Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T21:07:41.756Z Has data issue: false hasContentIssue false

4 - Evolutionary Biology of Malarial Parasites

Published online by Cambridge University Press:  10 August 2009

Ananias A. Escalante
Affiliation:
Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, Atlanta, Georgia 30333
Altaf A. Lal
Affiliation:
U.S. Embassy, New Delhi, 110021, India
Krishna R. Dronamraju
Affiliation:
Foundation for Genetic Research, Houston, Texas
Get access

Summary

INTRODUCTION

Analysis of Plasmodium spp. genome sequences would allow for the discovery of thousands of new genes and proteins, providing a unique opportunity for understanding the complex biology of malarial parasites. However, the identification of these new genes will be followed by the same old questions that researchers have faced for nearly three decades: how variable are the newly identified genes? How is such variation generated and maintained? How can this diversity affect intervention efforts?

Understanding the origin and extent of malarial parasites' genetic diversity, and the implications of these on the development of new intervention strategies, requires a close collaboration between biomedical researchers and evolutionary biologists. In the case of malaria research, as is the case in the study of many other infectious diseases, biomedical researchers/public health professionals and evolutionary biologists have traditionally worked in isolation.

Biomedical researchers and public health managers often seek answers to the following questions: What are the specific clinical end points in malaria? What level of efficacy can be expected from a multivalent vaccine? How does drug-resistance emerge? How quickly do drug-resistant parasites disperse? What is the impact of transmission pressure on the dispersal of drug-resistant parasites? Is it better to use one drug at a time or to use a “cocktail” before any of the drugs become ineffective? What is the impact of bed-nets on the selection of parasite lines?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidoo, M, Udhayakumar, V (2000). Field studies of cytotoxic T lymphocytes in malaria infections: implications for malaria vaccine development. Parasitol. Today 16: 50–6CrossRefGoogle ScholarPubMed
Anders R F, Saul A J (1994). Candidate antigens for an asexual blood stage vaccine against falciparum malaria. In Molecular Immunological Considerations in Malaria Vaccine Development, edited by M F Good and A J Saul, pp. 169–208. CRC Press, Boca Raton, FL
Anderson, T J, Haubold, B, Williams, J T, Estrada-Franco, J G, Richardson, L, Mollinedo, R, Bockarie, M, Mokili, J, Mharakurwa, S, French, N, Whitworth, J, Velez, I D, Brockman, A H, Nosten, F, Ferreira, M U, Day, K P (2000). Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol. 17: 1467–82CrossRefGoogle ScholarPubMed
Arez, A P, Snounou, G, Pinto, J, Sousa, C A, Modiano, D, Ribeiro, H, Franco, A S, Alves, J, Rosario, V E (1999). A clonal Plasmodium falciparum population in an isolated outbreak of malaria in the Republic of Cabo Verde. Parasitology 118: 347–55CrossRefGoogle Scholar
Ariey, F, Hommel, D, Scanf, C, Duchemin, J B, Peneau, C, Hulin, A, Sarthou, J L, Reynes, J M, Fandeur, T, Mercereau-Puijalon, O (2001). Association of severe malaria with a specific Plasmodium falciparum genotype in French Guiana. J. Infect. Dis. 184: 237–41CrossRefGoogle ScholarPubMed
Awadalla, P, Walliker, D, Babiker, H, Mackinnon, M (2001). The question of Plasmodium falciparum population structure. Trends Parasitol. 17: 351–3CrossRefGoogle ScholarPubMed
Babiker, H A, Walliker, D (1997). Current views on the population structure of Plasmodium falciparum: implications for control. Parasitol. Today 13: 262–7CrossRefGoogle ScholarPubMed
Basco, L K, Ringwald, P (2000a). Molecular epidemiology of malaria in Yaounde, Cameroon. VII. Analysis of recrudescence and reinfection in patients with uncomplicated falciparum malaria. Am. J. Trop. Med. Hyg. 63: 215–21CrossRefGoogle Scholar
Basco, L K, Ringwald, P (2000b). Molecular epidemiology of malaria in Yaounde, Cameroon. VI. Sequence variations in the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene and in vitro resistance to pyrimethamine and cycloguanil. Am. J. Trop. Med. Hyg. 62: 271–6CrossRefGoogle Scholar
Bensch, S, Stjernman, M, Hasselquist, D, Ostman, O, Hansson, B, Westerdahl, H, Pinheiro, R T (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. R. Soc. Lond. B, Biol. Sci. 267: 1583–9CrossRefGoogle ScholarPubMed
Biswas, S, Escalante, A A, Chaiyaroj, S, Angkasekwinai, P, Lal, A A (2000). Prevalence of point mutations in the dihydrofolate reductase and dihydropteroate synthetase genes of Plasmodium falciparum isolates from India and Thailand: a molecular epidemiologic study. Trop. Med. Int. Health 5: 737–43CrossRefGoogle ScholarPubMed
Boyd M F (1949). A comprehensive survey of all aspects of this group of diseases from a global standpoint. In Malariology, Vol. 1, edited by MF Boyd, pp. Saunders, PA
Branch, O H, Udhayakumar, V, Hightower, A W, Oloo, A J, Hawley, W A, Nahlen, B L, Bloland, P B, Kaslow, D C, Lal, A A (1998). A longitudinal investigation of IgG and IgM antibody responses to the merozoite surface protein-1 19-kiloDalton domain of Plasmodium falciparum in pregnant women and infants: associations with febrile illness, parasitemia, and anemia. Am. J. Trop. Med. Hyg. 58: 211–9CrossRefGoogle ScholarPubMed
Branch, O H, Oloo, A J, Nahlen, B L, Kaslow, D, Lal, A A (2000). Anti-merozoite surface protein-1 19-kDa IgG in mother-infant pairs naturally exposed to Plasmodium falciparum: subclass analysis with age, exposure to asexual parasitemia, and protection against malaria. V. The Asembo Bay Cohort Project. J. Infect. Dis. 181: 1746–52CrossRefGoogle ScholarPubMed
Branch, O H, Takala, S, Kariuki, K, Nahlen, B L, Kolczak, M, Hawley, W, Lal, A A (2001). Plasmodium falciparum genotypes, low complexity of infection, and resistance to subsequent malaria in participants in the Asembo Bay Cohort Project. Infect. Immun. 69: 7783–92CrossRefGoogle ScholarPubMed
Certa, U, Rotmann, D, Matile, H, Reber-Liske, R (1987). A naturally occurring gene encoding the major surface antigen precursor p190 of Plasmodium falciparum lacks tripeptide repeats. EMBO J. 6: 4137–42Google ScholarPubMed
Coatney R G, Collins W E, Warren M, Contacos P G (1971). The Primate Malaria. U.S. Government Printing Office, Washington D.C.
Conway, D J (1997). Natural selection on polymorphic malaria antigens and the search for a vaccine. Parasitol. Today 13: 26–9CrossRefGoogle ScholarPubMed
Conway, D J, Roper, C, Oduola, A M J, Arnot, D E, Kremsner, P G, Grobusch, M P, Curtis, C F, Greenwood, B M (1999). High recombination rate in natural populations of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 96: 4506–11CrossRefGoogle ScholarPubMed
Conway, D J, Cavanagh, D R, Tanabe, K, Roper, C, Mikes, Z S, Sakihama, N, Bojang, K A, Oduola, A M, Kremsner, P G, Arnot, D E, Greenwood, B M, McBride, J S (2000). A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses. Nat. Med. 6: 689–92CrossRefGoogle ScholarPubMed
Corredor, V, Enea, V (1993). Plasmodial ribosomal RNA as phylogenetic probe: a cautionary note. Mol. Biol. Evol. 10: 924–26Google ScholarPubMed
Cortese, J F, Caraballo, A, Contreras, C E, Plowe, C V (2002). Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J. Infect. Dis. 186: 999–1006CrossRefGoogle ScholarPubMed
Deans, J A, Knight, A M, Jean, W C, Waters, A P, Cohen, S, Mitchell, G H (1988). Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66 kD merozoite antigen. Parasitol. Immunol. 10: 535–52CrossRefGoogle ScholarPubMed
Djimde, A, Doumbo, O K, Cortese, J F, Kayentao, K, Doumbo, S, Diourte, Y, Dicko, A, Su, X Z, Nomura, T, Fidock, D A, Wellems, T E, Plowe, C V, Coulibaly, D (2001). A molecular marker for chloroquine-resistant falciparum malaria. N. Engl. J. Med. 344: 257–63CrossRefGoogle ScholarPubMed
Ebert, D, Herre, E A (1996). The evolution of parasitic diseases. Parasitol. Today 12: 96–100CrossRefGoogle ScholarPubMed
Eisen, D, Billman-Jacobe, H, Marshall, V F, Fryauff, D, Coppel, R L (1998). Temporal variation of the merozoite surface protein-2 gene of Plasmodium falciparum. Infect. Immun. 66: 239–46Google ScholarPubMed
Eisen, D P, Saul, A, Fryauff, D J, Reeder, J C, Coppel, R L (2002). Alterations in Plasmodium falciparum genotypes during sequential infections suggest the presence of strain specific immunity. Am. J. Trop. Med. Hyg. 67: 8–16CrossRefGoogle ScholarPubMed
Ekala, M T, Jouin, H, Lekoulou, F, Mercereau-Puijalon, O, Ntoumi, F (2002a). Allelic family-specific humoral responses to merozoite surface protein 2 (MSP2) in Gabonese residents with Plasmodium falciparum infections. Clin. Exp. Immunol. 129: 326–31CrossRefGoogle Scholar
Ekala, M T, Jouin, H, Lekoulou, F, Issifou, S, Mercereau-Puijalon, O, Ntoumi, F (2002b). Plasmodium falciparum merozoite surface protein 1 (MSP1): genotyping and humoral responses to allele-specific variants. Acta Trop. 81: 33–46CrossRefGoogle Scholar
Endo, T, Ikeo, K, Gojorobi, T (1996). Large-scale search for genes on which positive selection may operate. Mol. Biol. Evol. 13: 685–90CrossRefGoogle ScholarPubMed
Escalante, A, Ayala, F J (1994). Phylogeny of the malarial genus Plasmodium, derived from ribosomal gene sequences. Proc. Natl. Acad. Sci. USA 91: 11,373–7CrossRefGoogle Scholar
Escalante, A, Ayala, F J (1995). Origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc. Natl. Acad. Sci. USA 92: 5793–7CrossRefGoogle ScholarPubMed
Escalante, A, Barrio, E, Ayala, F J (1995). The phylogeny of the Plasmodium species based on the circumsporozoite protein gene. Mol. Biol. Evol. 12: 616–26Google Scholar
Escalante, A A, Goldman, I F, De, Rijk P, De, Wachter R, Collins, W E, Qari, S H, Lal, A A (1997). Phylogenetic study of the genus Plasmodium based on the secondary structure-based alignment of the small subunit ribosomal RNA. Mol. Biochem. Parasitol. 90: 317–21CrossRefGoogle ScholarPubMed
Escalante, A A, Freeland, D E, Collins, W E, Lal, A A (1998a). The evolution of primate malarial parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc. Natl. Acad. Sci. USA 95: 8124–9CrossRefGoogle Scholar
Escalante, A A, Lal, A A, Ayala, F J (1998b). Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149: 189–202Google Scholar
Escalante, A A, Grebert, H M, Chaiyaroj, S C, Riggione, F, Biswas, S, Nahlen, B L, Lal, A A (2002a). Polymorphism in the gene encoding the Pfs48/45 antigen of Plasmodium falciparum. Ⅺ. Asembo Bay Cohort Project. Mol. Biochem. Parasitol. 119: 17–22CrossRefGoogle Scholar
Escalante, A A, Grebert, H M, Isea, R, Goldman, I F, Basco, L, Magris, M, Biswas, S, Kariuki, S, Lal, A A (2002b). A study of genetic diversity in the gene encoding the circumsporozoite protein (CSP) of Plasmodium falciparum from different transmission areas. Mol. Biochem. Parasitol. 125: 83–90CrossRefGoogle Scholar
Escalante, A A, Grebert, H M, Chaiyaroj, S C, Magris, M, Biswas, S, Nahlen, B L, Lal, A A (2001). Polymorphism in the gene encoding the Apical Membrane Antigen-1 (AMA-1) of Plasmodium falciparum. VI. Asembo Bay Cohort Project. Mol. Biochem. Parasitol. 113: 279–87CrossRefGoogle Scholar
Ewald P W (1994). Evolution of Infectious Disease. Oxford University Press, New York
Farnert, A, Rooth, I, Svensson, Snounou G, Bjorkman, A (1999). Complexity of Plasmodium falciparum infections is consistent over time and protects against clinical disease in Tanzanian children. J. Infect. Dis. 179: 989–95CrossRefGoogle ScholarPubMed
Fidock, D A, Nomura, T, Talley, A K, Cooper, R A, Dzekunov, S M, Ferdig, M T, Ursos, L M, Sidhu, A B, Naude, B, Deitsch, K W, Su, X Z, Wootton, J C, Roepe, P D, Wellems, T E (2000). Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6: 861–71CrossRefGoogle Scholar
Fu, Y X, Li, W H (1993). Statistical tests of neutrality of mutations. Genetics 133: 693–709Google ScholarPubMed
Garnham P C C (1966). Malaria Parasites and Other Haemosporidia. Blackwell Scientific Publications, Oxford
Genton, B, Betuela, I, Felger, I, Al-Yaman, F, Anders, R F, Saul, A, Rare, L, Baisor, M, Lorry, K, Brown, G V, Pye, D, Irving, D O, Smith, T A, Beck, H P, Alpers, M P (2002). A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J. Infect. Dis. 185: 820–7CrossRefGoogle Scholar
Gupta, S, Hill, A V S (1995). Dynamic interactions in malaria: host heterogeneity meets parasite polymorphism. Proc. R. Soc. Lond. B, 261: 271–7CrossRefGoogle ScholarPubMed
Gupta, S, Trenholme, K, Anderson, R M, Day, K P (1994). Antigenic diversity and the transmission dynamics of Plasmodium falciparum. Science 263: 961–3CrossRefGoogle ScholarPubMed
Gupta, S, Maiden, M C, Feavers, I M, Nee, S, May, R M, Anderson, R M (1996). The maintenance of strain structure in populations of recombining infectious agents. Nat. Med. 2: 437–42CrossRefGoogle ScholarPubMed
Haddad, D, Snounou, G, Mattei, D, Enamorado, I G, Figueroa, J, Stahl, S, Berzins, K (1999). Limited genetic diversity of Plasmodium falciparum in field isolates from Honduras. Am. J. Trop. Med. Hyg. 60: 30–4CrossRefGoogle ScholarPubMed
Hartl, D L, Volkman, S K, Nielsen, K M, Barry, A E, Day, K P, Wirth, D F, Winzeler, E A (2002). The paradoxical population genetics of Plasmodium falciparum. Trends Parasitol. 18: 266–72CrossRefGoogle ScholarPubMed
Hastings, I M, Mackinnon, M J (1998). The emergence of drug-resistant malaria. Parasitology 117: 411–7CrossRefGoogle ScholarPubMed
Hastings, I M, D'Alessandro, U (2000). Modelling a predictable disaster: the rise and spread of drug-resistant malaria. Parasitol. Today 16: 340–7CrossRefGoogle Scholar
Hastings, I M, Watkins, W M, White, N J (2002). The evolution of drug-resistant malaria: the role of drug elimination half-life. Phil. Trans. R. Soc. Lond. B, Biol. Sci. 357: 505–19CrossRefGoogle ScholarPubMed
Hewitt, R (1940). Bird malaria. American Journal of Hygiene monographic series, no. 15. Johns Hopkins University Press, Baltimore
Hodder, A N, Crewther, P E, Matthew, M L S M, Reid, G E, Moritz, R L, Simpson, R J, Anders, R F (1996). The disulfide bond structure of Plasmodium apical membrane antigen-1. J. Biol. Chem. 271: 29,446–52CrossRefGoogle ScholarPubMed
Hughes, A L (1991). Circumsporozoite protein genes of malarial parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics 127: 345–53Google Scholar
Hughes, A L (1992). Positive selection and intrallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium falciparum. Mol. Biol. Evol. 9: 381–93Google ScholarPubMed
Hughes, M K, Hughes, A L (1995). Natural selection on Plasmodium surface proteins. Mol. Biochem. Parasitol. 71: 99–113CrossRefGoogle ScholarPubMed
Hughes, A L, Verra, F (2001). Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. R. Soc. Lond. B, Biol. Sci. 268: 1855–60CrossRefGoogle ScholarPubMed
Kedzierski, L, Escalante, A A, Isea, R, Black, C G, Barnwell, J W, Coppel, R L (2002). Phylogenetic analysis of the genus Plasmodium based on the gene encoding adenylosuccinate lyase. Infect. Genet. Evol. 4: 297–301CrossRefGoogle Scholar
Kimura, M (1977). Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267: 275–6CrossRefGoogle ScholarPubMed
Kimura M (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK
Kocken, C H M, Dubbeld, M A, wel, A, Pronk, J T, Waters, A P, Langermans, J A M, Thomas, A W (1999). High-level expression of Plasmodium vivax apical membrane antigen 1 (AMA-1) in Pichia pastoris: strong immunogenicity in Macaca mulatta immunized with P. vivax AMA-1 and adjuvant SBAS2. Infect. Immun. 67: 43–9Google Scholar
Kreitman, M, Akashi, H (1995). Molecular evidence for natural selection. Annu. Rev. Ecol. Syst. 26: 403–22CrossRefGoogle Scholar
Kublin, J G, Witzig, R S, Shankar, A H, Zurita, J Q, Gilman, R H, Guarda, J A, Cortese, J F, Plowe, C V (1998). Molecular assays for surveillance of antifolate-resistant malaria. Lancet 351: 1629–30CrossRefGoogle ScholarPubMed
Kublin, J G, Dzinjalamala, F K, Kamwendo, D D, Malkin, E M, Cortese, J F, Martino, L M, Mukadam, R A, Rogerson, S J, Lescano, A G, Molyneux, M E, Winstanley, P A, Chimpeni, P, Taylor, T E, Plowe, C V (2002). Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J. Infect. Dis. 185: 380–8CrossRefGoogle ScholarPubMed
Kumar S, Nei M (2000). Molecular Evolution and Phylogenetics. Oxford University Press, New York
Lal, A A, Hughes, M A, Oliveira, D A, Nelson, C, Bloland, P B, Oloo, A J, Hawley, W E, Hightower, A W, Nahlen, B L, Udhayakumar, V (1996). Identification of T-cell determinants in natural immune responses to the Plasmodium falciparum apical membrane antigen (AMA-1) in an adult population exposed to malaria. Infect. Immun. 64: 1054–9Google Scholar
Livingstone, F B (1984). The Duffy blood groups, vivax malaria, and malaria selection in human populations: a review. Hum. Biol. 56: 413–25Google ScholarPubMed
McCutchan, T F, Cruz, V F, Good, M F, Wellems, T E (1988). Antigenic diversity in Plasmodium falciparum. Prog. Allergy 41: 173–92Google ScholarPubMed
McCutchan, T F, Lal, A A, Rosario, V, Waters, A P (1992). Two types of sequence polymorphism in the circumsporozoite gene of Plasmodium falciparum. Mol. Biochem. Parasitol. 50: 37–46CrossRefGoogle ScholarPubMed
McCutchan, T F, Li, J, McConkey, G A, Rogers, M J, Waters, A P (1995). The cytoplasmic ribosomal RNAs of Plasmodium spp. Parasitol. Today 11: 134–8CrossRefGoogle ScholarPubMed
McCutchan, T F, Kissinger, J C, Touray, M G, Rogers, M J, Li, J, Sullivan, M, Braga, E M, Krettli, A U, Miller, L H (1996). Comparison of circumsporozoite proteins from avian and mammalian malarias: biological and phylogenetic implications. Proc. Natl. Acad. Sci. USA 93: 11,889–94CrossRefGoogle ScholarPubMed
Mehlotra, R K, Fujioka, H, Roepe, P D, Janneh, O, Ursos, L M, Jacobs-Lorena, V, McNamara, D T, Bockarie, M J, Kazura, J W, Kyle, D E, Fidock, D A, Zimmerman, P A (2001). Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proc. Natl. Acad. Sci. USA 98: 12,689–94CrossRefGoogle ScholarPubMed
Mu, J, Duan, J, Makova, K D, Joy, D A, Huynh, C Q, Branch, O H, Li, W H, Su, X Z (2002). Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 418: 323–6CrossRefGoogle ScholarPubMed
Ohta, T (1996). The neutralist-selectionist debate. Bioessays 18: 673–7CrossRefGoogle Scholar
Palatnik, M, Rowe, A W (1984). Duffy and Duffy-related human antigens in primates. J. Hum. Evol. 13: 173–9CrossRefGoogle Scholar
Paul, R E, Packer, M J, Walmsley, M, Lagog, M, Ranford-Cartwright, L C, Paru, R, Day, K P (1995). Mating patterns in malaria parasite populations of Papua New Guinea. Science 269: 1709–11CrossRefGoogle ScholarPubMed
Perkins, S L (2000). Species concepts and malarial parasites: detecting a cryptic species of Plasmodium. Proc. R. Soc. Lond. B, Biol. Sci. 267: 2345–50CrossRefGoogle Scholar
Polley, S D, Conway, D J (2001). Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics 158: 1505–12Google ScholarPubMed
Qari, S H, Shi, Y P, Povoa, M M, Alpers, M P, Deloron, P, Murphy, G S, Harjosuwarno, S, Lal, A A (1993a). Global occurrence of Plasmodium vivax-like human malaria parasite. J. Infect. Dis. 168: 1485–9CrossRefGoogle Scholar
Qari, S H, Shi, Y P, Goldman, I F, Udhayakumar, V, Alpers, M P, Collins, W E, Lal, A A (1993b). Identification of Plasmodium vivax-like human malaria parasite. Lancet 341: 780–3CrossRefGoogle Scholar
Qari, S H, Shi, Y P, Pieniazek, N J, Collins, W E, Lal, A A (1996). Phylogenetic relationship among the malarial parasites based on small subunit rRNA gene sequences: monophyletic nature of the human malaria parasite, Plasmodium falciparum. Mol. Phylogenet. Evol. 6: 157–65CrossRefGoogle Scholar
Qari, S H, Shi, Y P, Goldman, I F, Nahlen, B L, Tibayrenc, M, Lal, A A (1998). Predicted and observed alleles of Plasmodium falciparum merozoite surface protein-1 (MSP-1), a potential malaria vaccine antigen. Mol. Biochem. Parasitol. 92: 241–52CrossRefGoogle Scholar
Rathore, D, Wahl, A M, Sullivan, M, McCutchan, T F (2001). A phylogenetic comparison of gene trees constructed from plastid, mitochondrial and genomic DNA of Plasmodium species. Mol. Biochem. Parasitol. 114: 89–94CrossRefGoogle ScholarPubMed
Read, A F, Taylor, L H (2001). The ecology of genetically diverse infections. Science 292: 1099–102CrossRefGoogle ScholarPubMed
Rich, S M, Licht, M C, Hudson, R R, Ayala, F J (1998). Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 95: 4425–30CrossRefGoogle ScholarPubMed
Ricklefs, R E, Fallon, S M (2002). Diversification and host switching in avian malarial parasites. Proc. R. Soc. Lond. B, Biol. Sci. 269: 885–92CrossRefGoogle Scholar
Shi, Y P, Alpers, M P, Povoa, M M, Lal, A A (1992). Diversity in the immunodominant determinants of the circumsporozoite protein of Plasmodium falciparum parasites from malaria endemic regions of Papua New Guinea and Brazil. Am. J. Trop. Med. Hyg. 47: 844–55CrossRefGoogle ScholarPubMed
Shi, Y P, Sayed, U, Qari, S H, Roberts, J M, Udhayakumar, V, Oloo, A J, Hawley, W A, Kaslow, D C, Nahlen, B L, Lal, A A (1996). Natural immune response to the C-terminal 19-kilodalton domain of Plasmodium falciparum merozoite surface protein 1. Infect. Immun. 64: 2716–23Google ScholarPubMed
Shi, Y P, Hasnain, S E, Sacci, J B, Holloway, B P, Fujioka, H, Kumar, N, Wohlhueter, R, Hoffman, S L, Collins, W E, Lal, A A (1999). Immunogenicity and in vitro protective efficacy of a recombinant multistage Plasmodium falciparum candidate vaccine. Proc. Natl. Acad. Sci. USA 96: 1615–20CrossRefGoogle ScholarPubMed
Shoshani, J, Groves, C P, Simons, E L, Gunnell, G F (1996). Primate phylogeny: morphological vs molecular results. Mol. Phylogenet. Evol. 5: 102–54CrossRefGoogle ScholarPubMed
Siddall, M E, Barta, J R (1992). Phylogeny of Plasmodium species: estimation and inference. J. Parasitol. 78: 567–8CrossRefGoogle ScholarPubMed
Snow, R W, Omumbo, J A, Lowe, B, Molyneux, C S, Obiero, J O, Palmer, A, Weber, M W, Pinder, M, Nahlen, B, Obonyo, C, Newbold, C, Gupta, S, Marsh, K (1997). Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet 349: 1650–4CrossRefGoogle ScholarPubMed
Takala, S, Branch, O, Escalante, A A, Kariuki, S, Wootton, J, Lal, A A (2002). Evidence for intragenic recombination in P falciparum: identification of a novel allele family in block 2 of merozoite surface protein-1. Mol. Biochem. Parasitol. 125: 163–71CrossRefGoogle Scholar
Tami, A, Grundmann, H, Sutherland, C, McBride, J S, Cavanagh, D R, Campos, E, Snounou, G, Barnabe, C, Tibayrenc, M, Warhurst, D C (2002). Restricted genetic and antigenic diversity of Plasmodium falciparum under mesoendemic transmission in the Venezuelan Amazon. Parasitology 124: 569–81CrossRefGoogle ScholarPubMed
Tanabe, K, Mackay, M, Goman, M, Scaife, J G (1987). Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 195: 273–87CrossRefGoogle Scholar
Tibayrenc, M, Ayala, F (2002). The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol. 18: 405–10CrossRefGoogle Scholar
Tibayrenc, M, Kjellberg, F, Ayala, F J (1990). A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl. Acad. Sci. USA 87: 2414–8CrossRefGoogle ScholarPubMed
Urdaneta, L, Lal, A, Barnabe, C, Oury, B, Goldman, I, Ayala, F J, Tibayrenc, M (2001). Evidence for clonal propagation in natural isolates of Plasmodium falciparum from Venezuela. Proc. Natl. Acad. Sci. USA 98: 6725–9CrossRefGoogle ScholarPubMed
Waters, A P, Higgins, D G, McCutchan, T F (1991). Plasmodium falciparum appears to have arisen as a result of lateral transfer between avian and human hosts. Proc. Natl. Acad. Sci. USA 88: 3140–44CrossRefGoogle ScholarPubMed
Wolfe, N D, Escalante, A A, Karesh, W B, Kilbourn, A, Spielman, A, Lal, A A (1998). Wild primate populations in emerging infectious disease research: the missing link? Emerging Infect. Dis. 4: 149–58CrossRefGoogle ScholarPubMed
Wootton, J C, Feng, X, Ferdig, M T, Cooper, R A, Mu, J, Baruch, D I, Magill, A J, Su, X Z (2002). Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418: 320–3CrossRefGoogle ScholarPubMed
Yoshida, N, Di Santi, S M, Dutra, A P, Nussenzweig, R S, Nussenzweig, V, Enea, V (1990). Plasmodium falciparum: restricted polymorphism of T cell epitopes of the circumsporozoite protein in Brazil. Exp. Parasitol. 71: 386–92CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Evolutionary Biology of Malarial Parasites
    • By Ananias A. Escalante, Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, Atlanta, Georgia 30333, Altaf A. Lal, U.S. Embassy, New Delhi, 110021, India
  • Edited by Krishna R. Dronamraju, Foundation for Genetic Research, Houston, Texas
  • Book: Infectious Disease and Host-Pathogen Evolution
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546259.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Evolutionary Biology of Malarial Parasites
    • By Ananias A. Escalante, Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, Atlanta, Georgia 30333, Altaf A. Lal, U.S. Embassy, New Delhi, 110021, India
  • Edited by Krishna R. Dronamraju, Foundation for Genetic Research, Houston, Texas
  • Book: Infectious Disease and Host-Pathogen Evolution
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546259.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Evolutionary Biology of Malarial Parasites
    • By Ananias A. Escalante, Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, Atlanta, Georgia 30333, Altaf A. Lal, U.S. Embassy, New Delhi, 110021, India
  • Edited by Krishna R. Dronamraju, Foundation for Genetic Research, Houston, Texas
  • Book: Infectious Disease and Host-Pathogen Evolution
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511546259.005
Available formats
×