Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T10:33:05.853Z Has data issue: false hasContentIssue false

16 - Soil as a Vulnerable Environmental System

Published online by Cambridge University Press:  04 August 2010

R. Socolow
Affiliation:
Princeton University, New Jersey
C. Andrews
Affiliation:
Princeton University, New Jersey
F. Berkhout
Affiliation:
University of Sussex
V. Thomas
Affiliation:
Princeton University, New Jersey
Get access

Summary

Abstract

Since 1945, soil degradation has affected nearly 20% of the vegetated land area of the earth, with agriculture, overgrazing, and deforestation the primary causes on all continents. Industrial emissions appear as a relatively minor cause of soil degradation, because the effects of pollutants are typically measured as acute effects on a few species rather than in wholesale depletion of the soil. Soils also play a critical role in regulating the carbon dioxide, methane, and nitrogen oxide concentrations in the atmosphere. In view of the major impacts of agricultural activities and deforestation on soils and terrestrial ecosystems, these topics should become a priority for industrial ecology.

Introduction

Soil is the compartment of terrestrial ecosystems where the lithosphere, biosphere, and hydrosphere most actively interact, at several spatial and temporal scales. Soil genesis is a complex process which takes place on time scales of millennia and is intimately linked with the subsoil (parent material), the local relief, the climatic history, and, more recently, human activities.

Soil supports the entire terrestrial ecosystem. It makes possible the development of a variety of types of vegetation, and the maintenance of our agroecosystems. During soil genesis, rocks and till are weathered by chemical and physical geologic processes, and soil properties, both chemical and physical, respond slowly to changes in inputs. Vegetation may provide the first clue to long-term changes in soil quality because plants respond more quickly than soils to changes in inputs. Soils recover slowly once they have become contaminated or infertile. Soil modifies precipitation before water enters surface and groundwater. Microbial processes in soils transform trace gases and exchange them with the atmosphere.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×