304.5226 [hep-th].
[278] V., Kaplunovsky and J., Louis, “Model-Independent Analysis of Soft Terms in Effective Supergravity and in String Theory,”Phys.Lett. B306 (1993) 269–269, arXiv:hep-th/9303040 [hep-th].CrossRef
[279] D., Green, M., Lewandowski, L., Senatore, E., Silverstein, and M., Zaldarriaga, “Anomalous Dimensions and Non-Gaussianity,” arXiv:1301.2630 [hep-th].
[280] M., Green, J., Schwarz, and E., Witten, Superstring Theory. Vol. 1: Introduction.Cambridge University Press, 1987.
[281] M., Green, J., Schwarz, and E., Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology. Cambridge University Press, 1987.
[282] J., Polchinski, String Theory. Vol. 1: An Introduction to the Bosonic String. Cambridge University Press, 1998.
[283] J., Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond. Cambridge University Press, 1998.
[284] D., Tong, “String Theory,” arXiv:0908.0333 [hep-th].
[285] J., Polchinski, “What is String Theory?,” arXiv:hep-th/9411028 [hep-th].
[286] E., Kiritsis, “Introduction to Superstring Theory,” arXiv:hep-th/9709062 [hep-th].
[287] J., Bedford, “An Introduction to String Theory,” arXiv:1107.3967 [hep-th].
[288] S., Forste, “Strings, Branes and Extra Dimensions,”Fortsch.Phys. 50 (2002) 221–221, arXiv:hep-th/0110055 [hep-th].3.0.CO;2-P>CrossRef
[289] T., Mohaupt, “Introduction to String Theory,”Lect.Notes Phys. 631 (2003) 173–173, arXiv:hep-th/0207249 [hep-th].
[290] A., Sen, “An Introduction to Nonperturbative String Theory,” arXiv:hep-th/9802051 [hep-th].
[291] L., Ibanez and A., Uranga, String Theory and Particle Physics: An Introduction to String Phenomenology. Cambridge University Press, 2012.
[292] K., Becker, M., Becker, and J., Schwarz, String Theory and M-theory: A Modern Introduction. Cambridge University Press, 2007.
[293] C., Johnson, D-branes. Cambridge University Press, 2003.
[294] S., Deser and B., Zumino, “A Complete Action for the Spinning String,”Phys.Lett. B65 (1976) 369–369.CrossRef
[295] L., Brink, P., Di Vecchia, and P., Howe, “A Locally Supersymmetric and Reparametrization Invariant Action for the Spinning String,”Phys.Lett. B65 (1976) 471–471.
[296] P., Goddard, J., Goldstone, C., Rebbi, and C., Thorn, “Quantum Dynamics of a Massless Relativistic String,”Nucl.Phys. B56 (1973) 109–109.
[297] D., Friedan, “Nonlinear Models in 2 + ε Dimensions,”Annals Phys. 163 (1985) 318.
[298] R., Myers, “Dielectric Branes,”JHEP 9912 (1999) 022, arXiv:hep-th/9910053 [hep-th].
[299] G., Horowitz and A., Strominger, “Black Strings and P-branes,”Nucl.Phys. B360 (1991) 197–197.
[300] O., Aharony, S., Gubser, J., Maldacena, H., Ooguri, and Y., Oz, “Large N Field Theories, String Theory and Gravity,”Phys.Rept. 323 (2000) 183–183, arXiv:hep-th/9905111 [hep-th].CrossRef
[301] M., Dine, A., Morisse, A., Shomer, and Z., Sun, “IIA Moduli Stabilization With Badly Broken Supersymmetry,”JHEP 0807 (2008) 070, arXiv:hep-th/0612189 [hep-th].
[302] E., Silverstein, “Simple de Sitter Solutions,”Phys.Rev. D77 (2008) 106006, arXiv:0712.1196 [hep-th].
[303] S., Haque, G., Shiu, B., Underwood, and T., Van Riet, “Minimal Simple de Sitter Solutions,”Phys.Rev. D79 (2009) 086005, arXiv:0810.5328 [hep-th].CrossRef
[304] T., Grimm and J., Louis, “The Effective Action of N = 1 Calabi-Yau Orientifolds,”Nucl.Phys. B699 (2004) 387–387, arXiv:hep-th/0403067 [hep-th].CrossRef
[305] S., Giddings, S., Kachru, and J., Polchinski, “Hierarchies from Fluxes in String Compact-ifications,”Phys.Rev. D66 (2002) 106006, arXiv:hep-th/0105097 [hep-th].CrossRef
[306] A., Strominger, “Loop Corrections to the Universal Hypermultiplet,”Phys.Lett. B421 (1998) 139–139, arXiv:hep-th/9706195 [hep-th].
[307] K., Becker and M., Becker, “Instanton Action for Type II Hypermultiplets,”Nucl.Phys. B551 (1999) 102–102, arXiv:hep-th/9901126 [hep-th].
[308] I., Antoniadis, R., Minasian, S., Theisen, and P., Vanhove, “String Loop Corrections to the Universal Hypermultiplet,”Class.Quant.Grav. 20 (2003) 5079–5079, arXiv:hep-th/0307268 [hep-th].
[309] X., Wen and E., Witten, “World Sheet Instantons and the Peccei-Quinn Symmetry,”Phys.Lett. B166 (1986) 397.
[310] E., Witten, “New Issues in Manifolds of SU(3) Holonomy,”Nucl.Phys. B268 (1986) 79.
[311] M., Dine and N., Seiberg, “Non-Renormalization Theorems in Superstring Theory,”Phys.Rev.Lett. 57 (1986) 2625.CrossRef
[312] M., Dine, N., Seiberg, X., Wen, and E., Witten, “Nonperturbative Effects on the String World Sheet,”Nucl.Phys. B278 (1986) 769.
[313] T., Bachlechner, M., Dias, J., Frazer, and L., McAllister, “A New Angle on Chaotic Inflation,” arXiv:1404.7496 [hep-th].
[314] M., Cicoli, J., Conlon, and F., Quevedo, “Dark Radiation in LARGE Volume Models,”Phys.Rev. D87 (2013) 043520, arXiv:1208.3562 [hep-ph].
[315] T., Higaki and F., Takahashi, “Dark Radiation and Dark Matter in Large Volume Compactifications,”JHEP 1211 (2012) 125, arXiv:1208.3563 [hep-ph].
[316] J., Conlon and D., Marsh, “The Cosmo-Phenomenology of Axionic Dark Radiation,” arXiv:1304.1804 [hep-ph].
[317] T., Higaki, K., Nakayama, and F., Takahashi, “Moduli-Induced Axion Problem,”JHEP 1307 (2013) 005, arXiv:1304.7987 [hep-ph].
[318] J., Conlon and D., Marsh, “Searching for a 0.1-1 keV Cosmic Axion Background,” arXiv:1305.3603 [astro-ph.CO].
[319] T., Higaki, K., Nakayama, and F., Takahashi, “Cosmological Constraints on Axionic Dark Radiation from Axion-Photon Conversion in the Early Universe,”JCAP 1309 (2013) 030, arXiv:1306.6518 [hep-ph].
[320] M., Fairbairn, “Axionic Dark Radiation and the Milky Way's Magnetic Field,” arXiv:1310.4464 [astro-ph.CO].
[321] S., Giddings and A., Maharana, “Dynamics of Warped Compactifications and the Shape of the Warped Landscape,”Phys.Rev. D73 (2006) 126003, arXiv:hep-th/0507158 [hep-th].CrossRef
[322] G., Shiu, G., Torroba, B., Underwood, and M., Douglas, “Dynamics of Warped Flux Compactifications,”JHEP 0806 (2008) 024, arXiv:0803.3068 [hep-th].
[323] M., Douglas and G., Torroba, “Kinetic Terms in Warped Compactifications,”JHEP 0905 (2009) 013, arXiv:0805.3700 [hep-th].
[324] A., Frey, G., Torroba, B., Underwood, and M., Douglas, “The Universal Kähler Modulus in Warped Compactifications,”JHEP 0901 (2009) 036, arXiv:0810.5768 [hep-th].
[325] F., Denef, M., Douglas, and S., Kachru, “Physics of String Flux Compactifications,”Ann.Rev.Nucl.Part.Sci. 57 (2007) 119–119, arXiv:hep-th/0701050 [hep-th].CrossRef
[326] M., Grana, “Flux Compactifications in String Theory: A Comprehensive Review,”Phys.Rept. 423 (2006) 91–91, arXiv:hep-th/0509003 [hep-th].
[327] J., Maldacena and C., Nunez, “Supergravity Description of Field Theories on Curved Manifolds and a No-Go Theorem,”Int.J.Mod.Phys. A16 (2001) 822–822, arXiv:hep-th/0007018 [hep-th].
[328] D., Baumann, A., Dymarsky, S., Kachru, I., Klebanov, and L., McAllister, “Holographic Systematics of D-brane Inflation,”JHEP 0903 (2009) 093, arXiv:0808.2811 [hep-th].
[329] S., Gukov, C., Vafa, and E., Witten, “CFT's from Calabi-Yau Four-Folds,”Nucl.Phys. B584 (2000) 69–69, arXiv:hep-th/9906070 [hep-th].CrossRef
[330] J., Conlon, “Moduli Stabilisation and Applications in IIB String Theory,”Fortsch.Phys. 55 (2007) 287–287, arXiv:hep-th/0611039 [hep-th].
[331] O., DeWolfe and S., Giddings, “Scales and Hierarchies in Warped Compactifications and Brane Worlds,”Phys.Rev. D67 (2003) 066008, arXiv:hep-th/0208123 [hep-th].
[332] K., Becker, M., Becker, M., Haack, and J., Louis, “Supersymmetry Breaking and Alpha-Prime Corrections to Flux-Induced Potentials,”JHEP 0206 (2002) 060, arXiv:hep-th/0204254 [hep-th].
[333] M., Berg, M., Haack, and B., Kors, “String Loop Corrections to Kähler Potentials in Orientifolds,”JHEP 0511 (2005) 030, arXiv:hep-th/0508043 [hep-th].
[334] M., Berg, M., Haack, and B., Kors, “On Volume Stabilization by Quantum Corrections,”Phys.Rev.Lett. 96 (2006) 021601, arXiv:hep-th/0508171 [hep-th].
[335] M., Berg, M., Haack, and E., Pajer, “Jumping Through Loops: On Soft Terms from Large Volume Compactifications,”JHEP 0709 (2007) 031, arXiv:0704.0737 [hep-th].
[336] G., Gersdorff and A., Hebecker, “Kähler Corrections for the Volume Modulus of Flux Compactifications,”Phys.Lett. B624 (2005) 270–270, arXiv:hep-th/0507131 [hep-th].
[337] M., Grisaru, W., Siegel, and M., Rocek, “Improved Methods for Supergraphs,”Nucl.Phys. B159 (1979) 429.
[338] C., Burgess, C., Escoda, and F., Quevedo, “Non-Renormalization of Flux Superpotentials in String Theory,”JHEP 0606 (2006) 044, arXiv:hep-th/0510213 [hep-th].
[339] V., Novikov, M., Shifman, A., Vainshtein, M., Voloshin, and V., Zakharov, “Supersymmetry Transformations of Instantons,”Nucl.Phys. B229 (1983) 394.
[340] V., Novikov, M., Shifman, A., Vainshtein, and V., Zakharov, “Instanton Effects in Supersymmetric Theories,”Nucl.Phys. B229 (1983) 407.
[341] S., Ferrara, L., Girardello, and H., Nilles, “Breakdown of Local Supersymmetry Through Gauge Fermion Condensates,”Phys.Lett. B125 (1983) 457.CrossRef
[342] M., Dine, R., Rohm, N., Seiberg, and E., Witten, “Gluino Condensation in Superstring Models,”Phys.Lett. B156 (1985) 55.
[343] J., Derendinger, L., Ibanez, and H., Nilles, “On the Low-Energy d = 4, N = 1 Supergravity Theory Extracted from the d =10, N = 1 Superstring,”Phys.Lett. B155 (1985) 65.CrossRef
[344] M., Shifman and A., Vainshtein, “On Gluino Condensation in Supersymmetric Gauge Theories. SU(N)and 0(N) Groups,”Nucl.Phys. B296 (1988) 445.CrossRef
[345] L., Gorlich, S., Kachru, P., Tripathy, and S., Trivedi, “Gaugino Condensation and Nonperturbative Superpotentials in Flux Compactifications,”JHEP 0412 (2004) 074, arXiv:hep-th/0407130 [hep-th].
[346] D., Baumann, A., Dymarsky, I., Klebanov, J., Maldacena, L., McAllister, and A., Murugan, “On D3-brane Potentials in Compactifications with Fluxes and Wrapped D-branes,”JHEP 0611 (2006) 031, arXiv:hep-th/0607050 [hep-th].
[347] M., Berg, M., Haack, and B., Kors, “Loop Corrections to Volume Moduli and Inflation in String Theory,”Phys.Rev. D71 (2005) 026005, arXiv:hep-th/0404087 [hep-th].CrossRef
[348] E., Witten, “Nonperturbative Superpotentials in String Theory,”Nucl.Phys. B474 (1996) 343–343, arXiv:hep-th/9604030 [hep-th].CrossRef
[349] R., Blumenhagen, M., Cvetic, S., Kachru, and T., Weigand, “D-Brane Instantons in Type II Orientifolds,”Ann.Rev.Nucl.Part.Sci. 59 (2009) 269–269, arXiv:0902.3251 [hep-th].
[350] K., Kodaira, “On The Structure Of Compact Complex Analytic Surfaces. I,”Amer. J. Math. 86 (1964) 751–751.CrossRef
[351] C., Vafa, “Evidence for F-theory,”Nucl.Phys. B469 (1996) 403–403, arXiv:hep-th/ 9602022 [hep-th].
[352] P., Griffiths and J., Harris, Principles of Algebraic Geometry. Wiley Classics Library. Wiley, 2011.
[353] F., Hirzebruch and M., Kreck, “On the Concept of Genus in Topology and Complex Analysis,”Notices of the AMS 56 no. 6, (2009).Google Scholar
[354] R., Kallosh and D., Sorokin, “Dirac Action on M5 and M2-branes with Bulk Fluxes,”JHEP 0505 (2005) 005, arXiv:hep-th/0501081 [hep-th].
[355] N., Saulina, “Topological Constraints on Stabilized Flux Vacua,”Nucl.Phys. B720 (2005) 203–203, arXiv:hep-th/0503125 [hep-th].CrossRef
[356] P., Tripathy and S., Trivedi, “D3-brane Action and Fermion Zero Modes in Presence of Background Flux,”JHEP 0506 (2005) 066, arXiv:hep-th/0503072 [hep-th].
[357] R., Kallosh, A.-K., Kashani-Poor, and A., Tomasiello, “Counting Fermionic Zero Modes on M5 with Fluxes,”JHEP 0506 (2005) 069, arXiv:hep-th/0503138 [hep-th].
[358] E., Bergshoeff, R., Kallosh, A.-K., Kashani-Poor, D., Sorokin, and A., Tomasiello, “An Index for the Dirac Operator on D3-branes with Background Fluxes,”JHEP 0510 (2005) 102, arXiv:hep-th/0507069 [hep-th].
[359] L., Martucci, J., Rosseel, D., Van den Bleeken, and A., Van Proeyen, “Dirac Actions for D-branes on Backgrounds with Fluxes,”Class.Quant.Grav. 22 (2005) 2745–2745, arXiv:hep-th/0504041 [hep-th].CrossRef
[360] D., Robbins and S., Sethi, “A Barren Landscape?,”Phys.Rev. D71 (2005) 046008, arXiv:hep-th/0405011 [hep-th].CrossRef
[361] R., Blumenhagen, S., Moster, and E., Plauschinn, “Moduli Stabilisation versus Chiral-ity for MSSM like Type IIB Orientifolds,”JHEP 0801 (2008) 058, arXiv:0711.3389 [hep-th].
[362] M., Bianchi, A., Collinucci, and L., Martucci, “Magnetized E3-brane Instantons in Ftheory,”JHEP 1112 (2011) 045, arXiv:1107.3732 [hep-th].
[363] M., Bianchi, G., Inverso, and L., Martucci, “Brane Instantons and Fluxes in F-theory,”JHEP 1307 (2013) 037, arXiv:1212.0024 [hep-th].
[364] F., Denef, “Les Houches Lectures on Constructing String Vacua,” arXiv:0803.1194 [hep-th].
[365] M., Dine and N., Seiberg, “Is the Superstring Weakly Coupled?,”Phys.Lett. B162 (1985) 299.CrossRef
[366] E., Silverstein, “TASI / PiTP / ISS Lectures on Moduli and Microphysics,” arXiv: hep-th/0405068 [hep-th].
[367] K., Bobkov, “Volume Stabilization via Alpha-Prime Corrections in Type IIB Theory with Fluxes,”JHEP 0505 (2005) 010, arXiv:hep-th/0412239 [hep-th].
[368] S., Parameswaran and A., Westphal, “De Sitter String Vacua from Perturbative Kaahler Corrections and Consistent D-terms,”JHEP 0610 (2006) 079, arXiv:hep-th/0602253 [hep-th].
[369] S., Kachru, R., Kallosh, A., Linde, and S., Trivedi, “De Sitter Vacua in String Theory,”Phys.Rev. D68 (2003) 046005, arXiv:hep-th/0301240 [hep-th].
[370] V., Balasubramanian, P., Berglund, J., Conlon, and F., Quevedo, “Systematics of Moduli Stabilisation in Calabi-Yau Flux Compactifications,”JHEP 0503 (2005) 007, arXiv:hep-th/0502058 [hep-th].
[371] F., Denef, M., Douglas, and B., Florea, “Building a Better Racetrack,”JHEP 0406 (2004) 034, arXiv:hep-th/0404257 [hep-th].
[372] F., Denef, M., Douglas, B., Florea, A., Grassi, and S., Kachru, “Fixing all Moduli in a Simple F-theory Compactification,”Adv. Theor. Math. Phys. 9 (2005) 861–861, arXiv:hep-th/0503124 [hep-th].CrossRef
[373] K., Bobkov, V., Braun, P., Kumar, and S., Raby, “Stabilizing all Kaahler Moduli in Type IIB Orientifolds,”JHEP 1012 (2010) 056, arXiv:1003.1982 [hep-th].
[374] K., Choi, A., Falkowski, H., Nilles, M., Olechowski, and S., Pokorski, “Stability of Flux Compactifications and the Pattern of Supersymmetry Breaking,”JHEP 0411 (2004) 076, arXiv:hep-th/0411066 [hep-th].
[375] S., de Alwis, “Effective Potentials for Light Moduli,”Phys.Lett. B626 (2005) 223–223, arXiv:hep-th/0506266 [hep-th].CrossRef
[376] D., Lüst, S., Reffert, W., Schulgin, and S., Stieberger, “Moduli Stabilization in Type IIB Orientifolds (I): Orbifold Limits,”Nucl.Phys. B766 (2007) 68–68, arXiv:hep-th/0506090 [hep-th].
[377] G., Curio and V., Spillner, “On the Modified KKLT Procedure: A Case Study for the P(11169) [18] Model,”Int.J.Mod.Phys. A22 (2007) 3463–3463, arXiv:hep-th/0606047 [hep-th].
[378] H., Abe, T., Higaki, and T., Kobayashi, “Remark on Integrating Out Heavy Moduli in Flux Compactification,”Phys.Rev. D74 (2006) 045012, arXiv:hep-th/0606095 [hep-th].CrossRef
[379] J., Conlon, F., Quevedo, and K., Suruliz, “Large Volume Flux Compactifications: Moduli Spectrum and D3/D7 Soft Supersymmetry Breaking,”JHEP 0508 (2005) 007, arXiv:hep-th/0505076 [hep-th].
[380] M., Cicoli, J., Conlon, and F., Quevedo, “General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation,”JHEP 0810 (2008) 105, arXiv:0805.1029 [hep-th].
[381] J., Gray et al., “Calabi-Yau Manifolds with Large Volume Vacua,”Phys.Rev. D86 (2012) 101901, arXiv:1207.5801 [hep-th].
[382] M., Rummel and Y., Sumitomo, “Probability of Vacuum Stability in Type IIB Multi Kähler Moduli Models,” arXiv:1310.4202 [hep-th].
[383] S., Franco and A., Uranga, “Dynamical SUSY Breaking at Metastable Minima from D-branes at Obstructed Geometries,”JHEP 0606 (2006) 031, arXiv:hep-th/0604136 [hep-th].
[384] R., Argurio, M., Bertolini, C., Closset, and S., Cremonesi, “On Stable Non-Supersymmetric Vacua at the Bottom of Cascading Theories,”JHEP 0609 (2006) 030, arXiv:hep-th/0606175 [hep-th].
[385] B., Florea, S., Kachru, J., McGreevy, and N., Saulina, “Stringy Instantons and Quiver Gauge Theories,”JHEP 0705 (2007) 024, arXiv:hep-th/0610003 [hep-th].
[386] R., Argurio, M., Bertolini, S., Franco, and S., Kachru, “Gauge/Gravity Duality and Metastable Dynamical Supersymmetry Breaking,”JHEP 0701 (2007) 083, arXiv:hep-th/0610212 [hep-th].
[387] D.-E., Diaconescu, R., Donagi, and B., Florea, “Metastable Quivers in String Compactifications,”Nucl.Phys. B774 (2007) 102–102, arXiv:hep-th/0701104 [hep-th].
[388] I., Garcia-Etxebarria, F., Saad, and A., Uranga, “Supersymmetry Breaking Metastable Vacua in Runaway Quiver Gauge Theories,”JHEP 0705 (2007) 047, arXiv:0704.0166 [hep-th].
[389] M., Buican, D., Malyshev, and H., Verlinde, “On the Geometry of Metastable Supersym-metry Breaking,”JHEP 0806 (2008) 108, arXiv:0710.5519 [hep-th].
[390] D., Berenstein, C., Herzog, P., Ouyang, and S., Pinansky, “Supersymmetry Breaking from a Calabi-Yau Singularity,”JHEP 0509 (2005) 084, arXiv:hep-th/0505029 [hep-th].
[391] S., Franco, A., Hanany, F., Saad, and A., Uranga, “Fractional Branes and Dynamical Supersymmetry Breaking,”JHEP 0601 (2006) 011, arXiv:hep-th/0505040 [hep-th].
[392] M., Bertolini, F., Bigazzi, and A., Cotrone, “Supersymmetry Breaking at the End of a Cascade of Seiberg Dualities,”Phys.Rev. D72 (2005) 061902, arXiv:hep-th/0505055 [hep-th].CrossRef
[393] K., Intriligator and N., Seiberg, “The Runaway Quiver,”JHEP 0602 (2006) 031, arXiv:hep-th/0512347 [hep-th].
[394] A., Brini and D., Forcella, “Comments on the Non-Conformal Gauge Theories Dual to Yp, q Manifolds,”JHEP 0606 (2006) 050, arXiv:hep-th/0603245 [hep-th].
[395] K., Intriligator, N., Seiberg, and D., Shih, “Dynamical SUSY Breaking in Metastable Vacua,”JHEP 0604 (2006) 021, arXiv:hep-th/0602239 [hep-th].
[396] C., Burgess, R., Kallosh, and F., Quevedo, “De Sitter String Vacua from Supersymmetric D-terms,”JHEP 0310 (2003) 056, arXiv:hep-th/0309187 [hep-th].
[397] C., Escoda, M., Gomez-Reino, and F., Quevedo, “Saltatory de Sitter String Vacua,”JHEP 0311 (2003) 065, arXiv:hep-th/0307160 [hep-th].
[398] R., Brustein and S., de Alwis, “Moduli Potentials in String Compactifications with Fluxes: Mapping the Discretuum,”Phys.Rev. D69 (2004) 126006, arXiv:hep-th/0402088 [hep-th].CrossRef
[399] A., Saltman and E., Silverstein, “The Scaling of the No-Scale Potential and de Sitter Model Building,”JHEP 0411 (2004) 066, arXiv:hep-th/0402135 [hep-th].
[400] A., Saltman and E., Silverstein, “A New Handle on de Sitter Compactifications,”JHEP 0601 (2006) 139, arXiv:hep-th/0411271 [hep-th].
[401] O., Lebedev, H., Nilles, and M., Ratz, “De Sitter Vacua from Matter Superpotentials,”Phys.Lett. B636 (2006) 126–126, arXiv:hep-th/0603047 [hep-th].
[402] O., Lebedev, V., Lowen, Y., Mambrini, H., Nilles, and M., Ratz, “Metastable Vacua in Flux Compactifications and Their Phenomenology,”JHEP 0702 (2007) 063, arXiv:hep-ph/0612035 [hep-ph].
[403] A., Achucarro, B., Carlos,J., Casas, and L., Doplicher, “De Sitter Vacua from Uplifting D-terms in Effective Supergravities from Realistic Strings,”JHEP 0606 (2006) 014, arXiv:hep-th/0601190 [hep-th].
[404] E., Dudas, C., Papineau, and S., Pokorski, “Moduli Stabilization and Uplifting with Dynamically Generated F-terms,”JHEP 0702 (2007) 028, arXiv:hep-th/0610297 [hep-th].
[405] A., Westphal, “De Sitter String Vacua from Kuahler Uplifting,”JHEP 0703 (2007) 102, arXiv:hep-th/0611332 [hep-th].
[406] D., Cremades, M.-P., Garcia del Moral, F., Quevedo, and K., Suruliz, “Moduli Stabilisation and de Sitter String Vacua from Magnetised D7-branes,”JHEP 0705 (2007) 100, arXiv:hep-th/0701154 [hep-th].
[407] L., Covi, M., Gomez-Reino, C., Gross, G., Palma, and C., Scrucca, “Constructing de Sitter Vacua in No-Scale String Models without Uplifting,”JHEP 0903 (2009) 146, arXiv:0812.3864 [hep-th].
[408] J., Polchinski and E., Silverstein, “Dual Purpose Landscaping Tools: Small Extra Dimensions in AdS/CFT,” arXiv:0908.0756 [hep-th].
[409] S., Krippendorf and F., Quevedo, “Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation,”JHEP 0911 (2009) 039, arXiv:0901.0683 [hep-th].
[410] X., Dong, B., Horn, E., Silverstein, and G., Torroba, “Micromanaging de Sitter Holography,”Class.Quant.Grav. 27 (2010) 245020, arXiv:1005.5403 [hep-th].CrossRef
[411] M., Rummel and A., Westphal, “A Sufficient Condition for de Sitter Vacua in Type IIB String Theory,”JHEP 1201 (2012) 020, arXiv:1107.2115 [hep-th].
[412] J., Louis, M., Rummel, R., Valandro, and A., Westphal, “Building an Explicit de Sitter,”JHEP 1210 (2012) 163, arXiv:1208.3208 [hep-th].
[413] M., Cicoli, A., Maharana, F., Quevedo, and C., Burgess, “De Sitter String Vacua from Dilaton-Dependent Non-perturbative Effects,”JHEP 1206 (2012) 011, arXiv:1203.1750 [hep-th].
[414] M., Davidse, F., Saueressig, U., Theis, and S., Vandoren, “Membrane Instantons and de Sitter Vacua,”JHEP 0509 (2005) 065, arXiv:hep-th/0506097 [hep-th].
[415] F., Saueressig, U., Theis, and S., Vandoren, “On de Sitter Vacua in Type IIA Ori-entifold Compactifications,”Phys.Lett. B633 (2006) 125–125, arXiv:hep-th/0506181 [hep-th].CrossRef
[416] C., Caviezel et al., “The Effective Theory of Type IIA AdS4 Compactifications on Nilmanifolds and Cosets,”Class.Quant.Grav. 26 (2009) 025014, arXiv:0806.3458 [hep-th].CrossRef
[417] C., Caviezel et al., “On the Cosmology of Type IIA Compactifications on SU(3)-structure Manifolds,”JHEP 0904 (2009) 010, arXiv:0812.3551 [hep-th].
[418] R., Flauger, S., Paban, D., Robbins, and T., Wrase, “Searching for Slow-Roll Moduli Inflation in Massive Type IIA Supergravity with Metric Fluxes,”Phys.Rev. D79 (2009) 086011, arXiv:0812.3886 [hep-th].CrossRef
[419] U., Danielsson, S., Haque, G., Shiu, and T., Van Riet, “Towards Classical de Sitter Solutions in String Theory,”JHEP 0909 (2009) 114, arXiv:0907.2041 [hep-th].
[420] T., Wrase and M., Zagermann, “On Classical de Sitter Vacua in String Theory,”Fortsch.Phys. 58 (2010) 906–906, arXiv:1003.0029 [hep-th].CrossRef
[421] U., Danielsson, P., Koerber, and T., Van Riet, “Universal de Sitter Solutions at TreeLevel,”JHEP 1005 (2010) 090, arXiv:1003.3590 [hep-th].
[422] U., Danielsson et al., “De Sitter Hunting in a Classical Landscape,”Fortsch.Phys. 59 (2011) 897–897, arXiv:1103.4858 [hep-th].CrossRef
[423] G., Shiu and Y., Sumitomo, “Stability Constraints on Classical de Sitter Vacua,”JHEP 1109 (2011) 052, arXiv:1107.2925 [hep-th].
[424] U., Danielsson and G., Dibitetto, “On the Distribution of Stable de Sitter Vacua,”JHEP 1303 (2013) 018, arXiv:1212.4984 [hep-th].
[425] U., Danielsson, G., Shiu, T., Van Riet, and T., Wrase, “A Note on Obstinate Tachyons in Classical dS Solutions,”JHEP 1303 (2013) 138, arXiv:1212.5178 [hep-th].
[426] E., Buchbinder and B., Ovrut, “Vacuum Stability in Heterotic M-theory,”Phys.Rev. D69 (2004) 086010, arXiv:hep-th/0310112 [hep-th].CrossRef
[427] M., Becker, G., Curio, and A., Krause, “De Sitter Vacua from Heterotic M-theory,”Nucl.Phys. B693 (2004) 223–223, arXiv:hep-th/0403027 [hep-th].CrossRef
[428] E., Buchbinder, “Raising Anti de Sitter Vacua to de Sitter Vacua in Heterotic M-theory,”Phys.Rev. D70 (2004) 066008, arXiv:hep-th/0406101 [hep-th].CrossRef
[429] G., Curio and A., Krause, “S-track Stabilization of Heterotic de Sitter Vacua,”Phys.Rev. D75 (2007) 126003, arXiv:hep-th/0606243 [hep-th].CrossRef
[430] S., Parameswaran, S., Ramos-Sanchez, and I., Zavala, “On Moduli Stabilisation and de Sitter Vacua in MSSM Heterotic Orbifolds,”JHEP 1101 (2011) 071, arXiv:1009.3931 [hep-th].
[431] A., Maloney, E., Silverstein, and A., Strominger, “De Sitter Space in Noncritical String Theory,” arXiv:hep-th/0205316 [hep-th].
[432] C., Hull, “De Sitter Space in Supergravity and M-theory,”JHEP 0111 (2001) 012, arXiv:hep-th/0109213 [hep-th].
[433] R., Kallosh, A., Linde, S., Prokushkin, and M., Shmakova, “Gauged Supergravities, de Sitter Space and Cosmology,”Phys.Rev. D65 (2002) 105016, arXiv:hep-th/0110089 [hep-th].CrossRef
[434] G., Gibbons and C., Hull, “De Sitter Space from Warped Supergravity Solutions,” arXiv:hep-th/0111072 [hep-th].
[435] R., Kallosh, “N = 2 Supersymmetry and de Sitter Space,” arXiv:hep-th/0109168 [hep-th].
[436] A., Chamblin and N., Lambert, “De Sitter Space from M-theory,”Phys.Lett. B508 (2001) 369–369, arXiv:hep-th/0102159 [hep-th].CrossRef
[437] P., Fre, M., Trigiante, and A., Van Proeyen, “Stable de Sitter Vacua from N = 2 Supergravity,”Class.Quant.Grav. 19 (2002) 4167–4167, arXiv:hep-th/0205119 [hep-th].CrossRef
[438] M., Gomez-Reino, J., Louis, and C. A., Scrucca, “No Metastable de Sitter Vacua in N =2 Supergravity with only Hypermultiplets,”JHEP 0902 (2009) 003, arXiv:0812.0884 [hep-th].
[439] D., Roest and J., Rosseel, “De Sitter in Extended Supergravity,”Phys.Lett. B685 (2010) 201–201, arXiv:0912.4440 [hep-th].
[440] E., Dudas, N., Kitazawa, and A., Sagnotti, “On Climbing Scalars in String Theory,”Phys.Lett. B694 (2010) 80–80, arXiv:1009.0874 [hep-th].CrossRef
[441] P., Fre, A., Sagnotti, and A., Sorin, “Integrable Scalar Cosmologies I. Foundations and Links with String Theory,”Nucl.Phys. B877 (2013) 1028–1028, arXiv:1307.1910 [hep-th].CrossRef
[442] J., Russo, “Exact Solution of Scalar Tensor Cosmology with Exponential Potentials and Transient Acceleration,”Phys.Lett. B600 (2004) 185–185, arXiv:hep-th/0403010 [hep-th].CrossRef
[443] S., Kachru, J., Pearson, and H., Verlinde, “Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory,”JHEP 0206 (2002) 021, arXiv:hep-th/0112197 [hep-th].Google Scholar
[444] I., Klebanov and M., Strassler, “Supergravity and a Confining Gauge Theory: Duality Cascades and chi SB Resolution of Naked Singularities,”JHEP 0008 (2000) 052, arXiv:hep-th/0007191 [hep-th].Google Scholar
[445] I., Bena, M., Grana, and N., Halmagyi, “On the Existence of Metastable Vacua in Klebanov-Strassler,”JHEP 1009 (2010) 087, arXiv:0912.3519 [hep-th].Google Scholar
[446] I., Bena, G., Giecold, M., Grana, and N., Halmagyi, “On the Inflaton Potential from Antibranes in Warped Throats,”JHEP 1207 (2012) 140, arXiv:1011.2626 [hep-th].Google Scholar
[447] A., Dymarsky, “On Gravity Dual of a Metastable Vacuum in Klebanov-Strassler Theory,”JHEP 1105 (2011) 053, arXiv:1102.1734 [hep-th].Google Scholar
[448] I., Bena, G., Giecold, M., Grana, N., Halmagyi, and S., Massai, “On Metastable Vacua and the Warped Deformed Conifold: Analytic Results,”Class. Quant. Grav. 30 (2013) 015003, arXiv:1102.2403 [hep-th].CrossRefGoogle Scholar
[449] I., Bena, G., Giecold, M., Grana, N., Halmagyi, and S., Massai, “The Backreaction of Anti-D3-branes on the Klebanov-Strassler Geometry,” arXiv:1106.6165 [hep-th].
[450] J., Blaback, U., Danielsson, and T., Van Riet, “Resolving Antibrane Singularities Through Time-Dependence,”JHEP 1302 (2013) 061, arXiv:1202.1132 [hep-th].Google Scholar
[451] I., Bena et al., “Persistent Anti-Brane Singularities,”JHEP 1210 (2012) 078, arXiv:1205.1798 [hep-th].Google Scholar
[452] D., Kutasov and A., Wissanji, “IIA Perspective On Cascading Gauge Theory,”JHEP 1209 (2012) 080, arXiv:1206.0747 [hep-th].Google Scholar
[453] I., Bena, M., Grana, S., Kuperstein, and S., Massai, “Anti-D3's – Singular to the Bitter End,” arXiv:1206.6369 [hep-th].
[454] I., Bena, M., Grana, S., Kuperstein, and S., Massai, “Polchinski-Strassler does not uplift Klebanov-Strassler,” arXiv:1212.4828 [hep-th].
[455] I., Bena, A., Buchel, and O., Dias, “Horizons Cannot Save the Landscape,” arXiv:1212.5162 [hep-th].
[456] D., Junghans, “Backreaction of Localised Sources in String Compactifications,” arXiv:1309.5990 [hep-th].
[457] A., Dymarsky and S., Massai, “Uplifting the Baryonic Branch: A Test for Backreacting Anti-D3-Branes,” arXiv:1310.0015 [hep-th].
[458] D., Junghans, “Dynamics of Warped Flux Compactifications with Backreacting AntiBranes,” arXiv:1402.4571 [hep-th].
[459] K., Dasgupta, R., Gwyn, E., McDonough, M., Mia, and R., Tatar, “De Sitter Vacua in Type IIB String Theory: Classical Solutions and Quantum Corrections,” arXiv:1402.5112 [hep-th].
[460] D., Junghans, D., Schmidt, and M., Zagermann, “Curvature-induced Resolution of Antibrane Singularities,” arXiv:1402.6040 [hep-th].
[461] O., DeWolfe, S., Kachru, and M., Mulligan, “A Gravity Dual of Metastable Dynamical Supersymmetry Breaking,”Phys. Rev. D77 (2008) 065011, arXiv:0801.1520 [hep-th].CrossRefGoogle Scholar
[462] P., McGuirk, G., Shiu, and Y., Sumitomo, “Non-supersymmetric Infrared Perturbations to the Warped Deformed Conifold,”Nucl. Phys. B842 (2011) 383–413, arXiv:0910.4581 [hep-th].CrossRefGoogle Scholar
[463] J., Blaback et al., “The Problematic Backreaction of SUSY-breaking Branes,”JHEP 1108 (2011) 105, arXiv:1105.4879 [hep-th].Google Scholar
[464] J., Polchinski and M., Strassler, “The String Dual of a Confining Four-Dimensional Gauge Theory,” arXiv:hep-th/0003136 [hep-th].
[465] N., Wolchover, “Is nature unnatural?,”Quanta Magazine (2013).Google Scholar
[466] A., Strominger, “Superstrings with Torsion,”Nucl.Phys. B274 (1986) 253.CrossRefGoogle Scholar
[467] W., Lerche, D., Lüst, and A., Schellekens, “Chiral Four-Dimensional Heterotic Strings from Selfdual Lattices,”Nucl. Phys. B287 (1987) 477.Google Scholar
[468] M., Douglas, “The Statistics of String / M-theory Vacua,”JHEP 0305 (2003) 046, arXiv:hep-th/0303194 [hep-th].Google Scholar
[469] J., Kumar, “A Review of Distributions on the String Landscape,”Int. J. Mod. Phys. A21 (2006) 3441–3472, arXiv:hep-th/0601053 [hep-th].Google Scholar
[470] M., Dine, “Is There A String Theory Landscape: Some Cautionary Notes,” arXiv:hep-th/0402101 [hep-th].
[471] T., Banks, “Landskepticism or Why Effective Potentials Don't Count String Models,” arXiv:hep-th/0412129 [hep-th].
[472] T., Banks, “The Top 10500 Reasons Not to Believe in the Landscape,” arXiv:1208.5715 [hep-th].
[473] S., Ashok and M., Douglas, “Counting Flux Vacua,”JHEP 0401 (2004) 060, arXiv:hep-th/0307049 [hep-th].Google Scholar
[474] A., Giryavets, S., Kachru, and P., Tripathy, “On the Taxonomy of Flux Vacua,”JHEP 0408 (2004) 002, arXiv:hep-th/0404243 [hep-th].Google Scholar
[475] O., DeWolfe, A., Giryavets, S., Kachru, and W., Taylor, “Enumerating Flux Vacua with Enhanced Symmetries,”JHEP 0502 (2005) 037, arXiv:hep-th/0411061 [hep-th].Google Scholar
[476] A., Giryavets, S., Kachru, P., Tripathy, and S., Trivedi, “Flux Compactifications on Calabi-Yau Threefolds,”JHEP 0404 (2004) 003, arXiv:hep-th/0312104 [hep-th].Google Scholar
[477] F., Denef and M., Douglas, “Distributions of Nonsupersymmetric Flux Vacua,”JHEP 0503 (2005) 061, arXiv:hep-th/0411183 [hep-th].Google Scholar
[478] M., Mehta, Random Matrices. Pure and Applied Mathematics 142. Elsevier Science, 2004.
[479] E., Wigner, “On the Statistical Distribution of the Widths and Spacings of Nuclear Resonance Levels,”Mathematical proceedings of the Cambridge Philosophical Society 47 no. 4, (1951) 790–798.Google Scholar
[480] L., Erdős, “Universality of Wigner Random Matrices: a Survey of Recent Results,” arXiv:1004.0861v2 [math-ph].
[481] A., Kuijlaars, “Universality,” arXiv:1103.5922 [math-ph].
[482] P., Deift, “Universality for Mathematical and Physical Systems,” arXiv:math-ph/0603038 [math-ph].
[483] J. H., Schenker and H., Schulz-Baldes, “Semicircle Law and Freeness for Random Matrices with Symmetries or Correlations,” arXiv:math-ph/0505003.
[484] T., Tao and V., Vu, “Random Covariance Matrices: Universality of Local Statistics of Eigenvalues,”Ann. Probab. 40 no. 3, (Dec., 2012) 1285–1315, arXiv:0912.0966 [math.SP].Google Scholar
[485] J., Distler and U., Varadarajan, “Random Polynomials and the Friendly Landscape,” arXiv:hep-th/0507090 [hep-th].
[486] D., Voiculescu, K., Dykema, and A., Nica, Free Random Variables: A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras, and Harmonic Analysis on Free Groups. CRM Monograph Series. American Mathematical Society, 1992.
[487] C., Tracy and H., Widom, “Level-Spacing Distributions and the Airy Kernel,”Communications in Mathematical Physics 159 no. 1, (1994) 151–174.Google Scholar
[488] T., Bachlechner, D., Marsh, L., McAllister, and T., Wrase, unpublished.
[489] A., Ben Arous, G., and Guionnet, “Large Deviations for Wigner's Law and Voiculescu's Non-Commutative Entropy,”Prob. Th. Rel. Fields 108 (1997) 517–542.CrossRefGoogle Scholar
[490] D., Dean and S., Majumdar, “Large Deviations of Extreme Eigenvalues of Random Matrices,”Phys. Rev. Lett. 97 (2006) 160201, arXiv:cond-mat/0609651 [cond-mat].CrossRefGoogle Scholar
[491] D., Dean and S., Majumdar, “Extreme Value Statistics of Eigenvalues of Gaussian Random Matrices,”Phys. Rev. E 77 (2008) 041108, arXiv:0801.1730 [cond-mat.stat-mech].Google Scholar
[492] A., Aazami and R., Easther, “Cosmology from Random Multifield Potentials,”JCAP 0603 (2006) 013, arXiv:hep-th/0512050 [hep-th].Google Scholar
[493] X., Chen, G., Shiu, Y., Sumitomo, and H., Tye, “A Global View on The Search for de-Sitter Vacua in (Type IIA) String Theory,”JHEP 1204 (2012) 026, arXiv:1112.3338 [hep-th].Google Scholar
[494] P., Breitenlohner and D., Freedman, “Positive Energy in Anti-De Sitter Backgrounds and Gauged Extended Supergravity,”Phys. Lett. B115 (1982) 197.CrossRefGoogle Scholar
[495] T., Bachlechner, D., Marsh, L., McAllister, and T., Wrase, “Supersymmetric Vacua in Random Supergravity,”JHEP 1301 (2013) 136, arXiv:1207.2763 [hep-th].Google Scholar
[496] A., Achucarro and K., Sousa, “F-term Uplifting and Moduli Stabilization Consistent with Kähler Invariance,”JHEP 0803 (2008) 002, arXiv:0712.3460 [hep-th].Google Scholar
[497] L., Covi et al., “De Sitter Vacua in No-Scale Supergravities and Calabi-Yau String Models,”JHEP 0806 (2008) 057, arXiv:0804.1073 [hep-th].Google Scholar
[498] L., Covi et al., “Constraints on Modular Inflation in Supergravity and String Theory,”JHEP 0808 (2008) 055, arXiv:0805.3290 [hep-th].Google Scholar
[499] A., Borghese, D., Roest, and I., Zavala, “A Geometric Bound on F-term Inflation,”JHEP 1209 (2012) 021, arXiv:1203.2909 [hep-th].Google Scholar
[500] J., Bausch, “On the Efficient Calculation of a Linear Combination of Chi-Square Random Variables with an Application in Counting String Vacua,” arXiv:1208.2691 [math.PR].
[501] T., Bachlechner, “On Gaussian Random Supergravity,” arXiv:1401.6187 [hep-th].
[502] R., Easther and L., McAllister, “Random Matrices and the Spectrum of N-flation,”JCAP 0605 (2006) 018, arXiv:hep-th/0512102 [hep-th].Google Scholar
[503] D., Battefeld, T., Battefeld, and S., Schulz, “On the Unlikeliness of Multi-Field Inflation: Bounded Random Potentials and our Vacuum,”JCAP 1206 (2012) 034, arXiv:1203.3941 [hep-th].Google Scholar
[504] A., Westphal, “Tensor Modes on the String Theory Landscape,”JHEP 1304 (2013) 054, arXiv:1206.4034 [hep-th].Google Scholar
[505] F., Pedro and A., Westphal, “The Scale of Inflation in the Landscape,” arXiv:1303.3224 [hep-th].
[506] D., Battefeld and T., Battefeld, “A Smooth Landscape: Ending Saddle Point Inflation Requires Features to be Shallow,” arXiv:1304.0461 [hep-th].
[507] D., Marsh, L., McAllister, E., Pajer, and T., Wrase, “Charting an Inflationary Landscape with Random Matrix Theory,” arXiv:1307.3559 [hep-th].
[508] C., Burgess, A., Maharana, and F., Quevedo, “Uber-naturalness: Unexpectedly Light Scalars from Supersymmetric Extra Dimensions,”JHEP 1105 (2011) 010, arXiv:1005.1199 [hep-th].Google Scholar
[509] X., Chen and Y., Wang, “Quasi-Single Field Inflation and Non-Gaussianities,”JCAP 1004 (2010) 027, arXiv:0911.3380 [hep-th].Google Scholar
[510] T., Noumi, M., Yamaguchi, and D., Yokoyama, “Effective Field Theory Approach to Quasi-Single-Field Inflation,”JHEP 1306 (2013) 051, arXiv:1211.1624 [hep-th].Google Scholar
[511] E., Sefusatti, J., Fergusson, X., Chen, and E., Shellard, “Effects and Detectability of Quasi-Single-Field Inflation in the Large-Scale Structure and Cosmic Microwave Background,”JCAP 1208 (2012) 033, arXiv:1204.6318 [astro-ph.CO].Google Scholar
[512] A., Achucarro, J.-O., Gong, S., Hardeman, G., Palma, and S., Patil, “Effective Theories of Single-Field Inflation when Heavy Fields Matter,”JHEP 1205 (2012) 066, arXiv:1201.6342 [hep-th].Google Scholar
[513] S., Cespedes, V., Atal, and G., Palma, “On the Importance of Heavy Fields during Inflation,”JCAP 1205 (2012) 008, arXiv:1201.4848 [hep-th].Google Scholar
[514] G., Shiu and J., Xu, “Effective Field Theory and Decoupling in Multi-Field Inflation: An Illustrative Case Study,”Phys. Rev. D84 (2011) 103509, arXiv:1108.0981 [hep-th].Google Scholar
[515] A., Achucarro, J.-O., Gong, S., Hardeman, G., Palma, and S., Patil, “Features of Heavy Physics in the CMB Power Spectrum,”JCAP 1101 (2011) 030, arXiv:1010.3693 [hep-ph].Google Scholar
[516] S., Cremonini, Z., Lalak, and K., Turzynski, “Strongly Coupled Perturbations in Two-Field Inflationary Models,”JCAP 1103 (2011) 016, arXiv:1010.3021 [hep-th].Google Scholar
[517] G., Villadoro and F., Zwirner, “N = 1 Effective Potential from Dual Type-IIA D6/O6 Orientifolds with General Fluxes,”JHEP 0506 (2005) 047, arXiv:hep-th/0503169 [hep-th].Google Scholar
[518] O., DeWolfe, A., Giryavets, S., Kachru, and W., Taylor, “Type IIA Moduli Stabilization,”JHEP 0507 (2005) 066, arXiv:hep-th/0505160 [hep-th].Google Scholar
[519] M., Ihl and T., Wrase, “Towards a Realistic Type IIA T6/Z4 Orientifold Model with Background Fluxes. Part1. Moduli Stabilization,”JHEP 0607 (2006) 027, arXiv:hep-th/0604087 [hep-th].Google Scholar
[520] M., Hertzberg, S., Kachru, W., Taylor, and M., Tegmark, “Inflationary Constraints on Type IIA String Theory,”JHEP 0712 (2007) 095, arXiv:0711.2512 [hep-th].Google Scholar
[521] M., Hertzberg, M., Tegmark, S., Kachru, J., Shelton, and O., Ozcan, “Searching for Inflation in Simple String Theory Models: An Astrophysical Perspective,”Phys. Rev. D76 (2007) 103521, arXiv:0709.0002 [astro-ph].Google Scholar
[522] N., Ohta, “Accelerating Cosmologies and Inflation from M/Superstring Theories,”Int. J. Mod. Phys. A20 (2005) 1–40, arXiv:hep-th/0411230 [hep-th].Google Scholar
[523] J. M., Maldacena, “The Large N Limit of Superconformal Field Theories and Supergravity,”Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200 [hep-th].Google Scholar
[524] A., Achucarro, J.-O., Gong, S., Hardeman, G., Palma, and S., Patil, “Mass Hierarchies and Non-Decoupling in Multi-Scalar Field Dynamics,”Phys. Rev. D84 (2011) 043502, arXiv:1005.3848 [hep-th].CrossRefGoogle Scholar
[525] A., Achucarro et al., “Heavy Fields, Reduced Speeds of Sound and Decoupling During Inflation,”Phys. Rev. D86 (2012) 121301, arXiv:1205.0710 [hep-th].CrossRefGoogle Scholar
[526] S., Hardeman, J., Oberreuter, G., Palma, K., Schalm, and T., van der Aalst, “The Everpresent Eta Problem: Knowledge of All Hidden Sectors Required,”JHEP 1104 (2011) 009, arXiv:1012.5966 [hep-ph].Google Scholar
[527] L., Randall and R., Sundrum, “Out of this World Supersymmetry Breaking,”Nucl. Phys. B557 (1999) 79–118, arXiv:hep-th/9810155 [hep-th].CrossRefGoogle Scholar
[528] A., Anisimov, M., Dine, M., Graesser, and S., Thomas, “Brane World SUSY Breaking,”Phys. Rev. D65 (2002) 105011, arXiv:hep-th/0111235 [hep-th].CrossRefGoogle Scholar
[529] S., Kachru, J., McGreevy, and P., Svrcek, “Bounds on Masses of Bulk Fields in String Compactifications,”JHEP 0604 (2006) 023, arXiv:hep-th/0601111 [hep-th].Google Scholar
[530] S., Kachru, L., McAllister, and R., Sundrum, “Sequestering in String Theory,”JHEP 0710 (2007) 013, arXiv:hep-th/0703105 [hep-th].Google Scholar
[531] R., Blumenhagen, J., Conlon, S., Krippendorf, S., Moster, and F., Quevedo, “SUSY Breaking in Local String/F-Theory Models,”JHEP 0909 (2009) 007, arXiv:0906.3297 [hep-th].Google Scholar
[532] M., Berg, D., Marsh, L., McAllister, and E., Pajer, “Sequestering in String Compactifications,”JHEP 1106 (2011) 134, arXiv:1012.1858 [hep-th].Google Scholar
[533] M., Berg, J., Conlon, D., Marsh, and L., Witkowski, “Superpotential De-Sequestering in String Models,”JHEP 1302 (2013) 018, arXiv:1207.1103 [hep-th].Google Scholar
[534] C., Burgess et al., “The Inflationary Brane Anti-Brane Universe,”JHEP 0107 (2001) 047, arXiv:hep-th/0105204 [hep-th].Google Scholar
[535] S., Shandera, B., Shlaer, H., Stoica, and H., Tye, “Interbrane Interactions in Compact Spaces and Brane Inflation,”JCAP 0402 (2004) 013, arXiv:hep-th/0311207 [hep-th].Google Scholar
[536] P., Binetruy and G., Dvali, “D-term Inflation,”Phys. Lett. B388 (1996) 241–246, arXiv:hep-ph/9606342 [hep-ph].Google Scholar
[537] Z., Komargodski and N., Seiberg, “Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity,”JHEP 0906 (2009) 007, arXiv:0904.1159 [hep-th].Google Scholar
[538] L., McAllister, “An Inflaton Mass Problem in String Inflation from Threshold Corrections to Volume Stabilization,”JCAP 0602 (2006) 010, arXiv:hep-th/0502001 [hep-th].Google Scholar
[539] M., Kawasaki, M., Yamaguchi, and T., Yanagida, “Natural Chaotic Inflation in Super-gravity,”Phys. Rev. Lett. 85 (2000) 3572–3575, arXiv:hep-ph/0004243 [hep-ph].CrossRefGoogle Scholar
[540] M., Gaillard, H., Murayama, and K., Olive, “Preserving Flat Directions During Inflation,”Phys. Lett. B355 (1995) 71–77, arXiv:hep-ph/9504307 [hep-ph].CrossRefGoogle Scholar
[541] N., Arkani-Hamed, H.-C., Cheng, P., Creminelli, and L., Randall, “Extranatural Inflation,”Phys. Rev. Lett. 90 (2003) 221302, arXiv:hep-th/0301218 [hep-th].CrossRefGoogle Scholar
[542] D., Baumann and D., Green, “Desensitizing Inflation from the Planck Scale,”JHEP 1009 (2010) 057, arXiv:1004.3801 [hep-th].Google Scholar
[543] D., Roest, M., Scalisi, and I., Zavala, “Kähler Potentials for Planck Inflation,” arXiv:1307.4343 [hep-th].
[544] R., Kallosh, A., Linde, and T., Rube, “General Inflaton Potentials in Supergravity,”Phys. Rev. D83 (2011) 043507, arXiv:1011.5945 [hep-th].CrossRefGoogle Scholar
[545] R., Kallosh and A., Linde, “New Models of Chaotic Inflation in Supergravity,”JCAP 1011 (2010) 011, arXiv:1008.3375 [hep-th].Google Scholar
[546] S., Ferrara, R., Kallosh, A., Linde, A., Marrani, and A., Van Proeyen, “Superconformal Symmetry, NMSSM, and Inflation,”Phys. Rev. D83 (2011) 025008, arXiv:1008.2942 [hep-th].CrossRefGoogle Scholar
[547] S., Ferrara, R., Kallosh, A., Linde, A., Marrani, and A., Van Proeyen, “Jordan Frame Supergravity and Inflation in NMSSM,”Phys. Rev. D82 (2010) 045003, arXiv:1004.0712 [hep-th].CrossRefGoogle Scholar
[548] L., Alvarez-Gaume, C., Gomez, and R., Jimenez, “A Minimal Inflation Scenario,”JCAP 1103 (2011) 027, arXiv:1101.4948 [hep-th].Google Scholar
[549] S., Dimopoulos, S., Kachru, J., McGreevy, and J. G., Wacker, “N-flation,”JCAP 0808 (2008) 003, arXiv:hep-th/0507205 [hep-th].Google Scholar
[550] A., Liddle, A., Mazumdar, and F., Schunck, “Assisted Inflation,”Phys. Rev. D58 (1998) 061301, arXiv:astro-ph/9804177 [astro-ph].Google Scholar
[551] X., Dong, B., Horn, E., Silverstein, and A., Westphal, “Simple Exercises to Flatten Your Potential,”Phys. Rev. D84 (2011) 026011, arXiv:1011.4521 [hep-th].Google Scholar
[552] S., Panda, M., Sami, and S., Tsujikawa, “Prospects of Inflation in Delicate D-brane Cosmology,”Phys. Rev. D76 (2007) 103512, arXiv:0707.2848 [hep-th].CrossRefGoogle Scholar
[553] S., Gandhi, L., McAllister, and S., Sjors, “A Toolkit for Perturbing Flux Compactifications,”JHEP 1112 (2011) 053, arXiv:1106.0002 [hep-th].Google Scholar
[554] M., Dias, J., Frazer, and A., Liddle, “Multifield Consequences for D-brane Inflation,” arXiv:1203.3792 [astro-ph. CO].
[555] M., Tegmark, “What does inflation really predict?,”JCAP 0504 (2005) 001, arXiv:astro-ph/0410281 [astro-ph].Google Scholar
[556] H., Tye, J., Xu, and Y., Zhang, “Multi-Field Inflation with a Random Potential,”JCAP 0904 (2009) 018, arXiv:0812.1944 [hep-th].Google Scholar
[557] H., Tye and J., Xu, “A Meandering Inflaton,”Phys. Lett. B683 (2010) 326–330, arXiv:0910.0849 [hep-th].Google Scholar
[558] D., Battefeld and T., Battefeld, “Multi-Field Inflation on the Landscape,”JCAP 0903 (2009) 027, arXiv:0812.0367 [hep-th].Google Scholar
[559] J., Frazer and A., Liddle, “Exploring a String-like Landscape,”JCAP 1102 (2011) 026, arXiv:1101.1619 [astro-ph. CO].Google Scholar
[560] J., Frazer and A., Liddle, “Multi-Field Inflation with Random Potentials: Field Dimension, Feature Scale and Non-Gaussianity,”JCAP 1202 (2012) 039, arXiv:1111.6646 [astro-ph. CO].Google Scholar
[561] J., Frazer, “Predictions in Multi-Field Models of Inflation,” arXiv:1303.361 [astro-ph. CO].
[562] K., Enqvist and M., Sloth, “Adiabatic CMB Perturbations in Pre-Big Bang String Cosmology,”Nucl. Phys. B626 (2002) 395–409, arXiv:hep-ph/0109214 [hep-ph].CrossRefGoogle Scholar
[563] R., Allahverdi, R., Brandenberger, F.-Y., Cyr-Racine, and A., Mazumdar, “Reheating in Inflationary Cosmology: Theory and Applications,”Ann. Rev. Nucl. Part. Sci. 60 (2010) 27–51, arXiv:1001.2600 [hep-th].Google Scholar
[564] L., Kofman and P., Yi, “Reheating the Universe after String Theory Inflation,”Phys. Rev. D72 (2005) 106001, arXiv:hep-th/0507257 [hep-th].CrossRefGoogle Scholar
[565] N., Barnaby, C., Burgess, and J., Cline, “Warped Reheating in Brane-Antibrane Inflation,”JCAP 0504 (2005) 007, arXiv:hep-th/0412040 [hep-th].Google Scholar
[566] A., Frey, A., Mazumdar, and R., Myers, “Stringy Effects during Inflation and Reheating,”Phys. Rev. D73 (2006) 026003, arXiv:hep-th/0508139 [hep-th].Google Scholar
[567] D., Chialva, G., Shiu, and B., Underwood, “Warped Reheating in Multi-Throat Brane Inflation,”JHEP 0601 (2006) 014, arXiv:hep-th/0508229 [hep-th].Google Scholar
[568] N., Barnaby and J., Cline, “Non-Gaussian and Non-Scale-Invariant Perturbations from Tachyonic Preheating in Hybrid Inflation,”Phys. Rev. D73 (2006) 106012, arXiv:astro-ph/0601481 [astro-ph].Google Scholar
[569] P., Langfelder, “On Tunnelling in Two-Throat Warped Reheating,”JHEP 0606 (2006) 063, arXiv:hep-th/0602296 [hep-th].Google Scholar
[570] X., Chen and H., Tye, “Heating in Brane Inflation and Hidden Dark Matter,”JCAP 0606 (2006) 011, arXiv:hep-th/0602136 [hep-th].Google Scholar
[571] R., Brandenberger, A., Frey, and L., Lorenz, “Entropy Fluctuations in Brane Inflation Models,”Int. J. Mod. Phys. A24 (2009) 4327–4354, arXiv:0712.2178 [hep-th].CrossRefGoogle Scholar
[572] A., Berndsen, J., Cline, and H., Stoica, “Kaluza-Klein Relics from Warped Reheating,”Phys. Rev. D77 (2008) 123522, arXiv:0710.1299 [hep-th].CrossRefGoogle Scholar
[573] J., Dufaux, L., Kofman, and M., Peloso, “Dangerous Angular KK/Glueball Relics in String Theory Cosmology,”Phys. Rev. D78 (2008) 023520, arXiv:0802.2958 [hep-th].Google Scholar
[574] S., Panda, M., Sami, and I., Thongkool, “Reheating the D-brane Universe via Instant Preheating,”Phys. Rev. D81 (2010) 103506, arXiv:0905.2284 [hep-th].CrossRefGoogle Scholar
[575] A., Frey, R., Danos, and J., Cline, “Warped Kaluza–Klein Dark Matter,”JHEP 0911 (2009) 102, arXiv:0908.1387 [hep-th].Google Scholar
[576] R., Brandenberger, A., Knauf, and L., Lorenz, “Reheating in a Brane Monodromy Inflation Model,”JHEP 0810 (2008) 110, arXiv:0808.3936 [hep-th].Google Scholar
[577] R., Brandenberger, K., Dasgupta, and A.-C., Davis, “A Study of Structure Formation and Reheating in the D3/D7 Brane Inflation Model,”Phys. Rev. D78 (2008) 083502, arXiv:0801.3674 [hep-th].Google Scholar
[578] N., Bouatta, A.-C., Davis, R., Ribeiro, and D., Seery, “Preheating in Dirac–Born–Infeld Inflation,”JCAP 1009 (2010) 011, arXiv:1005.2425 [astro-ph. CO].Google Scholar
[579] D., Green, “Reheating Closed String Inflation,”Phys. Rev. D76 (2007) 103504, arXiv:0707.3832 [hep-th].Google Scholar
[580] M., Cicoli and A., Mazumdar, “Reheating for Closed String Inflation,”JCAP 1009 (2010) 025, arXiv:1005.5076 [hep-th].Google Scholar
[581] N., Barnaby, J., Bond, Z., Huang, and L., Kofman, “Preheating After Modular Inflation,”JCAP 0912 (2009) 021, arXiv:0909.0503 [hep-th].Google Scholar
[582] C., Burgess et al., “Non-Standard Primordial Fluctuations and Non-Gaussianity in String Inflation,”JHEP 1008 (2010) 045, arXiv:1005.4840 [hep-th].Google Scholar
[583] J., Braden, L., Kofman, and N., Barnaby, “Reheating the Universe After Multi-Field Inflation,”JCAP 1007 (2010) 016, arXiv:1005.2196 [hep-th].Google Scholar
[584] M., Cicoli and A., Mazumdar, “Inflation in String Theory: A Graceful Exit to the Real World,”Phys. Rev. D83 (2011) 063527, arXiv:1010.0941 [hep-th].Google Scholar
[585] M., Cicoli, G., Tasinato, I., Zavala, C., Burgess, and F., Quevedo, “Modulated Reheating and Large Non-Gaussianity in String Cosmology,”JCAP 1205 (2012) 039, arXiv:1202.4580 [hep-th].Google Scholar
[586] J., Preskill, “Cosmological Production of Superheavy Magnetic Monopoles,”Phys. Rev. Lett. 43 (1979) 1365.CrossRefGoogle Scholar
[587] A., Vilenkin and E., Shellard, Cosmic Strings and Other Topological Defects. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2000.
[588] M., Hindmarsh and T., Kibble, “Cosmic Strings,”Rept. Prog. Phys. 58 (1995) 477–562, arXiv:hep-ph/9411342 [hep-ph].Google Scholar
[589] J., Polchinski, “Introduction to Cosmic F- and D-Strings,” arXiv:hep-th/0412244 [hep-th].
[590] T., Kibble, “Cosmic Strings Reborn?,” arXiv:astro-ph/0410073 [astro-ph].
[591] E., Copeland and T., Kibble, “Cosmic Strings and Superstrings,”Proc. R. Soc. Lond. A466 (2010) 623–657, arXiv:0911.1345 [hep-th].CrossRefGoogle Scholar
[592] T., Kibble, “Topology of Cosmic Domains and Strings,”J. Phys. A9 (1976) 1387–1398.CrossRefGoogle Scholar
[593] J., Christiansen et al., “Search for Cosmic Strings in the COSMOS Survey,”Phys. Rev. D83 (2011) 122004, arXiv:1008.0426 [astro-ph. CO].CrossRefGoogle Scholar
[594] D., Chernoff and H., Tye, “Cosmic String Detection via Microlensing of Stars,” arXiv:0709.1139 [astro-ph].
[595] K., Kuijken, X., Siemens, and T., Vachaspati, “Microlensing by Cosmic Strings,”Mon. Not. Roy. Astron. Soc. (2007), arXiv:0707.2971 [astro-ph].Google Scholar
[596] D., Chernoff, “Clustering of Superstring Loops,” arXiv:0908.4077 [astro-ph. CO].
[597] N., Kaiser and A., Stebbins, “Microwave Anisotropy Due to Cosmic Strings,”Nature 310 (1984) 391–393.Google Scholar
[598] R., Brandenberger, R., Danos, O., Hernandez, and G., Holder, “The 21 cm Signature of Cosmic String Wakes,”JCAP 1012 (2010) 028, arXiv:1006.2514 [astro-ph. CO].Google Scholar
[599] F., Bouchet, P., Peter, A., Riazuelo, and M., Sakellariadou, “Is there evidence for topological defects in the BOOMERANG data?,”Phys. Rev. D65 (2002) 021301, arXiv:astro-ph/0005022 [astro-ph].CrossRefGoogle Scholar
[600] E., Jeong and G., Smoot, “Search for Cosmic Strings in CMB Anisotropies,”Astrophys. J. 624 (2005) 21–27, arXiv:astro-ph/0406432 [astro-ph].CrossRefGoogle Scholar
[601] L., Pogosian, M., Wyman, and I., Wasserman, “Observational Constraints on Cosmic Strings: Bayesian Analysis in a Three Dimensional Parameter Space,”JCAP 0409 (2004) 008, arXiv:astro-ph/0403268 [astro-ph].Google Scholar
[602] M., Wyman, L., Pogosian, and I., Wasserman, “Bounds on Cosmic Strings from WMAP and SDSS,”Phys. Rev. D72 (2005) 023513, arXiv:astro-ph/0503364 [astro-ph].Google Scholar
[603] N., Bevis, M., Hindmarsh, M., Kunz, and J., Urrestilla, “Fitting CMB Data with Cosmic Strings and Inflation,”Phys. Rev. Lett. 100 (2008) 021301, arXiv:astro-ph/0702223 [astro-ph].CrossRefGoogle Scholar
[604] LIGO and Virgo Collaboration, J., Abadie et al., “Upper Limits on a Stochastic Gravitational-Wave Background using LIGO and Virgo Interferometers at 600-1000 Hz,”Phys. Rev. D85 (2012) 122001, arXiv:1112.5004 [gr-qc].Google Scholar
[605] X., Siemens, V., Mandic, and J., Creighton, “Gravitational Wave Stochastic Background from Cosmic (Super)strings,”Phys. Rev. Lett. 98 (2007) 111101, arXiv: astro-ph/0610920 [astro-ph].Google Scholar
[606] T., Damour and A., Vilenkin, “Gravitational Wave Bursts from Cosmic Strings,”Phys. Rev. Lett. 85 (2000) 3761–3764, arXiv:gr-qc/0004075 [gr-qc].CrossRefGoogle Scholar
[607] T., Damour and A., Vilenkin, “Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings,”Phys. Rev. D64 (2001) 064008, arXiv:gr-qc/0104026 [gr-qc].CrossRefGoogle Scholar
[608] T., Damour and A., Vilenkin, “Gravitational Radiation from Cosmic (Super)strings: Bursts, Stochastic Background, and Observational Windows,”Phys. Rev. D71 (2005) 063510, arXiv:hep-th/0410222 [hep-th].CrossRefGoogle Scholar
[609] H., Motohashi and T., Suyama, “Detecting Cosmic String Passage through the Earth by Consequent Global Earthquake,” arXiv:1305.6676 [astro-ph. CO].
[610] X., Martin and A., Vilenkin, “Gravitational Radiation from Monopoles Connected by Strings,”Phys. Rev. D55 (1997) 6054–6060, arXiv:gr-qc/9612008 [gr-qc].CrossRefGoogle Scholar
[611] L., Leblond, B., Shlaer, and X., Siemens, “Gravitational Waves from Broken Cosmic Strings: The Bursts and the Beads,”Phys. Rev. D79 (2009) 123519, arXiv:0903.4686 [astro-ph. CO].CrossRefGoogle Scholar
[612] H., Nielsen and P., Olesen, “Vortex Line Models for Dual Strings,”Nucl. Phys. B61 (1973) 45–61.CrossRefGoogle Scholar
[613] E., Witten, “Cosmic Superstrings,”Phys. Lett. B153 (1985) 243.CrossRefGoogle Scholar
[614] N., Jones, H., Stoica, and H., Tye, “Brane Interaction as the Origin of Inflation,”JHEP 0207 (2002) 051, arXiv:hep-th/0203163 [hep-th].Google Scholar
[615] S., Sarangi and H., Tye, “Cosmic String Production towards the End of Brane Inflation,”Phys. Lett. B536 (2002) 185–192, arXiv:hep-th/0204074 [hep-th].Google Scholar
[616] N., Jones, H., Stoica, and H., Tye, “The Production, Spectrum and Evolution of Cosmic Strings in Brane Inflation,”Phys. Lett. B563 (2003) 6–14, arXiv:hep-th/0303269 [hep-th].Google Scholar
[617] K., Becker, M., Becker, and A., Krause, “Heterotic Cosmic Strings,”Phys. Rev. D74 (2006) 045023, arXiv:hep-th/0510066 [hep-th].Google Scholar
[618] A., Sen, “SO(32) Spinors of Type I and Other Solitons on Brane/Anti-brane Pair,”JHEP 9809 (1998) 023, arXiv:hep-th/9808141 [hep-th].Google Scholar
[619] G., Dvali and A., Vilenkin, “Formation and Evolution of Cosmic D-Strings,”JCAP 0403 (2004) 010, arXiv:hep-th/0312007 [hep-th].Google Scholar
[620] E., Copeland, R. C., Myers, and J., Polchinski, “Cosmic F and D-Strings,”JHEP 0406 (2004) 013, arXiv:hep-th/0312067 [hep-th].Google Scholar
[621] M., Jackson, N., Jones, and J., Polchinski, “Collisions of Cosmic F and D-Strings,”JHEP 0510 (2005) 013, arXiv:hep-th/0405229 [hep-th].Google Scholar
[622] J., Harvey and A., Strominger, “The Heterotic String is a Soliton,”Nucl. Phys. B449 (1995) 535–552, arXiv:hep-th/9504047 [hep-th].Google Scholar
[623] J., Schwarz, “An SL(2,Z) Multiplet of Type IIB Superstrings,”Phys. Lett. B360 (1995) 13–18, arXiv:hep-th/9508143 [hep-th].CrossRefGoogle Scholar
[624] H., Tye, I., Wasserman, and M., Wyman, “Scaling of Multi-Tension Cosmic Superstring Networks,”Phys. Rev. D71 (2005) 103508, arXiv:astro-ph/0503506 [astro-ph].Google Scholar
[625] L., Leblond and H., Tye, “Stability of D1-Strings Inside a D3-brane,”JHEP 0403 (2004) 55, arXiv:hep-th/0402072 [hep-th].Google Scholar
[626] H., Firouzjahi and H., Tye, “Brane Inflation and Cosmic String Tension in Superstring Theory,”JCAP 0503 (2005) 009, arXiv:hep-th/0501099 [hep-th].Google Scholar
[627] G., Dvali and H., Tye, “Brane Inflation,”Phys. Lett. B450 (1999) 72–82, arXiv:hep-ph/9812483 [hep-ph].CrossRefGoogle Scholar
[628] K., Dasgupta, C., Herdeiro, S., Hirano, and R., Kallosh, “D3/D7 Inflationary Model and M-theory,”Phys. Rev. D65 (2002) 126002, arXiv:hep-th/0203019 [hep-th].CrossRefGoogle Scholar
[629] J., Hsu, R., Kallosh, and S., Prokushkin, “On Brane Inflation with Volume Stabilization,”JCAP 0312 (2003) 009, arXiv:hep-th/0311077 [hep-th].Google Scholar
[630] K., Dasgupta, J., Hsu, R., Kallosh, A., Linde, and M., Zagermann, “D3/D7 Brane Inflation and Semilocal Strings,”JHEP 0408 (2004) 030, arXiv:hep-th/0405247 [hep-th].Google Scholar
[631] J., Hsu and R., Kallosh, “Volume Stabilization and the Origin of the Inflaton Shift Symmetry in String Theory,”JHEP 0404 (2004) 042, arXiv:hep-th/0402047 [hep-th].Google Scholar
[632] M., Haack et al., “Update of D3/D7-Brane Inflation on K3 × T2/Z2,”Nucl. Phys. B806 (2009) 103–177, arXiv:0804.3961 [hep-th].CrossRefGoogle Scholar
[633] A., Hebecker, S., Kraus, D., Lust, S., Steinfurt, and T., Weigand, “Fluxbrane Inflation,”Nucl. Phys. B854 (2012) 509–551, arXiv:1104.5016 [hep-th].CrossRefGoogle Scholar
[634] A., Hebecker, S., Kraus, M., Kuntzler, D., Lüust, and T., Weigand, “Fluxbranes: Moduli Stabilisation and Inflation,”JHEP 1301 (2013) 095, arXiv:1207.2766 [hep-th].Google Scholar
[635] E., Buchbinder, “Five-brane Dynamics and Inflation in Heterotic M-theory,”Nucl. Phys. B711 (2005) 314–344, arXiv:hep-th/0411062 [hep-th].CrossRefGoogle Scholar
[636] K., Becker, M., Becker, and A., Krause, “M-theory Inflation from Multi-M5-brane Dynamics,”Nucl. Phys. B715 (2005) 349–371, arXiv:hep-th/0501130 [hep-th].CrossRefGoogle Scholar
[637] J., Blanco-Pillado et al., “Racetrack Inflation,”JHEP 0411 (2004) 063, arXiv:hep-th/0406230 [hep-th].Google Scholar
[638] J., Blanco-Pillado et al., “Inflating in a Better Racetrack,”JHEP 0609 (2006) 002, arXiv:hep-th/0603129 [hep-th].Google Scholar
[639] J., Conlon and F., Quevedo, “Kähler Moduli Inflation,”JHEP 0601 (2006) 146, arXiv:hep-th/0509012 [hep-th].Google Scholar
[640] M., Cicoli, F., Pedro, and G., Tasinato, “Poly-instanton Inflation,”JCAP 1112 (2011) 022, arXiv:1110.6182 [hep-th].Google Scholar
[641] D., Green, B., Horn, L., Senatore, and E., Silverstein, “Trapped Inflation,”Phys. Rev. D80 (2009) 063533, arXiv:0902.1006 [hep-th].CrossRefGoogle Scholar
[642] G., D'Amico, R., Gobbetti, M., Schillo, and M., Kleban, “Inflation from Flux Cascades,” arXiv:1211.3416 [hep-th].
[643] G., D'Amico, R., Gobbetti, M., Kleban, and M., Schillo, “Unwinding Inflation,”JCAP 1303 (2013) 004, arXiv:1211.4589 [hep-th].Google Scholar
[644] E., Martinec, P., Adshead, and M., Wyman, “Chern-Simons EM-flation,”JHEP 1302 (2013) 027, arXiv:1206.2889 [hep-th].Google Scholar
[645] G., Dvali, Q., Shafi, and S., Solganik, “D-brane Inflation,” arXiv:hep-th/0105203 [hep-th].
[646] S., Alexander, “Inflation from D-anti-D-brane Annihilation,”Phys. Rev. D65 (2002) 023507, arXiv:hep-th/0105032 [hep-th].CrossRefGoogle Scholar
[647] C., Chan, P., Paul, and H., Verlinde, “A Note on Warped String Compactification,”Nucl. Phys. B581 (2000) 156–164, arXiv:hep-th/0003236 [hep-th].CrossRefGoogle Scholar
[648] I., Klebanov and A., Tseytlin, “Gravity Duals of Supersymmetric SU(N) × SU(N + M) Gauge Theories,”Nucl. Phys. B578 (2000) 123–138, arXiv:hep-th/0002159 [hep-th].CrossRefGoogle Scholar
[649] A., Kehagias and E., Kiritsis, “Mirage Cosmology,”JHEP 9911 (1999) 022, arXiv:hep-th/9910174 [hep-th].Google Scholar
[650] S., Kachru and L., McAllister, “Bouncing Brane Cosmologies from Warped String Compactifications,”JHEP 0303 (2003) 018, arXiv:hep-th/0205209 [hep-th].Google Scholar
[651] C., Germani, N., Grandi, and A., Kehagias, “A Stringy Alternative to Inflation: The Cosmological Slingshot Scenario,”Class. Quant. Grav. 25 (2008) 135004, arXiv:hep-th/0611246 [hep-th].CrossRefGoogle Scholar
[652] D., Easson, R., Gregory, G., Tasinato, and I., Zavala, “Cycling in the Throat,”JHEP 0704 (2007) 026, arXiv:hep-th/0701252 [hep-TH].Google Scholar
[653] P., Candelas and X., de la Ossa, “Comments on Conifolds,”Nucl. Phys. B342 (1990) 246–268.CrossRefGoogle Scholar
[654] I., Klebanov and E., Witten, “Superconformal Field Theory on Three-Branes at a CalabiYau Singularity,”Nucl. Phys. B536 (1998) 199–218, arXiv:hep-th/9807080 [hep-th].CrossRefGoogle Scholar
[655] C., Vafa, “Superstrings and Topological Strings at Large N,”J. Math. Phys. 42 (2001) 2798–2817, arXiv:hep-th/0008142 [hep-th].CrossRefGoogle Scholar
[656] C., Burgess, J., Cline, K., Dasgupta, and H., Firouzjahi, “Uplifting and Inflation with D3-branes,”JHEP 0703 (2007) 027, arXiv:hep-th/0610320 [hep-th].Google Scholar
[657] A., Krause and E., Pajer, “Chasing Brane Inflation in String Theory,”JCAP 0807 (2008) 023, arXiv:0705.4682 [hep-th].Google Scholar
[658] D., Arean, D., Crooks, and A., Ramallo, “Supersymmetric Probes on the Conifold,”JHEP 0411 (2004) 035, arXiv:hep-th/0408210 [hep-th].Google Scholar
[659] S., Kuperstein, “Meson Spectroscopy from Holomorphic Probes on the Warped Deformed Conifold,”JHEP 0503 (2005) 014, arXiv:hep-th/0411097 [hep-th].Google Scholar
[660] D., Baumann, A., Dymarsky, S., Kachru, I., Klebanov, and L., McAllister, “Compactification Effects in D-brane Inflation,”Phys. Rev. Lett. 104 (2010) 251602, arXiv:0912.4268 [hep-th].CrossRefGoogle Scholar
[661] A., Ceresole, G., Dall'Agata, R., D'Auria, and S., Ferrara, “Spectrum of Type IIB Supergravity on AdS5 × T1,1: Predictions on N = 1 SCFT's,”Phys. Rev. D61 (2000) 066001, arXiv:hep-th/9905226 [hep-th].CrossRefGoogle Scholar
[662] P., Koerber and L., Martucci, “From Ten to Four and Back Again: How to Generalize the Geometry,”JHEP 0708 (2007) 059, arXiv:0707.1038 [hep-th].Google Scholar
[663] A., Ali, R., Chingangbam, S., Panda, and M., Sami, “Prospects of Inflation with Perturbed Throat Geometry,”Phys. Lett. B674 (2009) 131–136, arXiv:0809.4941 [hep-th].Google Scholar
[664] A., Ali, A., Deshamukhya, S., Panda, and M., Sami, “Inflation with Improved D3-brane Potential and the Fine-Tunings Associated with the Model,”Eur. Phys. J. C71 (2011) 1672, arXiv:1010.1407 [hep-th].Google Scholar
[665] R., Kallosh and A., Linde, “Landscape, the Scale of SUSY Breaking, and Inflation,”JHEP 0412 (2004) 004, arXiv:hep-th/0411011 [hep-th].Google Scholar
[666] A., Sen, “Rolling Tachyon,”JHEP 0204 (2002) 048, arXiv:hep-th/0203211 [hep-th].Google Scholar
[667] A., Sen, “Tachyon Matter,”JHEP 0207 (2002) 065, arXiv:hep-th/0203265 [hep-th].Google Scholar
[668] N., Lambert, H., Liu, and J., Maldacena, “Closed Strings from Decaying D-branes,”JHEP 0703 (2007) 014, arXiv:hep-th/0303139 [hep-th].Google Scholar
[669] S., Mukohyama, “Reheating a Multi-Throat Universe by Brane Motion,”Gen. Rel. Grav. 41 (2009) 1151–1163, arXiv:0706.3214 [hep-th].CrossRefGoogle Scholar
[670] S., Dimopoulos, S., Kachru, N., Kaloper, A., Lawrence, and E., Silverstein, “Small Numbers from Tunneling between Brane Throats,”Phys. Rev. D64 (2001) 121702, arXiv:hep-th/0104239 [hep-th].Google Scholar
[671] O., Aharony, Y., Antebi, and M., Berkooz, “Open String Moduli in KKLT Compactifications,”Phys. Rev. D72 (2005) 106009, arXiv:hep-th/0508080 [hep-th].CrossRefGoogle Scholar
[672] H., Firouzjahi and H., Tye, “Closer towards Inflation in String Theory,”Phys. Lett. B584 (2004) 147–154, arXiv:hep-th/0312020 [hep-th].CrossRefGoogle Scholar
[673] N., Iizuka and S., Trivedi, “An Inflationary Model in String Theory,”Phys. Rev. D70 (2004) 043519, arXiv:hep-th/0403203 [hep-th].CrossRefGoogle Scholar
[674] J., Cline and H., Stoica, “Multibrane Inflation and Dynamical Flattening of the Inflaton Potential,”Phys. Rev. D72 (2005) 126004, arXiv:hep-th/0508029 [hep-th].CrossRefGoogle Scholar
[675] L., Hoi and J., Cline, “How Delicate is Brane-Antibrane Inflation?,”Phys.Rev. D79 (2009) 083537, arXiv:0810.1303 [hep-th].Google Scholar
[676] J., Cline, L., Hoi, and B., Underwood, “Dynamical Fine Tuning in Brane Inflation,”JHEP 0906 (2009) 078, arXiv:0902.0339 [hep-th].Google Scholar
[677] D., Easson and R., Gregory, “Circumventing the Eta Problem,”Phys.Rev. D80 (2009) 083518, arXiv:0902.1798 [hep-th].CrossRefGoogle Scholar
[678] M., Bastero-Gil, A., Berera, and J., Rosa, “Warming up Brane-Antibrane Inflation,”Phys.Rev. D84 (2011) 103503, arXiv:1103.5623 [hep-th].Google Scholar
[679] S., Kachru, D., Simic, and S., Trivedi, “Stable Non-Supersymmetric Throats in String Theory,”JHEP 1005 (2010) 067, arXiv:0905.2970 [hep-th].Google Scholar
[680] R., Brustein and P., Steinhardt, “Challenges for Superstring Cosmology,”Phys.Lett. B302 (1993) 196–201, arXiv:hep-th/9212049 [hep-th].CrossRefGoogle Scholar
[681] B., Underwood, “Brane Inflation is Attractive,”Phys.Rev. D78 (2008) 023509, arXiv:0802.2117 [hep-th].Google Scholar
[682] S., Bird, H., Peiris, and D., Baumann, “Brane Inflation and the Overshoot Problem,”Phys.Rev. D80 (2009) 023534, arXiv:0905.2412 [hep-th].CrossRefGoogle Scholar
[683] B., Freivogel, M., Kleban, M., Rodriguez Martinez, and L., Susskind, “Observational Consequences of a Landscape,”JHEP 0603 (2006) 039, arXiv:hep-th/0505232 [hep-th].Google Scholar
[684] K., Dutta, P., Vaudrevange, and A., Westphal, “The Overshoot Problem in Inflation after Tunneling,”JCAP 1201 (2012) 026, arXiv:1109.5182 [hep-th].Google Scholar
[685] N., Itzhaki and E., Kovetz, “Inflection Point Inflation and Time Dependent Potentials in String Theory,”JHEP 0710 (2007) 054, arXiv:0708.2798 [hep-th].Google Scholar
[686] L., Kofman et al., “Beauty is Attractive: Moduli Trapping at Enhanced Symmetry Points,”JHEP 0405 (2004) 030, arXiv:hep-th/0403001 [hep-th].Google Scholar
[687] S., Watson, “Moduli Stabilization with the String Higgs Effect,”Phys.Rev. D70 (2004) 066005, arXiv:hep-th/0404177 [hep-th].CrossRefGoogle Scholar
[688] B., Greene, S., Judes, J., Levin, S., Watson, and A., Weltman, “Cosmological Moduli Dynamics,”JHEP 0707 (2007) 060, arXiv:hep-th/0702220 [hep-th].Google Scholar
[689] D., Battefeld and T., Battefeld, “A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions,”JHEP 1007 (2010) 063, arXiv:1004.3551 [hep-th].Google Scholar
[690] S., Shandera and H., Tye, “Observing Brane Inflation,”JCAP 0605 (2006) 007, arXiv:hep-th/0601099 [hep-th].Google Scholar
[691] H., Peiris, D., Baumann, B., Friedman, and A., Cooray, “Phenomenology of D-Brane Inflation with General Speed of Sound,”Phys.Rev. D76 (2007) 103517, arXiv:0706.1240 [astro-ph].CrossRefGoogle Scholar
[692] H.-Y., Chen and J.-O., Gong, “Towards a Warped Inflationary Brane Scanning,”Phys.Rev. D80 (2009) 063507, arXiv:0812.4649 [hep-th].Google Scholar
[693] O., DeWolfe, S., Kachru, and H., Verlinde, “The Giant Inflaton,”JHEP 0405 (2004) 017, arXiv:hep-th/0403123 [hep-th].Google Scholar
[694] E., Pajer, “Inflation at the Tip,”JCAP 0804 (2008) 031, arXiv:0802.2916 [hep-th].Google Scholar
[695] H.-Y., Chen, J.-O., Gong, and G., Shiu, “Systematics of Multi-Field Effects at the End of Warped Brane Inflation,”JHEP 0809 (2008) 011, arXiv:0807.1927 [hep-th].Google Scholar
[696] H.-Y., Chen, J.-O., Gong, K., Koyama, and G., Tasinato, “Towards Multi-Field D-brane Inflation in a Warped Throat,”JCAP 1011 (2010) 034, arXiv:1007.2068 [hep-th].Google Scholar
[697] X., Chen, S., Sarangi, H., Tye, and J., Xu, “Is Brane Inflation Eternal?,”JCAP 0611 (2006) 015, arXiv:hep-th/0608082 [hep-th].Google Scholar
[698] T., Kobayashi, S., Mukohyama, and S., Kinoshita, “Constraints on Wrapped DBI Inflation in a Warped Throat,”JCAP 0801 (2008) 028, arXiv:0708.4285 [hep-th].Google Scholar
[699] M., Becker, L., Leblond, and S., Shandera, “Inflation from Wrapped Branes,”Phys.Rev. D76 (2007) 123516, arXiv:0709.1170 [hep-th].Google Scholar
[700] S., Chang, M., Kleban, and T., Levi, “When Worlds Collide,”JCAP 0804 (2008) 034, arXiv:0712.2261 [hep-th].Google Scholar
[701] S., Chang, M., Kleban, and T., Levi, “Watching Worlds Collide: Effects on the CMB from Cosmological Bubble Collisions,”JCAP 0904 (2009) 025, arXiv:0810.5128 [hep-th].Google Scholar
[702] S., Feeney, M., Johnson, D., Mortlock, and H., Peiris, “First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year Results,”Phys.Rev. D84 (2011) 043507, arXiv:1012.3667 [astro-ph.CO].Google Scholar
[703] S., Feeney, M., Johnson, D., Mortlock, and H., Peiris, “First Observational Tests of Eternal Inflation,”Phys.Rev.Lett. 107 (2011) 071301, arXiv:1012.1995 [astro-ph.CO].CrossRefGoogle Scholar
[704] S., Osborne, L., Senatore, and K., Smith, “Collisions with other Universes: the Optimal Analysis of the WMAP Data,” arXiv:1305.1964 [astro-ph.CO].
[705] J., Elliston, D., Mulryne, D., Seery, and R., Tavakol, “Evolution of f/NL to the Adiabatic Limit,”JCAP 1111 (2011) 005, arXiv:1106.2153 [astro-ph.CO].Google Scholar
[706] R., Bean, X., Chen, G., Hailu, H., Tye, and J., Xu, “Duality Cascade in Brane Inflation,”JCAP 0803 (2008) 026, arXiv:0802.0491 [hep-th].Google Scholar
[707] C., Burgess, J., Cline, H., Stoica, and F., Quevedo, “Inflation in Realistic D-brane Models,”JHEP 0409 (2004) 033, arXiv:hep-th/0403119 [hep-th].Google Scholar
[708] H., Firouzjahi, L., Leblond, and H., Tye, “The (p, q) String Tension in a Warped Deformed Conifold,”JHEP 0605 (2006) 047, arXiv:hep-th/0603161 [hep-th].Google Scholar
[709] C., Burgess, J., Cline, and M., Postma, “Axionic D3-D7 Inflation,”JHEP 0903 (2009) 058, arXiv:0811.1503 [hep-th].Google Scholar
[710] P., Aspinwall and R., Kallosh, “Fixing all Moduli for M-theory on K3 × K3,”JHEP 0510 (2005) 001, arXiv:hep-th/0506014 [hep-th].Google Scholar
[711] P., Binetruy, G., Dvali, R., Kallosh, and A., Van Proeyen, “Fayet-Iliopoulos Terms in Supergravity and Cosmology,”Class.Quant.Grav. 21 (2004) 3137–3170, arXiv:hep-th/0402046 [hep-th].Google Scholar
[712] Z., Komargodski and N., Seiberg, “Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity,”JHEP 0906 (2009) 007, arXiv:0904.1159 [hep-th].Google Scholar
[713] K., Dienes and B., Thomas, “On the Inconsistency of Fayet–Iliopoulos Terms in Supergravity Theories,”Phys.Rev. D81 (2010) 065023, arXiv:0911.0677 [hep-th].Google Scholar
[714] R., Gwyn, M., Sakellariadou, and S., Sypsas, “Theoretical Constraints on Brane Inflation and Cosmic Superstring Radiation,”JHEP 1109 (2011) 075, arXiv:1105.1784 [hep-th].Google Scholar
[715] Z., Komargodski and N., Seiberg, “Comments on Supercurrent Multiplets, Supersym-metric Field Theories and Supergravity,”JHEP 1007 (2010) 017, arXiv:1002.2228 [hep-th].Google Scholar
[716] M., Berg, M., Haack, and B., Kors, “On the Moduli Dependence of Nonperturbative Superpotentials in Brane Inflation,” arXiv:hep-th/0409282 [hep-th].
[717] J., Garcia-Bellido, R., Rabadan, and F., Zamora, “Inflationary Scenarios from Branes at Angles,”JHEP 0201 (2002) 036, arXiv:hep-th/0112147 [hep-th].Google Scholar
[718] R., Blumenhagen, B., Kors, D., Lüst, and T., Ott, “Hybrid Inflation in Intersecting Brane Worlds,”Nucl.Phys. B641 (2002) 235–255, arXiv:hep-th/0202124 [hep-th].Google Scholar
[719] M., Gomez-Reino and I., Zavala, “Recombination of Intersecting D-branes and Cosmological Inflation,”JHEP 0209 (2002) 020, arXiv:hep-th/0207278 [hep-th].Google Scholar
[720] A., Avgoustidis, D., Cremades, and F., Quevedo, “Wilson Line Inflation,”Gen.Rel.Grav. 39 (2007) 1203–1234, arXiv:hep-th/0606031 [hep-th].CrossRefGoogle Scholar
[721] A., Avgoustidis and I., Zavala, “Warped Wilson Line DBI Inflation,”JCAP 0901 (2009) 045, arXiv:0810.5001 [hep-th].Google Scholar
[722] T., Grimm, M., Kerstan, E., Palti, and T., Weigand, “On Fluxed Instantons and Moduli Stabilisation in IIB Orientifolds and F-theory,”Phys.Rev. D84 (2011) 066001, arXiv:1105.3193 [hep-th].CrossRefGoogle Scholar
[723] A., Ashoorioon and A., Krause, “Power Spectrum and Signatures for Cascade Inflation,” arXiv:hep-th/0607001 [hep-th].
[724] A., Krause, “Large Gravitational Waves and Lyth Bound in Multi-Brane Inflation,”JCAP 0807 (2008) 001, arXiv:0708.4414 [hep-th].Google Scholar
[725] L., Anderson, J., Gray, A., Lukas, and B., Ovrut, “Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua,”Phys.Rev. D83 (2011) 106011, arXiv:1102.0011 [hep-th].CrossRefGoogle Scholar
[726] M., Cicoli, S., Alwis, and A., Westphal, “Heterotic Moduli Stabilization,” arXiv:1304.1809 [hep-th].
[727] S., Gukov, S., Kachru, X., Liu, and L., McAllister, “Heterotic Moduli Stabilization with Fractional Chern-Simons Invariants,”Phys.Rev. D69 (2004) 086008, arXiv:hep-th/0310159 [hep-th].CrossRefGoogle Scholar
[728] P., Brax, S., Davis, and M., Postma, “The Robustness of ns ≲ 0.95 in Racetrack Inflation,”JCAP 0802 (2008) 020, arXiv:0712.0535 [hep-th].Google Scholar
[729] J., Urrestilla, A., Achucarro, and A., Davis, “D-term Inflation without Cosmic Strings,”Phys.Rev.Lett. 92 (2004) 251302, arXiv:hep-th/0402032 [hep-th].Google Scholar
[730] L., Randall and R., Sundrum, “A Large Mass Hierarchy from a Small Extra Dimension,”Phys.Rev.Lett. 83 (1999) 3370–3373, arXiv:hep-ph/9905221 [hep-ph].CrossRefGoogle Scholar
[731] R., Bean, S., Shandera, H., Tye, and J., Xu, “Comparing Brane Inflation to WMAP,”JCAP 0705 (2007) 004, arXiv:hep-th/0702107 [hep-th].Google Scholar
[732] M., Spalinski, “On Power Law Inflation in DBI Models,”JCAP 0705 (2007) 017, arXiv:hep-th/0702196 [hep-th].Google Scholar
[733] M., Spalinski, “A Consistency Relation for Power Law Inflation in DBI Models,”Phys.Lett. B650 (2007) 313–316, arXiv:hep-th/0703248 [HEP-TH].Google Scholar
[734] X., Chen, “Multi-Throat Brane Inflation,”Phys.Rev. D71 (2005) 063506, arXiv:hep-th/0408084 [hep-th].CrossRefGoogle Scholar
[735] X., Chen, “Inflation from Warped Space,”JHEP 0508 (2005) 045, arXiv:hep-th/0501184 [hep-th].Google Scholar
[736] X., Chen, “Running Non-Gaussianities in DBI inflation,”Phys.Rev. D72 (2005) 123518, arXiv:astro-ph/0507053 [astro-ph].CrossRefGoogle Scholar
[737] C., de Rham and A., Tolley, “DBI and the Galileon Reunited,”JCAP 1005 (2010) 015, arXiv:1003.5917 [hep-th].Google Scholar
[738] G., Goon, K., Hinterbichler, and M., Trodden, “Symmetries for Galileons and DBI Scalars on Curved Space,”JCAP 1107 (2011) 017, arXiv:1103.5745 [hep-th].Google Scholar
[739] S., Gubser, I., Klebanov, and A., Polyakov, “Gauge Theory Correlators from Non-Critical String Theory,”Phys.Lett. B428 (1998) 105–114, arXiv:hep-th/9802109 [hep-th].Google Scholar
[740] E., Witten, “Anti-de Sitter space and Holography,”Adv.Theor.Math.Phys. 2 (1998) 253–291, arXiv:hep-th/9802150 [hep-th].Google Scholar
[741] S., Gandhi, L., McAllister, and S., Sjors, to appear.
[742] T., Bachlechner and L., McAllister, “D-brane Bremsstrahlung,” arXiv:1306.0003 [hep-th].
[743] R., Bean, X., Chen, H., Peiris, and J., Xu, “Comparing Infrared Dirac-Born-Infeld Brane Inflation to Observations,”Phys.Rev. D77 (2008) 023527, arXiv:0710.1812 [hep-th].CrossRefGoogle Scholar
[744] E., Sefusatti, M., Liguori, A., Yadav, M., Jackson, and E., Pajer, “Constraining Running Non-Gaussianity,”JCAP 0912 (2009) 022, arXiv:0906.0232 [astro-ph.CO].Google Scholar
[745] J., Lidsey and I., Huston, “Gravitational Wave Constraints on Dirac-Born-Infeld Inflation,”JCAP 0707 (2007) 002, arXiv:0705.0240 [hep-th].Google Scholar
[746] J., Ward, “DBI N-flation,”JHEP 0712 (2007) 045, arXiv:0711.0760 [hep-th].Google Scholar
[747] D., Easson, R., Gregory, D., Mota, G., Tasinato, and I., Zavala, “Spinflation,”JCAP 0802 (2008) 010, arXiv:0709.2666 [hep-th].Google Scholar
[748] M.-x., Huang, G., Shiu, and B., Underwood, “Multifield DBI Inflation and Non-Gaussianities,”Phys.Rev. D77 (2008) 023511, arXiv:0709.3299 [hep-th].CrossRefGoogle Scholar
[749] D., Langlois, S., Renaux-Petel, D., Steer, and T., Tanaka, “Primordial Perturbations and Non-Gaussianities in DBI and General Multi-Field Inflation,”Phys.Rev. D78 (2008) 063523, arXiv:0806.0336 [hep-th].CrossRefGoogle Scholar
[750] D., Langlois, S., Renaux-Petel, D., Steer, and T., Tanaka, “Primordial Fluctuations and Non-Gaussianities in Multi-Field DBI Inflation,”Phys.Rev.Lett. 101 (2008) 061301, arXiv:0804.3139 [hep-th].CrossRefGoogle Scholar
[751] D., Langlois, S., Renaux-Petel, and D., Steer, “Multi-Field DBI Inflation: Introducing Bulk Forms and Revisiting the Gravitational Wave Constraints,”JCAP 0904 (2009) 021, arXiv:0902.2941 [hep-th].Google Scholar
[752] S., Renaux-Petel, “Combined Local and Equilateral Non-Gaussianities from Multi-Field DBI Inflation,”JCAP 0910 (2009) 012, arXiv:0907.2476 [hep-th].Google Scholar
[753] D., Langlois and S., Renaux-Petel, “Perturbations in Generalized Multi-Field Inflation,”JCAP 0804 (2008) 017, arXiv:0801.1085 [hep-th].Google Scholar
[754] R., Gregory and D., Kaviani, “Spinflation with Angular Potentials,”JHEP 1201 (2012) 037, arXiv:1107.5522 [hep-th].Google Scholar
[755] D., Kaviani, “Spinflation with Backreaction,”Int.J.Mod.Phys. D22 (2013) 1350062, arXiv:1212.5831 [hep-th].CrossRefGoogle Scholar
[756] L., Leblond and S., Shandera, “Cosmology of the Tachyon in Brane Inflation,”JCAP 0701 (2007) 009, arXiv:hep-th/0610321 [hep-th].Google Scholar
[757] J., Zhang, Y., Cai, and Y.-S., Piao, “Preheating in a DBI Inflation Model,” arXiv:1307.6529 [hep-th].
[758] F., Adams, J., Bond, K., Freese, J., Frieman, and A., Olinto, “Natural Inflation: Particle Physics Models, Power Law Spectra for Large-Scale Structure, and Constraints from COBE,”Phys.Rev. D47 (1993) 426–455, arXiv:hep-ph/9207245 [hep-ph].Google Scholar
[759] J., Kim, H., Nilles, and M., Peloso, “Completing Natural Inflation,”JCAP 0501 (2005) 005, arXiv:hep-ph/0409138 [hep-ph].Google Scholar
[760] T., Grimm, “Axion Inflation in Type II String Theory,”Phys.Rev. D77 (2008) 126007, arXiv:0710.3883 [hep-th].Google Scholar
[761] E., Copeland, A., Mazumdar, and N., Nunes, “Generalized Assisted Inflation,”Phys.Rev. D60 (1999) 083506, arXiv:astro-ph/9904309 [astro-ph].Google Scholar
[762] A., Jokinen and A., Mazumdar, “Inflation in Large N Limit of Supersymmetric Gauge Theories,”Phys.Lett. B597 (2004) 222, arXiv:hep-th/0406074 [hep-th].Google Scholar
[763] A., Ashoorioon, H., Firouzjahi, and M., Sheikh-Jabbari, “M-flation: Inflation from Matrix Valued Scalar Fields,”JCAP 0906 (2009) 018, arXiv:0903.1481 [hep-th].Google Scholar
[764] A., Ashoorioon, H., Firouzjahi, and M., Sheikh-Jabbari, “Matrix Inflation and the Landscape of its Potential,”JCAP 1005 (2010) 002, arXiv:0911.4284 [hep-th].Google Scholar
[765] A., Ashoorioon and M., Sheikh-Jabbari, “Gauged M-flation, its UV sensitivity and Spectator Species,”JCAP 1106 (2011) 014, arXiv:1101.0048 [hep-th].Google Scholar
[766] A., Ashoorioon, U., Danielsson, and M., Sheikh-Jabbari, “1/N Resolution to Inflationary Problem,”Phys.Lett. B713 (2012) 353–357, arXiv:1112.2272 [hep-th].Google Scholar
[767] R., Kallosh, N., Sivanandam, and M., Soroush, “Axion Inflation and Gravity Waves in String Theory,”Phys.Rev. D77 (2008) 043501, arXiv:0710.3429 [hep-th].Google Scholar
[768] M., Cicoli, K., Dutta, and A., Maharana, “N-flation with Hierarchically Light Axions in String Compactifications,” arXiv:1401.2579 [hep-th].
[769] S., Kim and A., Liddle, “N-flation: Multi-Field Inflationary Dynamics and Perturbations,”Phys.Rev. D74 (2006) 023513, arXiv:astro-ph/0605604 [astro-ph].Google Scholar
[770] Y.-S., Piao, “On Perturbation Spectra of N-flation,”Phys.Rev. D74 (2006) 047302, arXiv:gr-qc/0606034 [gr-qc].CrossRefGoogle Scholar
[771] S., Kim and A., Liddle, “N-flation: Non-Gaussianity in the Horizon-Crossing Approximation,”Phys.Rev. D74 (2006) 063522, arXiv:astro-ph/0608186 [astro-ph].CrossRefGoogle Scholar
[772] T., Battefeld and R., Easther, “Non-Gaussianities in Multi-Field Inflation,”JCAP 0703 (2007) 020, arXiv:astro-ph/0610296 [astro-ph].Google Scholar
[773] S., Kim and A., Liddle, “N-flation: Observable Predictions from the Random Matrix Mass Spectrum,”Phys.Rev. D76 (2007) 063515, arXiv:0707.1982 [astro-ph].Google Scholar
[774] D., Battefeld and T., Battefeld, “Non-Gaussianities in N-flation,”JCAP 0705 (2007) 012, arXiv:hep-th/0703012 [hep-th].Google Scholar
[775] D., Battefeld and S., Kawai, “Preheating after N-flation,”Phys.Rev. D77 (2008) 123507, arXiv:0803.0321 [astro-ph].CrossRefGoogle Scholar
[776] P., Adshead, R., Easther, and E., Lim, “Cosmology With Many Light Scalar Fields: Stochastic Inflation and Loop Corrections,”Phys.Rev. D79 (2009) 063504, arXiv:0809.4008 [hep-th].Google Scholar
[777] S., Kim, A., Liddle, and D., Seery, “Non-Gaussianity in Axion N-flation Models,”Phys.Rev.Lett. 105 (2010) 181302, arXiv:1005.4410 [astro-ph.CO].Google Scholar
[778] S., Kim, A., Liddle, and D., Seery, “Non-Gaussianity in Axion N-flation Models: Detailed Predictions and Mass Spectra,”Phys.Rev. D85 (2012) 023532, arXiv:1108.2944 [astro-ph.CO].Google Scholar
[779] E., Silverstein and A., Westphal, “Monodromy in the CMB: Gravity Waves and String Inflation,”Phys.Rev. D78 (2008) 106003, arXiv:0803.3085 [hep-th].Google Scholar
[780] N., Kaloper and L., Sorbo, “A Natural Framework for Chaotic Inflation,”Phys.Rev.Lett. 102 (2009) 121301, arXiv:0811.1989 [hep-th].CrossRefGoogle Scholar
[781] N., Kaloper, A., Lawrence, and L., Sorbo, “An Ignoble Approach to Large-Field Inflation,”JCAP 1103 (2011) 023, arXiv:1101.0026 [hep-th].Google Scholar
[782] S., Dubovsky, A., Lawrence, and M., Roberts, “Axion Monodromy in a Model of Holographic Gluodynamics,”JHEP 1202 (2012) 053, arXiv:1105.3740 [hep-th].Google Scholar
[783] E., Palti and T., Weigand, “Towards Large r from [p, q]-Inflation,” arXiv:1403.7507 [hep-th].
[784] L., McAllister, E., Silverstein, A., Westphal, and T., Wrase, “The Powers of Monodromy,” arXiv:1405.3652 [hep-th].
[785] M., Aganagic, C., Beem, J., Seo, and C., Vafa, “Geometrically Induced Metastability and Holography,”Nucl.Phys. B789 (2008) 382–412, arXiv:hep-th/0610249 [hep-th].Google Scholar
[786] J., Conlon, “Brane-Antibrane Backreaction in Axion Monodromy Inflation,”JCAP 1201 (2012) 033, arXiv:1110.6454 [hep-th].Google Scholar
[787] E., Pajer and M., Peloso, “A Review of Axion Inflation in the Era of Planck,” arXiv:1305.3557 [hep-th].
[788] N., Barnaby, E., Pajer, and M., Peloso, “Gauge Field Production in Axion Inflation: Consequences for Monodromy, Non-Gaussianity in the CMB, and Gravitational Waves at Interferometers,”Phys.Rev. D85 (2012) 023525, arXiv:1110.3327 [astro-ph.CO].CrossRefGoogle Scholar
[789] N., Barnaby and M., Peloso, “Large Non-Gaussianity in Axion Inflation,”Phys.Rev.Lett. 106 (2011) 181301, arXiv:1011.1500 [hep-ph].Google Scholar
[790] A., Linde, S., Mooij, and E., Pajer, “Gauge Field Production in SUGRA Inflation: Local Non-Gaussianity and Primordial Black Holes,” arXiv:1212.1693 [hep-th].
[791] S., Behbahani, A., Dymarsky, M., Mirbabayi, and L., Senatore, “(Small) Resonant NonGaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation,”JCAP 1212 (2012) 036, arXiv:1111.3373 [hep-th].Google Scholar
[792] X., Chen, R., Easther, and E., Lim, “Generation and Characterization of Large NonGaussianities in Single Field Inflation,”JCAP 0804 (2008) 010, arXiv:0801.3295 [astro-ph].Google Scholar
[793] H., Peiris, R., Easther, and R., Flauger, “Constraining Monodromy Inflation,” arXiv:1303.2616 [astro-ph.CO].
[794] R., Flauger, private communication.
[795] R., Easther and R., Flauger, “Planck Constraints on Monodromy Inflation,” arXiv:1308.3736 [astro-ph.CO].
[796] M., Anber and L., Sorbo, “Naturally Inflating on Steep Potentials through Electromagnetic Dissipation,”Phys.Rev. D81 (2010) 043534, arXiv:0908.4089 [hep-th].Google Scholar
[797] P., Meerburg and E., Pajer, “Observational Constraints on Gauge Field Production in Axion Inflation,” arXiv:1203.6076 [astro-ph.CO].
[798] L., Sorbo, “Parity Violation in the Cosmic Microwave Background from a Pseudoscalar Inflaton,”JCAP 1106 (2011) 003, arXiv:1101.1525 [astro-ph.CO].Google Scholar
[799] A., Lue, L.-M., Wang, and M., Kamionkowski, “Cosmological Signature of New Parity Violating Interactions,”Phys.Rev.Lett. 83 (1999) 1506–1509, arXiv:astro-ph/9812088 [astro-ph].Google Scholar
[800] S., Crowder, R., Namba, V., Mandic, S., Mukohyama, and M., Peloso, “Measurement of Parity Violation in the Early Universe using Gravitational Wave Detectors,” arXiv:1212.4165 [astro-ph.CO].
[801] P., Binetruy and M., Gaillard, “Candidates for the Inflaton Field in Superstring Models,”Phys.Rev. D34 (1986) 3069–3083.Google Scholar
[802] T., Banks, M., Berkooz, S., Shenker, G., Moore, and P., Steinhardt, “Modular Cosmology,”Phys.Rev. D52 (1995) 3548–3562, arXiv:hep-th/9503114 [hep-th].CrossRefGoogle Scholar
[803] M., Badziak and M., Olechowski, “Volume Modulus Inflection Point Inflation and the Gravitino Mass Problem,”JCAP 0902 (2009) 010, arXiv:0810.4251 [hep-th].Google Scholar
[804] A., Linde and A., Westphal, “Accidental Inflation in String Theory,”JCAP 080 3 (2008) 005, arXiv:0712.1610 [hep-th].Google Scholar
[805] B., Greene and A., Weltman, “An Effect of a′ Corrections on Racetrack Inflation,”JHEP 0603 (2006) 035, arXiv:hep-th/0512135 [hep-th].Google Scholar
[806] J., Conlon, R., Kallosh, A., Linde, and F., Quevedo, “Volume Modulus Inflation and the Gravitino Mass Problem,”JCAP 0809 (2008) 011, arXiv:0806.0809 [hep-th].Google Scholar
[807] W., Buchmuller, K., Hamaguchi, O., Lebedev, and M., Ratz, “Maximal Temperature in Flux Compactifications,”JCAP 0501 (2005) 004, arXiv:hep-th/0411109 [hep-th].Google Scholar
[808] M., Graesser and M., Salem, “The Scale of Gravity and the Cosmological Constant Within a Landscape,”Phys.Rev. D76 (2007) 043506, arXiv:astro-ph/0611694 [astro-ph].CrossRefGoogle Scholar
[809] M., Badziak and M., Olechowski, “Volume Modulus Inflation and a Low Scale of SUSY Breaking,”JCAP 0807 (2008) 021, arXiv:0802.1014 [hep-th].Google Scholar
[810] T., He, S., Kachru, and A., Westphal, “Gravity Waves and the LHC: Towards High-Scale Inflation with Low-Energy SUSY,”JHEP 1006 (2010) 065, arXiv:1003.4265 [hep-th].Google Scholar
[811] A., Linde, Y., Mambrini, and K., Olive, “Supersymmetry Breaking due to Moduli Stabilization in String Theory,”Phys.Rev. D85 (2012) 066005, arXiv:1111.1465 [hep-th].Google Scholar
[812] M., Cicoli, J., Conlon, and F., Quevedo, “Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications,”JHEP 0801 (2008) 052, arXiv:0708.1873 [hep-th].Google Scholar
[813] R., Blumenhagen, X., Gao, T., Rahn, and P., Shukla, “Moduli Stabilization and Inflationary Cosmology with Poly-Instantons in Type IIB Orientifolds,”JHEP 1211 (2012) 101, arXiv:1208.1160 [hep-th].Google Scholar
[814] J., Bond, L., Kofman, S., Prokushkin, and P., Vaudrevange, “Roulette Inflation with Kähler Moduli and their Axions,”Phys.Rev. D75 (2007) 123511, arXiv:hep-th/0612197 [hep-th].Google Scholar
[815] J., Blanco-Pillado, D., Buck, E., Copeland, M., Gomez-Reino, and N., Nunes, “Kähler Moduli Inflation Revisited,”JHEP 1001 (2010) 081, arXiv:0906.3711 [hep-th].Google Scholar
[816] P., Candelas, X., De La Ossa, A., Font, S., Katz, and D., Morrison, “Mirror Symmetry for Two-Parameter Models. 1.,”Nucl.Phys. B416 (1994) 481–538, arXiv:hep-th/9308083 [hep-th].Google Scholar
[817] R., Blumenhagen and M., Schmidt-Sommerfeld, “Power Towers of String Instantons for N =1 Vacua,”JHEP 0807 (2008) 027, arXiv:0803.1562 [hep-th].Google Scholar
[818] I., Garcia-Etxebarria and A., Uranga, “Nonperturbative Superpotentials Across Lines of Marginal Stability,”JHEP 0801 (2008) 033, arXiv:0711.1430 [hep-th].Google Scholar
[819] R., Blumenhagen, X., Gao, T., Rahn, and P., Shukla, “A Note on Poly-Instanton Effects in Type IIB Orientifolds on Calabi-Yau Threefolds,”JHEP 1206 (2012) 162, arXiv:1205.2485 [hep-th].Google Scholar
[820] D., Lust and X., Zhang, “Four Kähler Moduli Stabilisation in Type IIB Orientifolds with K3-fibred Calabi-Yau Threefold Compactification,”JHEP 1305 (2013) 051, arXiv:1301.7280 [hep-th].Google Scholar
[821] M., Cicoli, S., Downes, and B., Dutta, “Power Suppression at Large Scales in String Inflation,” arXiv:1309.3412 [hep-th].
[822] F., Pedro and A., Westphal, “Low-l CMB Power Loss in String Inflation,” arXiv:1309.3413 [hep-th].
[823] D., Lopez Nacir, R., Porto, L., Senatore, and M., Zaldarriaga, “Dissipative Effects in the Effective Field Theory of Inflation,”JHEP 1201 (2012) 075, arXiv:1109.4192 [hep-th].Google Scholar
[824] A., Berera, “Warm Inflation,”Phys.Rev.Lett. 75 (1995) 3218–3221, arXiv:astro-ph/9509049 [astro-ph].Google Scholar
[825] A., Berera and T., Kephart, “The Ubiquitous Inflaton in String-Inspired Models,”Phys.Rev.Lett. 83 (1999) 1084–1087, arXiv:hep-ph/9904410 [hep-ph].Google Scholar
[826] A., Berera, I., Moss, and R., Ramos, “Warm Inflation and its Microphysical Basis,”Reports on Progress in Physics 72 no. 2, (2009) 026901.Google Scholar
[827] D., Battefeld, T., Battefeld, C., Byrnes, and D., Langlois, “Beauty is Distractive: Particle Production during Multifield Inflation,”JCAP 1108 (2011) 025, arXiv:1106.1891 [astro-ph.CO].Google Scholar
[828] P., Adshead and M., Wyman, “Chromo-Natural Inflation: Natural Inflation on a Steep Potential with Classical Non-Abelian Gauge Fields,”Phys.Rev.Lett. 108 (2012) 261302, arXiv:1202.2366 [hep-th].Google Scholar
[829] L., Kofman, A., Linde, and A., Starobinsky, “Towards the Theory of Reheating after Inflation,”Phys.Rev. D56 (1997) 3258–3295, arXiv:hep-ph/9704452 [hep-ph].CrossRefGoogle Scholar
[830] N., Barnaby, Z., Huang, L., Kofman, and D., Pogosyan, “Cosmological Fluctuations from Infra-Red Cascading During Inflation,”Phys.Rev. D80 (2009) 043501, arXiv:0902.0615 [hep-th].Google Scholar
[831] L., Kofman, unpublished.
[832] A., Brown, “Boom and Bust Inflation: a Graceful Exit via Compact Extra Dimensions,”Phys.Rev.Lett. 101 (2008) 221302, arXiv:0807.0457 [hep-th].Google Scholar
[833] R., Easther, J., Giblin, L., Hui, and E., Lim, “A New Mechanism for Bubble Nucleation: Classical Transitions,”Phys.Rev. D80 (2009) 123519, arXiv:0907.3234 [hep-th].CrossRefGoogle Scholar
[834] M., Kleban, K., Krishnaiyengar, and M., Porrati, “Flux Discharge Cascades in Various Dimensions,”JHEP 1111 (2011) 096, arXiv:1108.6102 [hep-th].Google Scholar
[835] B., Shlaer, “Chaotic Brane Inflation,” arXiv:1211.4024 [hep-th].
[836] J., Brown and C., Teitelboim, “Neutralization of the Cosmological Constant by Membrane Creation,”Nucl.Phys. B297 (1988) 787–836.CrossRefGoogle Scholar
[837] K., Freese and D., Spolyar, “Chain Inflation: ‘Bubble Bubble Toil and Trouble’,”JCAP 0507 (2005) 007, arXiv:hep-ph/0412145 [hep-ph].Google Scholar
[838] B., Feldstein and B., Tweedie, “Density Perturbations in Chain Inflation,”JCAP 0704 (2007) 020, arXiv:hep-ph/0611286 [hep-ph].Google Scholar
[839] Q.-G., Huang, “Simplified Chain Inflation,”JCAP 0705 (2007) 009, arXiv:0704.2835 [hep-th].Google Scholar
[840] D., Chialva and U., Danielsson, “Chain Inflation and the Imprint of Fundamental Physics in the CMBR,”JCAP 0903 (2009) 007, arXiv:0809.2707 [hep-th].Google Scholar
[841] A., Ashoorioon, K., Freese, and J., Liu, “Slow Nucleation Rates in Chain Inflation with QCD Axions or Monodromy,”Phys.Rev. D79 (2009) 067302, arXiv:0810.0228 [hep-ph].Google Scholar
[842] A., Ashoorioon and K., Freese, “Gravity Waves from Chain Inflation,” arXiv:0811.2401 [hep-th].
[843] J., Cline, G., Moore, and Y., Wang, “Chain Inflation Reconsidered,”JCAP 1108 (2011) 032, arXiv:1106.2188 [hep-th].Google Scholar
[844] L., McAllister and I., Mitra, “Relativistic D-brane Scattering is Extremely Inelastic,”JHEP 0502 (2005) 019, arXiv:hep-th/0408085 [hep-th].Google Scholar
[845] C., Bachas, “D-brane Dynamics,”Phys.Lett. B374 (1996) 37–42, arXiv:hep-th/9511043 [hep-th].Google Scholar
[846] A., Maleknejad and M., Sheikh-Jabbari, “Non-Abelian Gauge Field Inflation,”Phys.Rev. D84 (2011) 043515, arXiv:1102.1932 [hep-ph].CrossRefGoogle Scholar
[847] A., Maleknejad and M., Sheikh-Jabbari, “Gauge-flation: Inflation From Non-Abelian Gauge Fields,”Phys.Lett. B723 (2013) 224–228, arXiv:1102.1513 [hep-ph].Google Scholar
[848] M., Sheikh-Jabbari, “Gauge-flation vs Chromo-Natural Inflation,”Phys.Lett. B717 (2012) 6–9, arXiv:1203.2265 [hep-th].Google Scholar
[849] A., Maleknejad, M., Sheikh-Jabbari, and J., Soda, “Gauge Fields and Inflation,” arXiv:1212.2921 [hep-th].
[850] D., Lopez Nacir, R., Porto, and M., Zaldarriaga, “The Consistency Condition for the Three-Point Function in Dissipative Single-Clock Inflation,”JCAP 1209 (2012) 004, arXiv:1206.7083 [hep-th].Google Scholar
[851] P., Adshead, E., Martinec, and M., Wyman, “Perturbations in Chromo-Natural Inflation,” arXiv:1305.2930 [hep-th].
[852] S., Weinberg, The First Three Minutes Modern View of the Origin of the Universe. Basic Books, 1977.
[853] A., Vilenkin, “The Birth of Inflationary Universes,”Phys.Rev. D27 (1983) 2848.Google Scholar
[854] A., Linde, “Eternally Existing Selfreproducing Chaotic Inflationary Universe,”Phys.Lett. B175 (1986) 395–400.Google Scholar
[855] A., Linde, D., Linde, and A., Mezhlumian, “From the Big Bang Theory to the Theory of a Stationary Universe,”Phys.Rev. D49 (1994) 1783–1826, arXiv:gr-qc/9306035 [gr-qc].CrossRefGoogle Scholar
[856] A., Linde and A., Mezhlumian, “Stationary Universe,”Phys.Lett. B307 (1993) 25–33, arXiv:gr-qc/9304015 [gr-qc].Google Scholar
[857] A., Vilenkin, “Predictions from Quantum Cosmology,”Phys.Rev.Lett. 74 (1995) 846–849, arXiv:gr-qc/9406010 [gr-qc].CrossRefGoogle Scholar
[858] J., Garriga, D., Schwartz-Perlov, A., Vilenkin, and S., Winitzki, “Probabilities in the Inflationary Multiverse,”JCAP 0601 (2006) 017, arXiv:hep-th/0509184 [hep-th].Google Scholar
[859] J., Garriga and A., Vilenkin, “Holographic Multiverse,”JCAP 0901 (2009) 021, arXiv:0809.4257 [hep-th].Google Scholar
[860] R., Bousso, “Holographic Probabilities in Eternal Inflation,”Phys.Rev.Lett. 97 (2006) 191302, arXiv:hep-th/0605263 [hep-th].Google Scholar
[861] R., Bousso, B., Freivogel, and I.-S., Yang, “Eternal Inflation: The Inside Story,”Phys.Rev. D74 (2006) 103516, arXiv:hep-th/0606114 [hep-th].Google Scholar
[862] R., Bousso, B., Freivogel, and I.-S., Yang, “Properties of the Scale Factor Measure,”Phys.Rev. D79 (2009) 063513, arXiv:0808.3770 [hep-th].CrossRefGoogle Scholar
[863] A., De Simone et al., “Boltzmann Brains and the Scale-Factor Cutoff Measure of the Multiverse,”Phys.Rev. D82 (2010) 063520, arXiv:0808.3778 [hep-th].CrossRefGoogle Scholar
[864] G., Gibbons and N., Turok, “The Measure Problem in Cosmology,”Phys.Rev. D77 (2008) 063516, arXiv:hep-th/0609095 [hep-th].CrossRefGoogle Scholar
[865] A., Borde, A., Guth, and A., Vilenkin, “Inflationary Spacetimes are Incomplete in Past Directions,”Phys.Rev.Lett. 90 (2003) 151301, arXiv:gr-qc/0110012 [gr-qc].CrossRefGoogle Scholar
[866] G., Bredon, Topology and Geometry. Graduate Texts in Mathematics. Springer, 1993.
[867] M., Nakahara, Geometry, Topology and Physics. Taylor & Francis, 1990.
[868] K., Hori, S., Katz, A., Klemm, R., Pandharipande, R., Thomas et al., Mirror Symmetry.Clay Mathematics Monographs, 2003.
[869] D., Joyce, Compact Manifolds with Special Holonomy. Oxford University Press, 2000.
[870] P., Candelas, “Lectures on Complex Manifolds.” Unpublished.
[871] A., Moroianu, Lectures on Kähler Geometry. Cambridge University Press, 2007.
[872] S.-T., Yau, “On the Ricci Curvature of a Compact Kähler Manifold and the Complex Monge-Ampere Equation, I,”Communications on Pure and Applied Mathematics 31 no. 3, (1978) 339–411.Google Scholar
[873] F., Piazza and F., Vernizzi, “Effective Field Theory of Cosmological Perturbations,” arXiv:1307.4350 [hep-th].
[874] L., Senatore, “TASI Lectures on Inflation.” Unpublished.
[875] P., Creminelli, “Les Houches Lectures on Non-Gaussianities.” Unpublished.
[876] J., Goldstone, A., Salam, and S., Weinberg, “Broken Symmetries,”Phys.Rev. 127 (1962) 965–970.Google Scholar
[877] J., Donoghue, E., Golowich, and B. R., Holstein, “Dynamics of the Standard Model,”Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 2 (1992) 1–540.Google Scholar
[878] J., Cornwall, D., Levin, and G., Tiktopoulos, “Derivation of Gauge Invariance from HighEnergy Unitarity Bounds on the S-Matrix,”Phys.Rev. D10 (1974) 1145.CrossRefGoogle Scholar
[879] I., Low and A., Manohar, “Spontaneously Broken Spacetime Symmetries and Goldstone's Theorem,”Phys.Rev.Lett. 88 (2002) 101602, arXiv:hep-th/0110285 [hep-th].CrossRefGoogle Scholar
[880] V., Assassi, D., Baumann, and D., Green, “Symmetries and Loops in Inflation,”JHEP 1302 (2013) 151, arXiv:1210.7792 [hep-th].Google Scholar
[881] R., Wald, General Relativity. University of Chicago Press, 2010.
[882] C., Cheung, A. L., Fitzpatrick, J., Kaplan, and L., Senatore, “On the Consistency Relation of the Three-Point Function in Single-Field Inflation,”JCAP 0802 (2008) 021, arXiv:0709.0295 [hep-th].Google Scholar
[883] D., Baumann, D., Green, and R., Porto, “B-modes and the Nature of Inflation,” arXiv:1407.2621 [hep-th].
[884] L., Senatore and M., Zaldarriaga, “A Naturally Large Four-Point Function in Single-Field Inflation,”JCAP 1101 (2011) 003, arXiv:1004.1201 [hep-th].Google Scholar
[885] N., Arkani-Hamed, P., Creminelli, S., Mukohyama, and M., Zaldarriaga, “Ghost Inflation,”JCAP 0404 (2004) 001, arXiv:hep-th/0312100 [hep-th].Google Scholar
[886] N., Bartolo, M., Fasiello, S., Matarrese, and A., Riotto, “Large Non-Gaussianities in the Effective Field Theory Approach to Single-Field Inflation: the Bispectrum,”JCAP 1008 (2010) 008, arXiv:1004.0893 [astro-ph.CO].Google Scholar
[887] P., Creminelli, G., D'Amico, M., Musso, J., Norena, and E., Trincherini, “Galilean Symmetry in the Effective Theory of Inflation: New Shapes of Non-Gaussianity,”JCAP 1102 (2011) 006, arXiv:1011.3004 [hep-th].Google Scholar
[888] L., Senatore and M., Zaldarriaga, “The Effective Field Theory of Multifield Inflation,”JHEP 1204 (2012) 024, arXiv:1009.2093 [hep-th].Google Scholar
[889] R., Arnowitt, S., Deser, and C., Misner, “The Dynamics of General Relativity,” arXiv:gr-qc/0405109 [gr-qc].
[890] J., Schwinger, “Brownian Motion of a Quantum Oscillator,”J.Math.Phys. 2 (1961) 407–432.CrossRefGoogle Scholar
[891] E., Calzetta and B., Hu, “Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems,”Phys.Rev. D35 (1987) 495.CrossRefGoogle Scholar
[892] R., Jordan, “Effective Field Equations for Expectation Values,”Phys.Rev. D33 (1986) 444–454.CrossRefGoogle Scholar
[893] S., Weinberg, “Quantum Contributions to Cosmological Correlations,”Phys.Rev. D72 (2005) 043514, arXiv:hep-th/0506236 [hep-th].CrossRefGoogle Scholar
[894] D., Seery, “One-Loop Corrections to a Scalar Field during Inflation,”JCAP 0711 (2007) 025, arXiv:0707.3377 [astro-ph].Google Scholar
[895] P., Adshead, R., Easther, and E., Lim, “The ‘in-in’ Formalism and Cosmological Perturbations,”Phys.Rev. D80 (2009) 083521, arXiv:0904.4207 [hep-th].CrossRefGoogle Scholar
[896] S., Groot Nibbelink and B., van Tent, “Density Perturbations Arising From Multiple Field Slow-Roll Inflation,” arXiv:hep-ph/0011325 [hep-ph].
[897] S., Groot Nibbelink and B., van Tent, “Scalar Perturbations During Multiple Field Slow-Roll Inflation,”Class.Quant.Grav. 19 (2002) 613–640, arXiv:hep-ph/0107272 [hep-ph].Google Scholar
[898] D., Langlois, “Lectures on Inflation and Cosmological Perturbations,”Lect.Notes Phys. 800 (2010) 1–57, arXiv:1001.5259 [astro-ph.CO].CrossRefGoogle Scholar
[899] B., van Tent, “Cosmological Inflation with Multiple Fields and the Theory of Density Fluctuations,” PhD thesis, Utrecht University, 2002.
[900] R., Easther and J., Giblin, “The Hubble Slow Roll Expansion for Multi Field Inflation,”Phys.Rev. D72 (2005) 103505, arXiv:astro-ph/0505033 [astro-ph].CrossRefGoogle Scholar
[901] M., Sasaki and E., Stewart, “A General Analytic Formula for the Spectral Index of the Density Perturbations Produced During Inflation,”Prog.Theor.Phys. 95 (1996) 71–78, arXiv:astro-ph/9507001 [astro-ph].CrossRefGoogle Scholar
[902] C., Gordon, D., Wands, B., Bassett, and R., Maartens, “Adiabatic and Entropy Perturbations from Inflation,”Phys.Rev. D63 (2001) 023506, arXiv:astro-ph/0009131 [astro-ph].CrossRefGoogle Scholar
[903] D., Wands, N., Bartolo, S., Matarrese, and A., Riotto, “An Observational Test of Two-Field Inflation,”Phys.Rev. D66 (2002) 043520, arXiv:astro-ph/0205253 [astro-ph].Google Scholar
[904] N., Bartolo, S., Matarrese, and A., Riotto, “Adiabatic and Isocurvature Perturbations from Inflation: Power Spectra and Consistency Relations,”Phys.Rev. D64 (2001) 123504, arXiv:astro-ph/0107502 [astro-ph].CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Daniel Baumann, University of Cambridge, Liam McAllister, Cornell University, New York
  • Book: Inflation and String Theory
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316105733.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Daniel Baumann, University of Cambridge, Liam McAllister, Cornell University, New York
  • Book: Inflation and String Theory
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316105733.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Daniel Baumann, University of Cambridge, Liam McAllister, Cornell University, New York
  • Book: Inflation and String Theory
  • Online publication: 05 May 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316105733.012
Available formats
×