Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T05:13:07.709Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 January 2016

Albert Marden
Affiliation:
University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Hyperbolic Manifolds
An Introduction in 2 and 3 Dimensions
, pp. 472 - 494
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abikoff, W. and Harvey, W., “Extremal Kleinian groups”, Proc. Amer. Math. Soc. 140 (2012), 267–278.Google Scholar
Abikoff, W. and Maskit, B., “Geometric decompositions of Kleinian groups”, Amer. J. Math. 99:4 (1977), 687–697.CrossRefGoogle Scholar
Abikoff, W., Earle, C. J. and Mitra, S., “Barycentric extensions of monotone maps of the circle”, pp. 1–20 in In the tradition of Ahlfors and Bers, III Contemp. Math., 355, Amer. Math. Soc., Providence, RI, 2004.Google Scholar
Accola, R. D. M., “Invariant domains for Kleinian groups”, Amer. J. Math. 88 (1966), 329–336.CrossRefGoogle Scholar
Adams, C. C., “The noncompact hyperbolic 3-manifold of minimal volume”, Proc. Amer. Math. Soc. 100:4 (1987), 601–606.Google Scholar
Agard, S., “Distortion theorems for quasiconformal mappings”, Ann. Acad. Sci. Fennicae Series A 423 (1968).Google Scholar
Agol, I., “Bounds on exceptional Dehn filling”, Geom. Topol. 4 (2000), 431–449.CrossRefGoogle Scholar
Agol, I., “Volume change under drilling”, Geom. Topol. 6 (2002), 905–916.CrossRefGoogle Scholar
Agol, I., “Tameness of hyperbolic 3-manfolds”, preprint, 2004. Available at www.arXiv.org/ abs/math.GT/0405568.
Agol, I., “Criteria for virtual fibering”, J. Topol. 1 (2008), 269–284.CrossRefGoogle Scholar
Agol, I., “The minimal volume orientable 2-cusped 3-manifolds”, Proc. A.M.S. 138(2010), 3723–3732.CrossRefGoogle Scholar
Agol, I., “Bounds on exceptional Dehn filling II”, Geom. Topol. 14 (2010), 1921–1940.CrossRefGoogle Scholar
Agol, I., “The Virtual Haken Conjecture, with an appendix by Agol, Groves, and Manning”, 2012, arXiv:1204.2810.
Agol, I. and Liu, Y., “Presentation length and Simon's conjecture”, J. Amer. Math. Soc. 25 (2012), 151–187,CrossRefGoogle Scholar
Agol, I., Storm, P. and Thurston, W. P., with an appendix by N., Dunfield, “Lower bounds on volumes of hyperbolic Haken 3-manifolds”, J. Amer. Math. Soc. 20 (2007), 1053–1077.CrossRefGoogle Scholar
Ahlfors, L. V., “Finitely generated Kleinian groups”, Amer. J. Math. 86 (1964), 413–429.CrossRefGoogle Scholar
Ahlfors, L. V., Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies 10, Van Nostrand, Toronto, 1966; Corrected 2nd edition with additional chapters by Earle and Kra, Shishikura, and Hubbard, A.M.S., 2006.Google Scholar
Ahlfors, L. V., Conformal invariants: topics in geometric function theory, McGraw-Hill, New York, 1973.Google Scholar
Ahlfors, L. V., Complex analysis, 3rd ed. McGraw-Hill, New York, 1978.Google Scholar
Ahlfors, L. V., Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, Univ. of Minnesota, Minneapolis, MN, 1981.Google Scholar
Ahlfors, L. V. and Sario, L., Riemann surfaces, Princeton Mathematical Series 26, Princeton Univ. Press, Princeton, NJ, 1960.CrossRefGoogle Scholar
Akiyoshi, H., Sakuma, M., Wada, M. and Yamashita, Y., “Ford domains of punctured torus groups and two-bridge knot groups”, in Knot Theory (Proceedings of the workshop held in Toronto dedicated to 70th birthday of Prof. K. Murasugi), 1999.
Akiyoshi, H., Sakuma, M., Wada, M. and Yamashita, Y., “Jørgensen's picture of punctured torus groups and its refinement”, pp. 247–273 in Kleinian groups and hyperbolic 3- manifolds (Warwick, 2001), edited by Y., Komori et al., London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press, Cambridge, 2003.Google Scholar
Akiyoshi, H., Sakuma, M.,Wada, M. and Yamashita, Y., “Punctured torus groups and 2-bridge knot groups I”, Lecture Notes in Mathematics 1909, Springer, Berlin, 2007.Google Scholar
Anderson, J. W., “Intersections of analytically and geometrically finite subgroups of Kleinian groups”, Trans. Amer. Math. Soc. 343:1 (1994), 87–98.CrossRefGoogle Scholar
Anderson, J. W., “The limit set intersection theorem for finitely generated Kleinian groups,” Math. Res. Lett. 3:5 (1996), 675–692.CrossRefGoogle Scholar
Anderson, J. W. and Canary, R. D., “Algebraic limits of Kleinian groups which rearrange the pages of a book”, Invent. Math. 126:2 (1996a), 205–214.CrossRefGoogle Scholar
Anderson, J. W., Hyperbolic Geoometry, 2nd ed.Springer-Verlag London, Ltd., London, 2005.Google Scholar
Anderson, J. W., Talk at Iberoamerican Congress, CUNY, May, 2014.
Anderson, J. W., and Canary, R. D., “Cores of hyperbolic 3-manifolds and limits of Kleinian groups”, Amer. J. Math. 118:4 (1996b), 745–779.Google Scholar
Anderson, J. W., and Maskit, B., “On the local connectivity of limit set of Kleinian groups”, Complex Variables Theory Appl. 31 (1996), 177–183.Google Scholar
Anderson, J. W., Canary, R. D., Culler, M. and Shalen, P. B., “Free Kleinian groups and volumes of hyperbolic 3-manifolds”, J. Differential Geom. 43:4 (1996), 738–782.CrossRefGoogle Scholar
Anderson, J. W., Canary, R. D. and McCullough, D., “The topology of deformation spaces of Kleinian groups”, Ann. of Math. (2) 152:3 (2000), 693–741.CrossRefGoogle Scholar
Antonakoudis, S., “The bounded orbits conjecture for complex manifolds”, Harvard preprint.
Arnoux, P. and Yoccoz, J.-C., “Construction de diff'eomorphismes pseudo-Anosov”, C. R. Acad. Sci. Paris 292 (1981), 75–78.Google Scholar
Astala, K., “Area distortion of quasiconformal mappings”, Acta Math. 173 (1994), 37–60.CrossRefGoogle Scholar
Baba, S., “A Schottky decomposition theorem for complex projective structures”, Geometry and Topology 14 (2010), 117–151.CrossRefGoogle Scholar
Baba, S., “2p-Graftings and complex projective structures”, (Math GT) arXiv:1011.5051.
Ballmann, W., Gromov, M. and Schroeder, V., “Manifolds of nonpositive curvature”, Progress in Mathematics 61, Birkhäuser, Boston, 1985.Google Scholar
Basmajian, A., “Universal length bounds for non-simple closed geodesics on hyperbolic surfaces”, J. Topol. 6 (2013), 513–524.CrossRefGoogle Scholar
Bass, H.Groups of integral representation type”, Pacific J. Math. 86:1 (1980), 15–51.CrossRefGoogle Scholar
Beardon, A. F.The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer, New York, 1983.CrossRefGoogle Scholar
Beardon, A. F. and Jørgensen, T.Fundamental domains for finitely generated Kleinian groups”, Math. Scand. 36 (1975), 21–26.CrossRefGoogle Scholar
Beardon, A. F. and Maskit, B.Limit points of Kleinian groups and finite sided fundamental polyhedra”, Acta Math. 132 (1974), 1–12.CrossRefGoogle Scholar
Beardon, A. F. and Pommerenke, C.The Poincaré metric of plane domains”, J. London Math. Soc. (2) 18:3 (1978), 475–483.Google Scholar
Beardon, A. F. and Stephenson, K.The uniformization theorem for circle packings”, Indiana Univ. Math. J. 39:4 (1990), 1383–1425.CrossRefGoogle Scholar
Benedetti, R. and Petronio, C.Lectures on hyperbolic geometry, Universitext, Springer, Berlin, 1992.CrossRefGoogle Scholar
Bergeron, N., “La conjecture des sous-groups de surfaces”, Séminar Bourbaki no. 811 (2012), 1–28.
Bergeron, N. and Wise, D. T., “A boundary criterion for cubulation”, Amer. J. Math. 134 no. 3 (2012), 843–859.CrossRefGoogle Scholar
Bers, L., “Simultaneous uniformization”, Bulletin A.M.S. 66 (1960), 94–97.CrossRefGoogle Scholar
Bers, L., “On boundaries of Teichmüller spaces and on Kleinian groups, I”, Ann. of Math. (2) 91 (1970a), 570–600.CrossRefGoogle Scholar
Bers, L., “Spaces of Kleinian groups”, pp. 9–34 in Several Complex Variables (College Park, MD, 1970), vol. I, edited by J., Horváth, Lecture Notes in Math. 155, Springer, Berlin, 1970b.Google Scholar
Bers, L., “The action of the modular group on the complex boundary”, pp. 33–52 in Riemann Surfaces and Related Topics, Ann. Math. Stud 97, Princeton Univ. Press 1981.Google Scholar
Bers, L., “An inequality for Riemann surfaces”, pp. 87–93 in Differential geometry and complex analysis, Springer, Berlin, 1985.Google Scholar
Bers, L., “On iterates of hyperbolic transformations of Teichmüller space”, Amer. J. Math. 105 (1983), 1–11.CrossRefGoogle Scholar
Bers, L., “An extremal problem for quasiconformal mappings and a theorem of Thurston”, Acta Math. 141 (1978), 73–98.CrossRefGoogle Scholar
Bers, L. and Greenberg, L., “Isomorphisms between Teichmüller spaces”, pp. 53–79 in Advances in the Theory of Riemann Surfaces (Stony Brook, NY, 1969), edited by L. V., Ahlfors et al., Ann. of Math. Studies 66, Princeton Univ. Press, Princeton, N.J., 1971.Google Scholar
Bessières, L., Besson, G., Boileau, M., Maillot, S. and Porti, J., Geometrization of 3- Manifolds, European Math. Soc., 2010.
Besson, G., Courtois, G. and Gallot, S., “Lemme de Schwarz réel et applications géométriques”, Acta Math. 183:2 (1999), 145–169.CrossRefGoogle Scholar
Bestvina, M., “Degenerations of the hyperbolic space”, Duke Math. J. 56:1 (1988), 143–161.CrossRefGoogle Scholar
Bestvina, M., “R trees in topology, geometry, and group theory”, arXiv/9712210 (2008).
Bestvina, M., “Geometric group theory and 3-manifolds hand in hand: the fulfillment of Thurston's vision”, Bull. Amer. Math. Soc. 51 (2014), 53–70.Google Scholar
Bestvina, M. and Feighn, M., “A hyperbolic Out(Fn)-complex”, Groups Geom. Dyn. 4 (2010), 31–58.Google Scholar
Biringer, I. and Souto, J., “Algebraic and geometric convergence of discrete representations into PSL2(C)”, Geom. & Top. 14 (2010), 2431–2477.Google Scholar
Biringer, I. and Souto, J., “A finiteness theorem for hyperbolic 3-manifolds”, J. Lon. Math. Soc. 84 (2011), 227–242.Google Scholar
Biringer, I. and Souto, J., “Rank of the fundamental group and topology of hyperbolic 3- manifolds”, 2006 Souto preprint, to appear.
Birman, J. S., “Mapping class groups of surfaces: a survey”, pp. 57–71 in Discontinuous groups and Riemann surfaces (College Park, MD, 1973), edited by L., Greenberg, Ann. of Math. Studies 79, Princeton Univ. Press, Princeton, NJ, 1974.Google Scholar
Birman, J. S. and Series, C., “Geodesics with bounded intersection number on surfaces are sparsely distributed”, Topology 24:2 (1985), 217–225.CrossRefGoogle Scholar
Bishop, C. J. and Jones, P.W., “Hausdorff dimension and Kleinian groups”, Acta Math. 179:1 (1997), 1–39.CrossRefGoogle Scholar
Bleiler, S. A. and Hodgson, C. D., “Spherical space forms and Dehn filling”, Topology 35:3 (1996), 809–833.CrossRefGoogle Scholar
Bobenko, A. I. and Springborn, B. A., “Variational principles for circle patterns and Koebe's theorem”, Trans. Amer. Math. Soc. 356:2 (2004), 659–689.CrossRefGoogle Scholar
Boileau, M. and Porti, J., Geometrization of 3-orbifolds of cyclic type, Astérisque 272, 2001.
Boileau, M., Maillot, S. and Porti, J., Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses 15, Société Mathématique de France, Paris, 2003.Google Scholar
Boileau, M., Leeb, B. and Porti, J., “Geometrization of 3-dimensional orbifolds”, Ann. of Math. (2) 162:1 (2005), 195–290.CrossRefGoogle Scholar
Bonahon, F., “Bouts des variétés hyperboliques de dimension 3”, Ann. of Math. (2) 124:1 (1986), 71–158.CrossRefGoogle Scholar
Bonahon, F., “The geometry of Teichmüller space via geodesic currents”, Invent. Math. 92:1 (1988), 139–162.CrossRefGoogle Scholar
Bonahon, F., “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse Math. (6) 5:2 (1996), 233–297.CrossRefGoogle Scholar
Bonahon, F., “Geodesic laminations on surfaces”, pp. 1–37 in Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), edited by M., Lyubich et al., Contemp. Math. 269, Amer. Math. Soc., Providence, RI, 2001.Google Scholar
Bonahon, F., “Geometric structures on 3-manifolds”, pp. 93–164 in Handbook of geometric topology, edited by R. J., Daverman and R. B., Sher, North-Holland, Amsterdam, 2002.Google Scholar
Bonahon, F., Low-Dimensional Geometry, A.M.S. Providence, 2009.CrossRefGoogle Scholar
Bonahon, F. and Otal, J.-P., “Laminations mesurées de plissage des variétés hyperboliques de dimension 3”, Ann. Math. 160 (2004), 1013–1055.CrossRefGoogle Scholar
Bonk, M., “Singular surfaces and meromorphic functions”, Notices Amer. Math. Soc. 49:6 (2002), 647–657.Google Scholar
Bowditch, B. H. and Mess, G., “A 4-dimensional Kleinian group”, Trans. Amer. Math. Soc. 344 (1994), 391–405.Google Scholar
Bowditch, B. H., “A proof of McShane's identity via Markoff triples”, Bull. London Math. Soc. 28:1 (1996), 73–78.CrossRefGoogle Scholar
Bowditch, B. H., “Markoff triples and quasi-Fuchsian groups”, Proc. London Math. Soc. (3) 77:3 (1998), 697–736.CrossRefGoogle Scholar
Bowditch, B. H., “A course on geometric group theory”, MSJ Memoirs 16 Mathematical Society of Japan, Tokyo, 2006.Google Scholar
Bowditch, B. H., “Notes on tameness”, Enseign Math. 56 (2010), 229-285.
Bowditch, B. H., “An upper bound for injectivity radii in convex cores”, Groups, Geometry, and Dynamics, 7, European Math. Soc, (2013), 109–126.Google Scholar
Bowditch, B. H., “The ending lamination theorem”, Warwick preprint, preliminary draft (2011).
Bowditch, B. H. and Epstein, D. B. A., “Natural triangulations associated to a surface”, Topology, 27(1988), 91–117.CrossRefGoogle Scholar
Bowers, P. L. and Stephenson, K., “The set of circle packing points in the Teichmüller space of a surface of finite conformal type is dense”, Math. Proc. Cambridge Philos. Soc. 111:3 (1992), 487–513.CrossRefGoogle Scholar
Bowers, P. and Stephenson, K., “ A branched Andreev-Thurston theom for circle packings of the sphere”, Proc. London Math. Soc. 73 (1996), 185–215.Google Scholar
Bowers, P. L. and Stephenson, K., Uniformizing dessins and Bely?i maps via circle packing, Mem. Amer. Math. Soc. 805, Amer. Math. Soc., Providence, 2004.Google Scholar
Brendle, T. E. and Farb, B., “Every mapping class group is generated by 6 involutions”, J. Algebra 278:1 (2004), 187–198.CrossRefGoogle Scholar
Bridgeman, M., “Average bending of convex pleated planes in hyperbolic three-space”, Invent. Math. 132:2 (1998), 381–391.CrossRefGoogle Scholar
Bridgeman, M., “Bounds on the average bending of the convex hull boundary of a Kleinian group”, Michigan Math. J. 51:2 (2003), 363–378.CrossRefGoogle Scholar
Bridgeman, M. and Canary, R., “The Thurston metric on hyperbolic domains and boundaries of convex hulls”, Geometric and Functional Analysis 20 (2010), 1317–1353.CrossRefGoogle Scholar
Bridgeman, M. and Kahn, J., “Hyperbolic volume of n-manifolds with geodesic boundary and orthospectra”, Geometric and Functional Analysis, 20 (2010).CrossRefGoogle Scholar
Bridson, M. R., and Haefliger, A., Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
Brock, J. F., “Continuity of Thurston's length function”, Geom. Funct. Anal. 10:4 (2000), 741–797.CrossRefGoogle Scholar
Brock, J. F., “Boundaries of Teichmüller spaces and end-invariants for hyperbolic 3- manifolds”, Duke Math. J. 106:3 (2001a), 527–552.CrossRefGoogle Scholar
Brock, J. F., “Iteration of mapping classes and limits of hyperbolic 3-manifolds”, Invent. Math. 143:3 (2001b), 523–570.CrossRefGoogle Scholar
Brock, J. F., “The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores”, J. Amer. Math. Soc. 16 (2003), 495–535.CrossRefGoogle Scholar
Brock, J. F. and Bromberg, K. W., “Cone-manifolds and the density conjecture”, pp. 75–93 in Kleinian groups and hyperbolic 3-manifolds, London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press, Cambridge, 2003.Google Scholar
Brock, J. F. and Bromberg, K. W., “On the density of geometrically finite Kleinian groups”, Acta Math. 192:1 (2004), 33–93.CrossRefGoogle Scholar
Brock, J. F. and Dumas, D., “Thurston's Jewel: A convex hull image”, Online resource Available at http://dumas.io/jewel/.
Brock, J. F. and Dunfield, N., “Injectivity radii of hyperbolic integer homology 3-spheres”, Available at www.arXiv.org/math.GT/1304.0391.
Brock, J. F., and Farb, B., “Curvature and rank of Teichmüller space”, Amer. J. Math. 128 (2006), 1–22.CrossRefGoogle Scholar
Brock, J. F. and Margalit, D., “Weil-Petersson isometries via the pants complex”, Proc. A.M.S. 135 (2007), 795–803.CrossRefGoogle Scholar
Brock, J. and Souto, J., “Algebraic limits of geometrically finite manifolds are tame”, Geom. Funct. Anal. bf 16 (2006), 1–39.Google Scholar
Brock, J., Bromberg, K., Evans, R. and Souto, J., “Tameness on the boundary and Ahlfors’ measure conjecture”, Publ. Math. Inst. Hautes Études Sci. no. 98 (2003), 145–166.Google Scholar
Brock, J., Canary, R. D. and Minsky, Y., “Classification of Kleinian surface groups, II: The ending lamination conjecture”, Ann. of Math. 176 (2012), 1–149.CrossRefGoogle Scholar
Brock, J., Canary, R. D., Bromberg, K. and Minsky, Y., ‘Local topology in deformation spaces of hyperbolic 3-manifolds”, Geom. & Topology 15 (2011),1169–1224.CrossRefGoogle Scholar
Bromberg, K., “Hyperbolic Dehn surgery on geometrically infinite 3-manifolds”, preprint, 2000. Available at www.arXiv.org/math.GT/0009150.
Bromberg, K., “Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives”, J. Amer. Math. Soc. 17:4 (2004), 783–826.CrossRefGoogle Scholar
Bromberg, K., “Projective structures with degenerate holonomy and the Bers density conjecture”, Ann. of Math. 166 (2007), 77–93.CrossRefGoogle Scholar
Bromberg, K., “The space of Kleinian punctured torus groups is not locally connected”, Duke Math. J., 156 (2011), 349–385.CrossRefGoogle Scholar
Bromberg, K. and Holt, J., “Self-bumping of deformation spaces of hyperbolic 3-manifolds”, J. Differential Geom. 57:1 (2001), 47–65.Google Scholar
Bromberg, K. and Souto, J., “The density conjecture, a prehistoric approach”, in preparaton.
Brooks, R., “On the deformation theory of classical Schottky groups”, Duke Math. J. 52:4 (1985), 1009–1024.CrossRefGoogle Scholar
Brooks, R., “Circle packings and co-compact extensions of Kleinian groups”, Invent. Math. 86:3 (1986), 461–469.CrossRefGoogle Scholar
Brooks, R., “Twist surfaces”, pp. 85–103 in Random walks and discrete potential theory (Cortona, 1997), edited by M., Picardello and W., Woess, Symposia Mathematica 39, Cambridge Univ. Press, Cambridge, 1999.Google Scholar
Brooks, R. and Matelski, J. P., “The dynamics of 2-generator subgroups of PSL(2, C)”, pp. 65–71 in Riemann surfaces and related topics (Stony Brook, NY, 1978), edited by I., Kra and B., Maskit, Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, NJ, 1981.Google Scholar
Brunner, A. M., Frame, M. L., Lee, Y. W. and Wielenberg, N. J., “Classifying torsion-free subgroups of the Picard group”, Trans. Amer. Math. Soc. 282:1 (1984), 205–235.CrossRefGoogle Scholar
Burger, M. and Canary, R. D., “A lower bound on 0 for geometrically finite hyperbolic nmanifolds”, J. Reine Angew. Math. 454 (1994), 37–57.Google Scholar
Burger, M., Gelander, T., Lubotzky, A. and Mozes, S., “Counting hyperbolic manifolds”, Geom. Funct. Anal. 12:6 (2002), 1161–1173.CrossRefGoogle Scholar
Buser, P., “Geometry and spectra of compact Riemann surfaces”, Progress in Mathematics 106, Birkhäuser, Boston, 1992.Google Scholar
Button, J. O., “Fibred and virtually fibred hyperbolic 3-manifolds in the censuses”, Experiment. Math. 14:2 (2005), 231–255.CrossRefGoogle Scholar
Calegari, D. and Gabai, D., “Shrinkwrapping and the taming of hyperbolic 3-manifolds”, J. Amer. Math. Soc. 19 (2006), 385–446.CrossRefGoogle Scholar
Callahan, P. J., Dean, J. C. and Weeks, J. R., “The simplest hyperbolic knots”, J. Knot Theory Ramifications 8:3 (1999), 279–297.CrossRefGoogle Scholar
Canary, R. D., “The Poincaré metric and a conformal version of a theorem of Thurston”, Duke Math. J. 64:2 (1991), 349–359.Google Scholar
Canary, R. D., “On the Laplacian and the geometry of hyperbolic 3-manifolds”, J. Differential Geom. 36:2 (1992), 349–367.CrossRefGoogle Scholar
Canary, R. D., “Ends of hyperbolic 3-manifolds”, J. Amer. Math. Soc. 6:1 (1993), 1–35.Google Scholar
Canary, R. D., “A covering theorem for hyperbolic 3-manifolds and its applications”, Topology 35:3 (1996), 751–778.CrossRefGoogle Scholar
Canary, R. D. and Hersonsky, S., “Ubiquity of geometric finiteness in boundaries of deformation spaces of hyperbolic 3-manifolds”, Amer. J. Math. 126:6 (2004), 1193–1220.CrossRefGoogle Scholar
Canary, R. D. and McCullough, D., Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups, Mem. Amer. Math. Soc. 812, Amer. Math. Soc., Providence, 2004.Google Scholar
Canary, R. D. and Minsky, Y. N., “On limits of tame hyperbolic 3-manifolds”, J. Differential Geom. 43:1 (1996), 1–41.CrossRefGoogle Scholar
Canary, R. D. and Storm, P., “Moduli spaces of hyperbolic 3-manifolds and dynamics of character varieties”, Comm. Math. Helv, 88 (2013), 221–251.CrossRefGoogle Scholar
Canary, R. D. and Storm, P., “The curious moduli space of unmarked Kleinian surface groups”, Amer. Jour. Math. 134 (2012), 71–85.CrossRefGoogle Scholar
Canary, R. D. and Taylor, E., “Kleinian groups with small limit sets”, Duke Math. J. 73:2 (1994), 371–381.CrossRefGoogle Scholar
Canary, R. D., Epstein, D. B. A. and Green, P., “Notes on notes of Thurston”, pp. 3–92 in Analytical and geometric aspects of hyperbolic space (Warwick and Durham, 1984), edited by D. B. A., Epstein, London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press, Cambridge, 1987. Reprinted in Canary et al. [2006].Google Scholar
Canary, R. D., Minsky, Y. N. and Taylor, E. C., “Spectral theory, Hausdorff dimension and the topology of hyperbolic 3-manifolds”, J. Geom. Anal. 9:1 (1999), 17–40.CrossRefGoogle Scholar
Canary, R. D., Culler, M., Hersonsky, S. and Shalen, P. B., “Approximation by maximal cusps in boundaries of deformation spaces of Kleinian groups”, J. Differential Geom. 64:1 (2003), 57–109.CrossRefGoogle Scholar
Canary, R. D., Marden, A. and Epstein, D. B. A., (editors), Fundamentals of hyperbolic geometry: selected expositions, edited by R. D., Canary et al., London Math. Soc. Lecture Note Ser. 328, Cambridge Univ. Press, Cambridge, 2006.CrossRefGoogle Scholar
Cannon, J. W., “The theory of negatively curved spaces and groups”, pp. 315–369 in Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, New York, 1991.Google Scholar
Cannon, J. W., “Geometric group theory”, pp. 261–305 in Handbook of geometric topology, North-Holland, Amsterdam, 2002.Google Scholar
Cannon, J. W., “Cannon's conjecture”, in McGraw-Hill 2011 yearbook of science and technology, McGraw-Hill, New York (2011).Google Scholar
Cannon, J.W. and Cooper, D., “A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three”, Trans. Amer. Math. Soc. 330:1 (1992), 419–431.CrossRefGoogle Scholar
Cannon, J. W. and Thurston, W. P., “Group invariant Peano curves”, Geom. Topol. 11 (2007), 1315–1355.CrossRefGoogle Scholar
Cannon, J. W., Floyd, W. J., Kenyon, R. and Parry, W. R., “Hyperbolic geometry”, pp. 59– 115 in Flavors of geometry, Math. Sci. Res. Inst. Publ. 31, Cambridge Univ. Press, Cambridge, 1997.Google Scholar
Cannon, J. W., Floyd, W. J. and Parry, W. R., “Twisted face pairing 3-manifolds”, Trans. A.M.S. 354, (2002), 2369–2397.CrossRefGoogle Scholar
Cao, J. G., “The Bers-Nielsen kernels and souls of open surfaces with negative curvature”, Michigan Math. J. 41:1 (1994), 13–30.Google Scholar
Cao, C. and Meyerhoff, G. R., “The orientable cusped hyperbolic 3-manifolds of minimum volume”, Invent. Math. 146:3 (2001), 451–478.CrossRefGoogle Scholar
Casson, A. J. and Bleiler, S. A., Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts 9, Cambridge Univ. Press, Cambridge, 1988.CrossRefGoogle Scholar
Casson, A. and Jungreis, D., “Convergence groups and Seifert fibered 3-manifolds”, Invent. Math. 118:3 (1994), 441–456.CrossRefGoogle Scholar
Charney, R., “An introduction to right-angled Artin groups”, Geom. Dedicata 125 (2007), 141–158.CrossRefGoogle Scholar
Chavel, I., Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics 108, Cambridge Univ. Press, Cambridge, 1993.Google Scholar
Choi, Y.-E. and Series, C., “Lengths are coordinates for convex structures”, J. Differential Geom. 73:1 (2006), 75–117.CrossRefGoogle Scholar
Chow, B. and Knopf, D., “The Ricci flow: an introduction”, Mathematical Surveys and Monographs 110, Amer. Math. Soc., Providence, RI, 2004.Google Scholar
Conder, M., Martin, G. and Torstensson, A., “Maximal symmetry groups of hyperbolic 3- manifolds”, New Zealand J. Math. 35 (2006), 37–62.Google Scholar
Cooper, D., “The volume of a closed hyperbolic 3-manifold is bounded by p times the length of any presentation of its fundamental group”, Proc. Amer. Math. Soc. 127:3 (1999), 941–942.Google Scholar
Cooper, D. and Long, D. D. and Reid, A. W., “Essential closed surfaces in bounded 3-manifolds”, J. Amer. Math. Soc. 10 (1997), no. 3, 553–563.CrossRefGoogle Scholar
Cooper, D. and Lackenby, M., “Dehn surgery and negatively curved 3-manifolds”, J. Differential Geom. 50:3 (1998), 591–624.CrossRefGoogle Scholar
Cooper, D., Hodgson, C. D. and Kerckhoff, S. P., Three-dimensional orbifolds and conemanifolds, MSJ Memoirs 5, Mathematical Society of Japan, Tokyo, 2000.Google Scholar
Coulson, D., Goodman, O. A., Hodgson, C. D. and Neumann, W. D., “Computing arithmetic invariants of 3-manifolds”, Experiment. Math. 9:1 (2000), 127–152.CrossRefGoogle Scholar
Coxeter, H. S. M., Introduction to geometry, John Wiley & Sons, New York, 1961.Google Scholar
Culler, M., “Lifting representations to covering groups”, Adv. in Math. 59:1 (1986), 64–70.CrossRefGoogle Scholar
Culler, M. and Dunfield, N., “Snappy”, Available at http://www.uic.edu/t3m/SnapPy/doc/ (2012). Software to compute hyperbolic manifolds.
Culler, M. and Shalen, P. B., “Varieties of group representations and splittings of 3- manifolds”, Ann. of Math. (2) 117:1 (1983), 109–146.CrossRefGoogle Scholar
Culler, M. and Shalen, P. B., “Margulis numbers for Haken manifolds”, math.GT/arXiv:1006. 3467 (2010).
Culler, M. and Vogtmann, K., “Moduli of graphs and automorphisms of free groups”, Invent. Math. 84 (1986), 91–119.CrossRefGoogle Scholar
Dahmani, F.Guirardel, V.Osin, D., “Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces”, arXiv:1111.7048v3.
De-Spiller, D. A., “Equimorphisms, and quasiconformal mappings of the absolute”, Dokl. Akad. Nauk SSSR 194 (1970), 1006–1009.Google Scholar
Donaldson, S., Riemann surfaces, Oxford U. Press, New York, 2011.CrossRefGoogle Scholar
Douady, A. and Earle, C. J., “Conformally natural extension of homeomorphisms of the circle”, Acta Math. 157:1-2 (1986), 23–48.CrossRefGoogle Scholar
Doyle, P., “On the bass note of a Schottky group”, Acta Math 160 (1988), 249–284.CrossRefGoogle Scholar
Dumas, D., “The Schwarzian derivative and measured laminations on Riemann surfaces”, Duke Math. J. 140 (2007), 203–243.CrossRefGoogle Scholar
Dumas, D., “Complex projective structures”, in Handbook of Teichmüller space, A. Papadoupoulos, ed., Eur. Math. Soc. 2009.Google Scholar
Dumas, D., “Skinning maps are finite-to-one”, Math GT, arXiv:1203:0273.
Dumas, D. and Kent IV, R. P., “Slicing, skinning, and grafting”, Amer. J. Math. 131 (2009), 1419–1429.Google Scholar
Dumas, D. and Wolf, M., “Projective structures, grafting and measured laminations”, Geometry and Topology 12 (2008), 351–386.CrossRefGoogle Scholar
Dunbar, W. D. and Meyerhoff, G. R., “Volumes of hyperbolic 3-orbifolds”, Indiana Univ. Math. J. 43:2 (1994), 611–637.CrossRefGoogle Scholar
Dunfield, N. M., “Surfaces in finite covers of 3-manifolds: the Virtual Haken Conjecture”, Video of lecture at GEAR retreat, Urbana, August 2012, www.math.uiuc.edu/~nmd.
Dunfield, N. M. and Thurston, W. P., “The virtual Haken conjecture: experiments and examples”, Geom. Topol. 7 (2003), 399–441.CrossRefGoogle Scholar
Dunfield, N. M. and Thurston, W. P., “Finite covers of random 3-manifolds”, Invent. Math. 166 (2006), 457–521.CrossRefGoogle Scholar
Duren, P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, 1983.Google Scholar
Earle, C. J., “The infinite Nielsen kernels of some bordered Riemann surfaces”, Michigan Math. J. 40:3 (1993), 445–458.Google Scholar
Earle, C. J. and Kra, I., “On holomorphic mappings between Teichmüller spaces”, pp. 107– 124 in Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974.Google Scholar
Earle, C. J. and Marden, A., “Holomorphic plumbing coordinates”, in Quasiconformal mappings, Riemann surfaces, and Teichmueller spaces, Y., Jiang, S., Mitra, eds., Contemporary Math. Series AMS, 573 (2012), 67–97.Google Scholar
Earle, C. J. and Marden, A., “Holomorphic plumbing coordinates on Teichmueller and compactified moduli space”, to appear.
Earle, C. J. and Marden, A., “Disjointness of parabolic canonical regions”, to appear.
Earle, C. J., Kra, I. and Krushkal, S. L., “Holomorphic motions and Teichmüller spaces”, Trans. Amer. Math. Soc. 343:2 (1994), 927–948.Google Scholar
Edmonds, A. L., “Deformation of maps to branched coverings in dimension two”, Annals of Math. 110 (1979a), 113–125.CrossRefGoogle Scholar
Edmonds, A. L., “Deformation of maps to branched coverings in dimension three”, Math. Ann. 245 (1979b), 273–279.CrossRefGoogle Scholar
Edmonds, A. L., Kulkarni, R. S., Stong, R. E., “Realizability of branched coverings of surfaces,” Trans. Amer. Math. Soc. 282 (1984), 773–790.CrossRefGoogle Scholar
Efremovic, V. A. and Tihomirova, E. S., “Equimorphisms of hyperbolic spaces”, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1139–1144. In Russian.Google Scholar
Epstein, C. L., “The hyperbolic Gauss map and quasiconformal reflections”, J. Reine Angew. Math. 372 (1986), 96–135.Google Scholar
Epstein, D. B. A., “Curves on 2-manifolds and isotopies”, Acta Math., 115 (1966). 83–107.Google Scholar
Epstein, D. and Gunn, C., Supplement to Not knot, A K Peters, 1991.Google Scholar
Epstein, D. B. A. and Marden, A., “Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces”, pp. 113–253 in Analytical and geometric aspects of hyperbolic space (Warwick and Durham, 1984), edited by D. B. A., Epstein, London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press, Cambridge, 1987. Reprinted in Canary et al. [2006].Google Scholar
Epstein, D. B. A. and Markovic, V., “Extending homeomorphisms of the circle to quasiconformal homeomorphims of the disc”, Geom. Top. 10 (2007), 517–595.Google Scholar
Epstein, D. B. A. and Penner, R. C., “Euclidean decompositions of noncompact hyperbolic manifolds”, J. Differential Geom. 27 (1988), 67–80.CrossRefGoogle Scholar
Epstein, D. B. A. and Petronio, C., “An exposition of Poincaré's polyhedron theorem”, Enseign. Math. (2) 40:1-2 (1994), 113–170.Google Scholar
Epstein, D. B. A., Cannon, J. W., Holt, D. F., Levy, S. V. F., Paterson, M. S. and Thurston, W. P., Word processing in groups, Jones and Bartlett Publishers, Boston, 1992.Google Scholar
Epstein, D. B. A., Marden, A. and Markovic, V., “Quasiconformal homeomorphisms and the convex hull boundary”, Ann. of Math. (2) 159:1 (2004), 305–336.CrossRefGoogle Scholar
Epstein, D. B. A., Marden, A. and Markovic, V., “Complex earthquakes and deformations of the unit disk”, J. Differential Geom 73 (2006), 119–166.CrossRefGoogle Scholar
Eskin, A., Masur, H. and Rafi, K., “Rigidity of Teichmueller space”, arXiv:1506.04774.
Evans, R., “Weakly type-preserving sequences and strong convergence”, Geom. Dedicata 108 (2004a), 71–92.CrossRefGoogle Scholar
Evans, R. A., “Tameness persists in weakly type-preserving strong limits”, Amer. J. Math. 126:4 (2004b), 713–737.CrossRefGoogle Scholar
Evans, R. A., “Uniformly bounded radii of balls in convex cores of hyperbolic 3-manifolds”, Auckland preprint (2005).
Evans, R. A., “McMullen's conjecture for convex cores of hyperbolic 3-manifolds”, Auckland preprint (2006).
Farb, B., “Relatively hyperbolic groups”, Geom. Funct. Anal. 8:5 (1998), 810–840.CrossRefGoogle Scholar
Farb, B., “Some problems on mapping class groups and moduli space”, Problems on mapping class groups and related topics, 11–55, in Proc. Sympos. Pure Math., A.M.S. 74, 2006.Google Scholar
Farb, B. and Margalit, D., A Primer on Mapping Class Groups, Princeton University Press, 2012.Google Scholar
Farkas, H. M. and Kra, I., Riemann surfaces, 2nd ed. Graduate Texts in Mathematics 71, Springer, New York, 1991.Google Scholar
Fathi, A., Laudenbach, F. and Poénaru, V., Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France, Paris, 1979. English translation, Princeton Univ. Press, 2012. Book review by D. Margalit, Bull. A.M.S. 51 (2013).Google Scholar
Fatou, P., “Fonctions automorphes”, in Théorie des fonctions algébriques et de leurs intégrales, 2nd ed., vol. 2, Gauthier-Villars, Paris, 1930.Google Scholar
Feighn, P. and McCullough, D., “Finiteness conditions for 3-manifolds with boundary”, Amer. J. Math. 109:6 (1987), 1155–1169.CrossRefGoogle Scholar
Feighn, M. and Mess, G., “Conjugacy classes of finite subgroups of Kleinian groups”, Amer. J. Math. 113:1 (1991), 179–188.CrossRefGoogle Scholar
Fenchel, W., Elementary geometry in hyperbolic space, Studies in Mathematics 11, de Gruyter, Berlin, 1989.CrossRefGoogle Scholar
Fletcher, A. and Markovic, V., Quasiconformal maps and Teichmüller theory, Oxford U. Press, New York, 2007.Google Scholar
Floyd, W.,Weber, B. and Weeks, J., “The Achilles’ heel of O(3, 1)?”, Experiment. Math. 11:1 (2002), 91–97.CrossRefGoogle Scholar
Ford, L. R., Automorphic Functions, McGraw-Hill, New York, 1929. Reprinted by Chelsea, New York, 1951.Google Scholar
Fox, R. H. and Artin, E., “Some wild cells and spheres in three-dimensional space”, Ann. of Math. (2) 49 (1948), 979–990.CrossRefGoogle Scholar
Freedman, M. H. and Gabai, D., “Covering a nontaming knot by the unlink”, Algebraic and Geometric Topology 7 (2007), 1561–1578.CrossRefGoogle Scholar
Frigerio, R., Martelli, B. and Petronio, C., “Small hyperbolic 3-manifolds with geodesic boundary”, Experiment. Math. 13:2 (2004), 171–184.CrossRefGoogle Scholar
Fujii, M., “Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra”, Tokyo J. Math. 13:2 (1990), 353–373.CrossRefGoogle Scholar
Gabai, D., “On 3-Minifolds Finitely Covered by Surface Bundles”, pp. 145–155 in Low dimensional topology and Kleinian groups (Warwick and Durham, 1984), edited by D. B. a., Epstein, London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press, Cambridge, 1986.Google Scholar
Gabai, D., “Convergence groups are Fuchsian groups”, Ann. of Math. (2) 136:3 (1992), 447–510.CrossRefGoogle Scholar
Gabai, D., “On the geometric and topological rigidity of hyperbolic 3-manifolds”, J. Amer. Math. Soc. 10 (1997), 37–74.CrossRefGoogle Scholar
Gabai, D., “The Smale conjecture for hyperbolic 3-manifolds: Isom(M3)(Diff(M3)”, J. Differential Geom. 58 (2001a), 113–149.CrossRefGoogle Scholar
Gabai, D., “Almost filling laminations and the connectivity of ending lamination space”, Geometry & Topology 13 (2009), 1017–1041.CrossRefGoogle Scholar
Gabai, D., “On the topology of ending lamination space”, Geom. Topol. 18 (2014), 2683– 2745.CrossRefGoogle Scholar
Gabai, D., Meyerhoff, G. R. and Milley, P., “Volumes of tubes in hyperbolic 3-manifolds”, J. Differential Geom. 57:1 (2001b), 23–46.CrossRefGoogle Scholar
Gabai, D., Meyerhoff, G. R. and Thurston, N., “Homotopy hyperbolic 3-manifolds are hyperbolic”, Ann. of Math. (2) 157:2 (2003), 335–431.CrossRefGoogle Scholar
Gabai, D., Meyerhoff, G. R. and Milley, P., “Minimum volume cusped hyperbolic threemanifolds”, J. Amer. Math. Soc. 22 (2009), 1157–1215.CrossRefGoogle Scholar
Gabai, D., Meyerhoff, G. R. and Milley, P., “Mom technology and hyperbolic 3-manifold”, pp. 84–107 in In the tradition of Ahlfors-Bers, Contemp. Math. 510, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
Gabai, D., Meyerhoff, G. R. and Milley, P., “Mom technology and volumes of hyperbolic 3-manifolds”, Comment. Math. Helv. 86 (2011), 145–188.Google Scholar
Gallo, D., Kapovich, M. and Marden, A., “The monodromy groups of Schwarzian equations on closed Riemann surfaces”, Ann. of Math. (2) 151:2 (2000), 625–704.CrossRefGoogle Scholar
Gardiner, F. R. and Lakic, N., “Comparing Poincaré densities”, Ann. of Math. 154 (2001), 245–267.CrossRefGoogle Scholar
Gaster, J., “A family of non-injective skinning maps with critical points”, (2012) Available at www.arXiv.org/math.GT/1212.6210.
Gehring, F. W., “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc. 103 (1962), 353–393.CrossRefGoogle Scholar
Gehring, F.W. and Martin, G. J., “Commutators, collars and the geometry of Möbius groups”, J. Anal. Math. 63 (1994), 175–219.CrossRefGoogle Scholar
Gilman, J., Two-generator discrete subgroups of PSL(2,R), Mem. Amer. Math. Soc. 561, Amer. Math. Soc., Providence, 1995.Google Scholar
Gilman, J., “Algorithms, complexity and discreteness criteria in PSL(2,C)”, J. Anal. Math. 73 (1997), 91–114.CrossRefGoogle Scholar
Gilman, J. and Waterman, P., “Classical two-parabolic T-Schottky groups”, J. Anal. Math. 98 (2006), 1–42.CrossRefGoogle Scholar
Goldman, W. M., “Projective structures with Fuchsian holonomy”, J. Differential Geom. 25:3 (1987), 297–326.CrossRefGoogle Scholar
Goldman, W. M., “Topological components of spaces of representations”, Invent. Math. 93 (1988), 557–607.CrossRefGoogle Scholar
Goldman, W. M., “The modular group action on real SL(2)-characters of a one-holed torus”, Geom. Topol. 7 (2003), 443–486.CrossRefGoogle Scholar
Goodman, O., “Snap”, 2006 Available at http://sourceforge.net/projects/snap-pari. Software to computing arithmetic invariants of hyperbolic 3-manifolds.
Goodman, O., Heard, D. and Hodgson, C., “Commensurators of cusped hyperbolic manifolds”, Experiment Math. 17 (2008), 283–306.CrossRefGoogle Scholar
Gordon, C. M. and Luecke, J., “Knots are determined by their complements”, J. Amer. Math. Soc. 2:2 (1989), 371–415.CrossRefGoogle Scholar
Gray, J., Linear differential equations and group theory from Riemann to Poincaré, Birkhäuser, Boston, 1986. 2nd edition, 2000. Gray, J., 2002. Unpublished manuscript.CrossRefGoogle Scholar
Gray, J., Henri Poincaré: A Scientific Biography, Princeton U. Press, 2013.Google Scholar
Greenberg, L., “Discrete groups of motions”, Canad. J. Math. 12 (1960), 415–426.
Greenberg, L., “Discrete subgroups of the Lorentz group”, Math. Scand. 10 (1962), 85–107.CrossRefGoogle Scholar
Greenberg, L., “Fundamental polyhedra for kleinian groups”, Ann. of Math. (2) 84 (1966), 433–441.CrossRefGoogle Scholar
Greenberg, L., “Commensurable groups of Moebius transformations”, pp. 227–237 in Discontinuous groups and Riemann surfaces (College Park, MD, 1973), edited by L., Greenberg, Ann. of Math. Studies 79, Princeton Univ. Press, Princeton, NJ, 1974.Google Scholar
Greenberg, L., “Maximal groups and signatures”, pp. 207–226 in Discontinuous groups and Riemann surfaces (College Park, MD, 1973), edited by L., Greenberg, Ann. of Math. Studies 79, Princeton Univ. Press, Princeton, NJ, 1974.Google Scholar
Greenberg, L., “Finiteness theorems for Fuchsian and Kleinian groups”, pp. 199–257 in Discrete groups and automorphic functions (Cambridge, 1975), edited by W., Harvey, Academic Press, London, 1977.Google Scholar
Greenberg, L., “Homomorphisms of triangle groups into PSL(2, C)”, pp. 167–181 in Riemann surfaces and related topics (Stony Brook, NY, 1978), edited by I., Kra and B., Maskit, Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, NJ, 1981.Google Scholar
Gromov, M., “Groups of polynomial growth and expanding maps”, Inst. Hautes Études Sci. Publ. Math. no. 53 (1981a), 53–73.Google Scholar
Gromov, M., “Hyperbolic manifolds (according to Thurston and Jørgensen)”, pp. 40–53 in Bourbaki Seminar, 1979/80, Lecture Notes in Math. 842, Springer, Berlin, 1981b.Google Scholar
Gromov, M., “Hyperbolic groups”, pp. 75–263 in Essays in group theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York, 1987.CrossRefGoogle Scholar
Gromov, M. and Thurston, W., “Pinching constants for hyperbolic manifolds”, Invent. Math. 89:1 (1987), 1–12.CrossRefGoogle Scholar
Gunn, C. and Maxwell, D., Not Knot Video, The Geometry Center, UMN; DVD distributed by A.K. Peters/Taylor and Francis, 1991.
Guo, R., “Characterizations of hyperbolic geometry among Hilbert geometries: A survey”, in Handbook of Hilbert Geometry, A. Papadopoulos, ed., to appear.
Halpern, N., “A proof of the collar lemma”, Bull. London Math. Soc. 13 (1981), 141–144.CrossRefGoogle Scholar
Hamenstädt, U., “Length functions and parameterizations of Teichmüller space for surfaces with cusps”, Ann. Acad. Sci. Fenn. 28 (2003), 75–88.Google Scholar
Hamenstädt, U., “Train tracks and the Gromov boundary of the complex of curves” pp. 187– 207 in Spaces of Kleinian groups, London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press, Cambridge, 2006.Google Scholar
Hamenstädt, U., “Geometry of the mapping class group III: Quasiisometric rigidity”, arXiv: mathGT/0512429 (2007).
Hartshorn, K., “Heegaard splittings of Haken manifolds”, Pacific J. Math. 204 (2002), 61–75.CrossRefGoogle Scholar
Harvey, W. J., “Spaces of discrete groups”, pp. 295–348 in Discrete groups and Automorphic Functions (Cambridge, 1975), edited by W., Harvey, Academic Press, London, 1977.Google Scholar
Harvey, W. J., “Boundary structure of the modular group”, pp. 245–251 in Riemann surfaces and related topics (Stony Brook, NY, 1978), edited by I., Kra and B., Maskit, Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, NJ, 1981.Google Scholar
Heard, D., “Orb,” Available at http://www.ms.unimelb.edu.au/~snap/orb.html. software to compute hyperbolic structures on graph complements and orbifolds.
Hejhal, D. A., “Monodromy groups and linearly polymorphic functions”, Acta Math. 135:1 (1975), 1–55.CrossRefGoogle Scholar
Hempel, J., 3-Manifolds, Princeton Univ. Press, Princeton, NJ, 1976.Google Scholar
Hempel, J., “Residual finiteness for 3-manifolds”, pp. 379–396 in Combinatorial group theory and topology (Alta, Utah, 1984), Ann. of Math. Stud. 111, Princeton Univ. Press, Princeton, NJ, 1987.Google Scholar
Hempel, J., “3-manifolds from the curve complex”, Topology 40 (2001), 630–657.CrossRefGoogle Scholar
Hidalgo, R. and Maskit, B., “On neoclassical Schottky groups”, Trans. Amer. Math. Soc. 358 (2006), 4765–4792.CrossRefGoogle Scholar
Hildebrand, M. and Weeks, J., “A computer generated census of cusped hyperbolic 3- manifolds”, pp. 53–59 in Computers and mathematics (Cambridge, MA, 1989), Springer, New York, 1989.Google Scholar
Hilden, H. M., Lozano, M. T. and Montesinos, J. M.On knots that are universal”, Topology 24:4 (1985), 499–504.CrossRefGoogle Scholar
Hilden, H. M., Lozano, M. T., Montesinos, J. M. and Whitten, W., “On universal groups and three-manifolds”, Invent. Math 87 (1987), 441–456.CrossRefGoogle Scholar
Hocking, J. G. and Young, G. S., Topology, Addison-Wesley, Reading (MA), 1961.Google Scholar
Hodgson, C. D. and Kerckhoff, S. P., “Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery”, J. Differential Geom. 48:1 (1998), 1–59.CrossRefGoogle Scholar
Hodgson, C. D. and Weeks, J. R., “Symmetries, isometries and length spectra of closed hyperbolic three-manifolds”, Experiment. Math. 3:4 (1994), 261–274.CrossRefGoogle Scholar
Hoffman, N., Ichihara, K., Kashiwagi, M., Masai, H., Oishi, S. and Takayasu, A., “Verified computations for hyperbolic 3-manifolds”, arXiv 1310.3410 (2013).
Holt, J., “Multiple bumping of components of deformation spaces of hyperbolic 3-manifolds”, Amer. J. Math. 125:4 (2003), 691–736.CrossRefGoogle Scholar
Hou, Y., “Kleinian groups of small Hausdorff dimension are classical Schottky groups”, Geom. Topol. 14 (2010), 473–519.CrossRefGoogle Scholar
Hubbard, J. H., Teichmüller Theory, Matrix Editions, Ithaca, N.Y., 2006.Google Scholar
Imayoshi, Y. and Taniguchi, M., An introduction to Teichmüller spaces, Springer, Tokyo, 1992.CrossRefGoogle Scholar
Ito, K., “Exotic projective structures and quasi-Fuchsian space”, Duke Math. J. 105:2 (2000), 185–209.CrossRefGoogle Scholar
Ivanov, N. V., Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs 115, American Mathematical Society, Providence, RI, 1992.CrossRefGoogle Scholar
Ivanov, N. V., “Automorphisms of complexes of curves and of Teichmüller spaces”, in Progress in Knot Theory and Related Topics, Travaux en Cours 56, Herman, Paris, 1997, also Internat. Math. Res. Notices 1997, no. 14, 651–666.Google Scholar
Ivanov, N. V., “Mapping class groups”, in Handbook of geometric topology, North-Holland, Amsterdam, 2002.Google Scholar
Ivanov, N. V., “Arnol'd, the Jacobi identity, and orthocenters”, Amer. Math. Monthly 118 (2011), 41–65.Google Scholar
Jaco, W., Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, Amer. Math. Soc., Providence, 1980.
Jaco, W. H. and Shalen, P. B., Seifert fibered spaces in 3-manifolds, Mem. A.M.S. 21 no. 220, Providence (1979).Google Scholar
Johannson, K., Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Math. 761, Springer, Berlin, 1979.CrossRefGoogle Scholar
Jones, G. A., “Counting subgroups of non-Euclidean crystallographic groups”, Math. Scand. 84 (1) (1999), 23–39.CrossRefGoogle Scholar
Jones, G. A. and Singerman, D., “Theory of maps on orientable surfaces”, Proc. London Math. Soc. (3) 37:2 (1978), 273–307.Google Scholar
Jones, G. and Singerman, D., “Bely?i functions, hypermaps and Galois groups”, Bull. London Math. Soc. 28:6 (1996), 561–590.CrossRefGoogle Scholar
Jørgensen, T., “On cyclic groups of Möbius transformations”, Math. Scand. 33 (1973), 250–260.CrossRefGoogle Scholar
Jørgensen, T., “On reopening of cusps”, 1974a.
Jørgensen, T., “Some remarks on Kleinian groups”, Math. Scand. 34 (1974b), 101–108.CrossRefGoogle Scholar
Jørgensen, T., “On discrete groups of Möbius transformations”, Amer. J. Math. 98:3 (1976), 739–749.CrossRefGoogle Scholar
Jørgensen, T., “Compact 3-manifolds of constant negative curvature fibering over the circle”, Ann. Math. (2) 106:1 (1977a), 61–72.CrossRefGoogle Scholar
Jørgensen, T., “A note on subgroups of SL(2,C)”, Quart. J. Math. Oxford Ser. (2) 28:110 (1977b), 209–211.CrossRefGoogle Scholar
Jørgensen, T., “Closed geodesics on Riemann surfaces”, Proc. Amer. Math. Soc. 72:1 (1978), 140–142.CrossRefGoogle Scholar
Jørgensen, T., “Commutators in SL(2, C)”, pp. 301–303 in Riemann surfaces and related topics (Stony Brook, NY, 1978), edited by I., Kra and B., Maskit, Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, NJ, 1981.Google Scholar
Jørgensen, T., “Composition and length of hyperbolic motions”, pp. 211–220 in In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998), Contemp. Math. 256, Amer. Math. Soc., Providence, RI, 2000.CrossRefGoogle Scholar
Jørgensen, T., “On pairs of once-punctured tori”, pp. 183–207 in Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001), London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press, Cambridge, 2003.Google Scholar
Jørgensen, T. and Kiikka, M., “Some extreme discrete groups”, Ann. Acad. Sci. Fenn. Ser. A I Math. 1:2 (1975), 245–248.CrossRefGoogle Scholar
Jørgensen, T. and Klein, P., “Algebraic convergence of finitely generated Kleinian groups”, Quart. J. Math. Oxford Ser. (2) 33:131 (1982), 325–332.CrossRefGoogle Scholar
Jørgensen, T. and Marden, A., “Two doubly degenerate groups”, Quart. J. Math. Oxford Ser. (2) 30:118 (1979), 143–156.CrossRefGoogle Scholar
Jørgensen, T. and Marden, A., “Algebraic and geometric convergence of Kleinian groups”, Math. Scand. 66:1 (1990), 47–72.CrossRefGoogle Scholar
Jørgensen, T., Lascurain, A. and Pignataro, T., “Translation extensions of the classical modular group”, Complex Variables Theory Appl. 19:4 (1992), 205–209.Google Scholar
Kahn, J. and Markovic, V., “The good pants homology and a proof of the Ehrenpreis conjecture”, Ann. of Math., to appear.
Kahn, J. and Markovic, V., “Immersing almost geodesic surfaces in a closed hyperbolic 3- manifold”, Ann. of Math. 175 (2012a), 1127–1190.CrossRefGoogle Scholar
Kahn, J. and Markovic, V., “Counting essential surfaces in a closed hyperbolic 3-manifold”, Geometry & Topology 16 (2012b). 601–624.CrossRefGoogle Scholar
Kamishima, Y. and Tan, S. P., “Deformation spaces on geometric structures”, pp. 263–299 in Aspects of low-dimensional manifolds, Adv. Stud. Pure Math. 20, Kinokuniya, Tokyo, 1992.Google Scholar
Kapovich, M., “Hyperbolic manifolds and discrete groups”, Progress in Mathematics 183, Birkhäuser, Boston, 2001.Google Scholar
Kapovich, M., “Kleinian groups in higher dimensions”, Progress in Mathematics, 265 (2007), 485–562.Google Scholar
Kapovich, M., “Dirichlet fundamental domains and topology of projective varieties”, Invent. Math. 194 (2013), 631–672.CrossRefGoogle Scholar
Kazhdan, D. A. and Margulis, G. A., “A proof of Selberg's conjecture”, Mat. Sb. (N.S.) 75:(117) (1968), 163–168. In Russian; translated in Math. USSR Sbornik 4 (1968), 147–152.Google Scholar
Keen, L., Rauch, H. E. and Vasquez, A. T., “Moduli of punctured tori and the accessory parameter of Lamé's equation”, Trans. A. M. S. 255 (1979), 201–230.Google Scholar
Kellerhals, R., “Volumes of cusped hyperbolic manifolds”, Topology 37:4 (1998), 719–734.CrossRefGoogle Scholar
Kellerhals, R. and Zehrt, T., “The Gauss-Bonnet formula for hyperbolic manifolds of finite volume”, Geom. Dedicata 84:1–3 (2001), 49–62.CrossRefGoogle Scholar
Kent IV, R. P., “Skinning maps”, Duke Math. J. 151 (2010), 279–336.Google Scholar
Kerckhoff, S. P., “The asymptotic geometry of Teichmüller space”, Topology 19:1 (1980), 23–41.CrossRefGoogle Scholar
Kerckhoff, S. P., “The Nielsen realization problem”, Ann. of Math. (2) 117:2 (1983), 235–265.CrossRefGoogle Scholar
Kerckhoff, S. P., “Earthquakes are analytic”, Comment. Math. Helv. 60:1 (1985), 17–30.CrossRefGoogle Scholar
Kerckhoff, S. P., “The measure of the limit set of the handlebody group”, Topology 29:1 (1990), 27–40.CrossRefGoogle Scholar
Kerckhoff, S. P., “ Lines of minima in Teichmüller space”, Duke Math. J. 65 (1992), 187–213.CrossRefGoogle Scholar
Kerckhoff, S. P. and Thurston, W. P., “Noncontinuity of the action of the modular group at Bers’ boundary of Teichmüller space”, Invent. Math. 100:1 (1990), 25–47.CrossRefGoogle Scholar
Klarreich, E., “Semiconjugacies between Kleinian group actions on the Riemann sphere”, Amer. J. Math. 121:5 (1999a), 1031–1078.CrossRefGoogle Scholar
Klarreich, E., “The boundary at infinity of the curve complex and the relative mapping class group,” preprint (1999b). Available at http://www.nasw.org/users/klarreich/ research.htm.
Klein, F., “Über die sogenannte nicht-euklidische Geometrie”, Math. Ann. 4 (1871), 573–625. Page number cited in text is for the English translation, which appears in Sources of hyperbolic geometry, translated and edited by John Stillwell, Amer. Math. Soc., Providence, 1996.CrossRefGoogle Scholar
Kleineidam, G. and Souto, J., “Algebraic convergence of function groups”, Comment. Math. Helv. 77:2 (2002), 244–269.CrossRefGoogle Scholar
Kleineidam, G. and Souto, J., “Ending laminations in the Masur domain”, pp. 105–129 in Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001), London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press, Cambridge, 2003.Google Scholar
Kleiner, B. and Lott, J., “Notes on Perelman's Papers”, Geometry and Topology 12 (2008), 2587–2855.CrossRefGoogle Scholar
Kojima, S., “Isometry transformations of hyperbolic 3-manifolds”, Topology Appl. 29:3 (1988), 297–307.CrossRefGoogle Scholar
Kojima, S., “Nonsingular parts of hyperbolic 3-cone-manifolds”, pp. 115–122 in Topology and Teichmüller spaces (Katinkulta, 1995), edited by S., Kojima et al., World Scientific, River Edge, NJ, 1996.Google Scholar
Kojima, S., “Deformations of hyperbolic 3-cone-manifolds”, J. Differential Geom. 49:3 (1998), 469–516.CrossRefGoogle Scholar
Kojima, S., Mizushima, S. and Tan, S. P., “Circle packings on surfaces with projective structures: A survey”, in Spaces of kleinian groups, edited by Y., Minsky et al., London Math. Soc. Lecture Notes 329, Camb. Univ. Press, 2006.Google Scholar
Komori, Y. and Sugawa, T., “Bers embedding of the Teichmüller space of a once-punctured torus”, Conform. Geom. Dyn. 8 (2004), 115–142.Google Scholar
Korkmaz, M., “Automorphisms of complexes of curves on punctured spheres and on punctured tori”, Topology Appl. 95 (1999), 85–111.CrossRefGoogle Scholar
Korkmaz, M., “Generating the surface mapping class group by two elements”, Trans. A.M.S. 357 (2005), 3299–3310.CrossRefGoogle Scholar
Koundouros, S., “Universal surgery bounds on hyperbolic 3-manifolds”, Topology 43:3 (2004), 497–512.CrossRefGoogle Scholar
Kra, I., “On spaces of Kleinian groups”, Comment. Math. Helv. 47 (1972), 53–69.CrossRefGoogle Scholar
Kulkarni, R. S. and Shalen, P. B., “On Ahlfors’ finiteness theorem”, Adv. Math. 76:2 (1989), 155–169.CrossRefGoogle Scholar
Labourie, F., Lectures on representations of surface groups, Zurich Lectures in Advanced Mathematics, EMS, 2013.
Lackenby, M. and Meyerhoff, R., “The maximal number of exceptional Dehn surgeries”, Invent. Math 191 (2013), 341–382.CrossRefGoogle Scholar
Lamping, J., Rao, R. and Pirolli, P., “A focus + content technique based on hyperbolic geometry for viewing large hierarchies”, pp. 401–408 in Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, 1995.Google Scholar
Le, Thang, “Homology, torsion growth and Mahler measure”, Comment. Math. Helv. 89 (2014), 719–757.CrossRefGoogle Scholar
Le Calvez, P., “A periodicity criterion and the section problem on the Mapping Class Group”, arXiv:1202.3106 (2012).
Lecuire, C., “Une caractérisation des laminations géodésiques mesurées de plissage des variétés hyperboliques et ses conséquences”, pp. 103–115 in Séminaire de Théorie Spectrale et Géométrie, vol. 21. Année 2002–2003, Sémin. Théor. Spectr. Géom. 21, Univ. Grenoble I, Saint, 2003.
Lecuire, C., “Bending map and strong convergence”, Available at www.math.univ-toulouse.fr/~lecuire (2004).
Lecuire, C., “Plissage des vari étés hyperboliques de dimension 3”, [Pleating of hyperbolic 3-manifolds]Invent. Math. 164 (2006), 85–141.CrossRefGoogle Scholar
Lecuire, C., “Continuity of the bending map”, Ann. Fac. Sci. Toulouse Math. (6) 17 (2008), 93–119.CrossRefGoogle Scholar
Lecuire, C., “An extension of Masur domain”, Spaces of Kleinian groups, London Math. Soc. Lecture Note Ser., 329, Cambridge Univ. Press, Cambridge, 2006, 49–56.Google Scholar
Lehner, J., “Discontinuous groups and automorphic functions”, Mathematical Surveys 8, Amer. Math. Soc., Providence, 1964.Google Scholar
Lehto, O., Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics 109, Springer, New York, 1987.CrossRefGoogle Scholar
Leininger, C. J. and McReynolds, D. B., “Seperable subgroups of mapping class groups”, Topology Appl. 154 (2007), 1–10.CrossRefGoogle Scholar
Leininger, C., Long, D. D. and Reid, A. W., “Commensurators of finitely generated nonfree Kleinian groups”, Algebr. Geom. Topol. 11 (2011), 605–624.CrossRefGoogle Scholar
Leung, N. C. and Wan, T. Y. H., “Harmonic maps and the topology of conformally compact Einstein manifolds”, Math. Res. Lett. 8:5-6 (2001), 801–812.CrossRefGoogle Scholar
Li, T., “Heegard surfaces and measured laminations I: The Waldhausen conjecture”, Invent. Math. 167 (2007), 135–177.Google Scholar
Li, T., “An algorithm to determine the Heegaard genus of a 3-manifold”, Geometry & Topology 15 (2011), 1029–1106.CrossRefGoogle Scholar
Li, T., “Rank and Genus of 3-manifolds”, J. Amer. Math. Soc., to appear.
Lickorish, W. B. R., “A representation of orientable combinatorial 3-manifolds”, Ann. of Math. 76 (1962), 531–540.CrossRefGoogle Scholar
Lickorish, W. B. R., An introduction to knot theory, Graduate Texts in Mathematics 175, Springer, New York, 1997.CrossRefGoogle Scholar
Liu, Y. and Markovic, V., “Homology of closed curves and surfaces in closed hyperbolic manifolds”, arXiv:mathGT/1309.7418v2 (2013).
Long, D. D., Reid, A. W. and Thistlehwaite, M., “Zariski dense surface subgroups in SL(3,Z)”, Geometry and Topology 15 (2011), 1–9.CrossRefGoogle Scholar
Luo, F., “Automorphisms of the complex of curves I: Hyperbolicity”, Invent. Math. 138 (1999), 103–149.Google Scholar
Lyndon, R. C. and Schupp, P. E., Combinatorial Group TheoryErgebnisse der Mathematik und ihrer Grenzgebiete, 89 Springer-Verlag, Berlin, (1977).Google Scholar
Maclachlan, C. and Reid, A. W., The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics 219, Springer, New York, 2003.CrossRefGoogle Scholar
Magid, A., “Deformation spaces of kleinian surface groups are not locally connected”, Geometry and Topology 16 (2012), 1247–1320.CrossRefGoogle Scholar
Magnus, W., “Residually finite groups”, Bull. A.M.S. 75 (1969), 305–316.CrossRefGoogle Scholar
Magnus, W., “Noneuclidean tesselations and their groups”, Pure and Applied Mathematics 61, Academic Press, New York, 1974.Google Scholar
Magnus, W., “Rings of Fricke characters and automorphism groups of free groups”, Math. Z. 170:1 (1980), 91–103.CrossRefGoogle Scholar
Maher, J., “Random Heegaard splittingsJ. Topol. 3 (2010), no. 4, 997–1025.CrossRefGoogle Scholar
Maher, J., “Random walks on the mapping class group”, Duke Math. J. 156 (2011), no. 3, 429–468.CrossRefGoogle Scholar
Marden, A., “On finitely generated Fuchsian groups”, Comment. Math. Helv. 42 (1967), 81–85.CrossRefGoogle Scholar
Marden, A., “On homotopic mappings of Riemann surfaces”, Ann. of Math. (2) 90 (1969), 1–8.CrossRefGoogle Scholar
Marden, A., “An inequality for Kleinian groups”, pp. 295–296 in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, NJ, 1971.
Marden, A., “The geometry of finitely generated kleinian groups”, Ann. of Math. (2) 99 (1974a), 383–462.CrossRefGoogle Scholar
Marden, A., “Kleinian groups and 3-dimensional topology: a survey”, pp. 108–121 in A crash course on Kleinian groups (San Francisco, CA, 1974), edited by L., Bers and I., Kra, Lecture Notes in Math. 400, Springer, Berlin, 1974b.CrossRefGoogle Scholar
Marden, A., “Schottky groups and circles”, pp. 273–278 in Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974c.Google Scholar
Marden, A., “Universal properties of Fuchsian groups in the Poincaré metric”, pp. 315–339 in Discontinuous groups and Riemann surfaces (College Park, MD, 1973), edited by L., Greenberg, Ann. of Math. Studies 79, Princeton Univ. Press, Princeton, NJ, 1974d.Google Scholar
Marden, A., “Geometrically finite Kleinian groups and their deformation spaces”, pp. 259–293 in Discrete groups and automorphic functions (Cambridge, 1975), edited by W., Harvey, Academic Press, London, 1977.Google Scholar
Marden, A., “Geometric relations between homeomorphic Riemann surfaces”, Bull. Amer. Math. Soc. (N.S.) 3:3 (1980), 1001–1017.CrossRefGoogle Scholar
Marden, A., “A proof of the Ahlfors Finiteness Theorem”, in Spaces of kleinian groups, edited by Y., Minsky et al., L.M.S. Lecture Notes 329, Camb. Univ. Press, 2006.Google Scholar
Marden, A., “Deformations of Kleinian groups”, pp. 411–446 in Handbook of Teichmüller Theory I, A., Papadopoulos, ed., European Math. Soc., Zürich, 2007.Google Scholar
Marden, A. and Markovic, V., “Characterization of plane regions that support quasiconformal mappings to their domes”, Bull. L.M.S. 39 (2008), 962–972.Google Scholar
Marden, A. and Strebel, K., “The heights theorem for quadratic differentials on Riemann surfaces”, Acta Math. 153:3-4 (1984), 153–211.CrossRefGoogle Scholar
Marden, A. and Strebel, K., “On the ends of trajectories”, pp. 195–204 in Differential geometry and complex analysis, Springer, Berlin, 1985.Google Scholar
Marden, A. and Strebel, K., “Pseudo-Anosov Teichmueller mappings”, J. Analyse Math. 46 (1986), 194–220.CrossRefGoogle Scholar
Marden, A. and Strebel, K., “A characterization of Teichmüller differentials”, J. Differential Geom. 37:1 (1993), 1–29.CrossRefGoogle Scholar
Margalit, D., “Automorphisms of the pants complex”, Duke Math. J. 121 (2004), 457–479.CrossRefGoogle Scholar
Margulis, G. A., Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 17, Berlin: Springer-Verlag, 1991.CrossRefGoogle Scholar
Markovic, V., “Quasisymmetric groups”, J. Amer. Math. Soc., 19 (2006), 673–715.CrossRefGoogle Scholar
Markovic, V., “Realization of the mapping class group by homeomorphisms”, Invent. Math. 168 (2007), 523–566.CrossRefGoogle Scholar
Markovic, V., “Criterion for Cannon's Conjecture”, Geom. Funct. Anal. 23 (2013), 1035– 1061.CrossRefGoogle Scholar
Markovic, V., “Harmonic maps between 3-dimensional hyperbolic spaces”, Invent. Math., to appear.
Markovic, V., “Harmonic Maps and the Schoen Conjecture”, CalTech preprint (2015).
Markovic, V. and Sarić, D., “Teichmüller mapping class group of the universal hyperbolic solenoid”, Trans. A.M.S. 358 (2006), 2637–2650.CrossRefGoogle Scholar
Marshall, T. H. and Martin, G. J., “Minimal co-volume hyperbolic lattices, II; Simple torsion in a Kleinian group”, Ann. of Math., 176 (2012), 1–41.CrossRefGoogle Scholar
Maskit, B., “A characterization of Schottky groups”, J. Analyse Math. 19 (1967), 227–230.CrossRefGoogle Scholar
Maskit, B., “The conformal group of a plane domain”, Amer. J. Math. 90 (1968), 718–722.CrossRefGoogle Scholar
Maskit, B., “On boundaries of Teichmüller spaces and on Kleinian groups, II,” Ann. of Math. (2) 91 (1970), 607–639.CrossRefGoogle Scholar
Maskit, B., “Self-maps on Kleinian groups”, Amer. J. Math. 93 (1971), 840–856.CrossRefGoogle Scholar
Maskit, B., “Intersections of component subgroups of Kleinian groups”, pp. 349–367 in Discontinuous groups and Riemann surfaces (College Park, MD, 1973), edited by L., Greenberg, Ann. of Math. Studies 79, Princeton Univ. Press, Princeton, NJ, 1974.Google Scholar
Maskit, B., “Parabolic elements in Kleinian groups”, Ann. of Math. (2) 117:3 (1983), 659–668.CrossRefGoogle Scholar
Maskit, B., Kleinian groups, Grundlehren der MathematischenWissenschaften 287, Springer, Berlin, 1988.Google Scholar
Masur, H., “On a class of geodesics in Teichmüller space”, Ann. of Math. (2) 102:2 (1975), 205–221.CrossRefGoogle Scholar
Masur, H., “Interval exchange transformations and measured foliations”, Ann. of Math. (2) 115:1 (1982), 169–200.CrossRefGoogle Scholar
Masur, H., “Ergodic actions of the mapping class group”, Proc. A.M.S. 94 (1985), 455–459.CrossRefGoogle Scholar
Masur, H., “Measured foliations and handlebodies”, Ergodic Theory Dynam. Systems 6:1 (1986), 99–116.CrossRefGoogle Scholar
Masur, H., “Hausdorff dimension of the set of nonergodic foliations of a quadratic differential”, Duke math. J. 66:3 (1992), 387–442.Google Scholar
Masur, H., “Ergodic theory of translation surfaces”, pp. 527–547 in Handbook of dynamical systems 1B Elsevier, Amsterdam, 2006.Google Scholar
Masur, H. A. and Minsky, Y. N., “Geometry of the complex of curves, I: Hyperbolicity”, Invent. Math. 138:1 (1999), 103–149.CrossRefGoogle Scholar
Masur, H. A. and Minsky, Y. N., “Geometry of the complex of curves, II: Hierarchical structure”, Geom. Funct. Anal. 10:4 (2000), 902–974.CrossRefGoogle Scholar
Masur, H. and Schleimer, S., “The pants complex has only one end”, pp. 209–218 in Spaces of Kleinian groups, edited by Y., Minsky, M., Sakuma, C., Series, London Math. Soc. Lecture Notes 329, Cambridge Univ. Press, Cambridge, 2006.Google Scholar
Masur, H. A. and Scheimer, S., “The geometry of the disk complex”, J. Amer. Math. Soc. 26 (2013), 1–62.Google Scholar
Masur, H. A. and Smillie, J., “Quadratic differentials with prescribed singularities and pseudo- Anosov diffeomorphisms”, Comment. Math. Helvetici 68 (1993), 289–307.CrossRefGoogle Scholar
Masur, H. and Tabachnikov, S., “Rational billiards and flat structures”, pp. 1015–1089 in Handbook of dynamical systems, vol. 1A, North-Holland, Amsterdam, 2002.Google Scholar
Masur, H. and Wolf, M., “Teichmüller space is not Gromov hyperbolic”, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 259–267.Google Scholar
Masur, H. and Wolf, M., “The Weil-Petersson isometry group”, Geom. Dedicata 93 (2002), 177–190.CrossRefGoogle Scholar
Matsuzaki, K. and Taniguchi, M., Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, New York, 1998.Google Scholar
McCarthy, J. and Papadopoulos, A., “The mapping class group and a theorem of Masur- Wolf”, Topology Appl. 96(1996), 75–84.Google Scholar
McCarthy, J. and Papadopoulos, A., “The visual sphere of Teichmüller space and a theorem of Masur-Wolf”, Ann. Acad. Sci. Fenn. Math. 24 (1999), 147–154.Google Scholar
McCullough, D., “Compact submanifolds of 3-manifolds with boundary”, Quart. J. Math. Oxford Ser. (2) 37:147 (1986), 299–307.CrossRefGoogle Scholar
McCullough, D. and Miller, A., “Homeomorphisms of 3-manifolds with compressible boundary”, Mem. Amer. Math. Soc. 344, Amer. Math. Soc., Providence, 1986.Google Scholar
McCullough, D., Miller, A. and Swarup, G. A., “Uniqueness of cores of noncompact 3-manifolds”, J. London Math. Soc. (2) 32:3 (1985), 548–556.Google Scholar
McMullen, C., “Iteration on Teichmüller space”, Invent. Math. 99:2 (1990), 425–454.CrossRefGoogle Scholar
McMullen, C., “Cusps are dense”, Ann. of Math. (2) 133:1 (1991), 217–247.CrossRefGoogle Scholar
McMullen, C. T., “Renormalization and 3-manifolds which fiber over the circle”, Ann. of Math. Stud. 142, Princeton Univ. Press, Princeton, NJ, 1996.
McMullen, C. T., “Complex earthquakes and Teichmüller theory”, J. Amer. Math. Soc. 11:2 (1998), 283–320.CrossRefGoogle Scholar
McMullen, C. T., “Hausdorff dimension and conformal dynamics, I: Strong convergence of Kleinian groups”, J. Differential Geom. 51:3 (1999), 471–515.CrossRefGoogle Scholar
McMullen, C. T., “Local connectivity, Kleinian groups and geodesics on the blowup of the torus”, Invent. Math. 146:1 (2001a), 35–91.CrossRefGoogle Scholar
McMullen, C. T., Program “lim” for computing limit sets of kleinian groups. Available at www.math.harvard.edu/~ctm/programs/ (2001b).
McMullen, C., “Rigidity of Teichmüller curves”, Math. Res. Lett. 16 (2009), 647–649.Google Scholar
McMullen, C., “Riemann surfaces, dynamics, and geometry”, Harvard Course Notes, 2014.
McShane, G., “Simple geodesics and a series constant over Teichmüller space”, Invent. Math. 132:3 (1998), 607–632.CrossRefGoogle Scholar
Meeks, III, W. H. and Yau, S-T., “The equivariant Dehn's lemma and loop theorem”, Comment. Math. Helv. 56:2 (1981), 225–239.Google Scholar
Meyerhoff, R., “A lower bound for the volume of hyperbolic 3-manifolds”, Canad. J. Math. 39:5 (1987), 1038–1056.CrossRefGoogle Scholar
Milnor, J., Collected papers, vol. 1, Publish or Perish, Houston, TX, 1994.Google Scholar
Milnor, J., “Towards the Poincaré conjecture and the classification of 3-manifolds”, Notices Amer. Math. Soc. 50:10 (2003), 1226–1233.Google Scholar
Minsky, Y. N., “Harmonic maps, length, and energy in Teichmüller space”, J. Differential Geom. 35 (1992), 151–217.CrossRefGoogle Scholar
Minsky, Y. N., “Teichmüller geodesics and ends of hyperbolic 3-manifolds”, Topology 32 (1993), 625–647.CrossRefGoogle Scholar
Minsky, Y. N., “On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds”, J. Amer. Math. Soc. 7:3 (1994a), 539–588.Google Scholar
Minsky, Y. N., “On Thurston's ending lamination conjecture”, in Conf. Proc. Lecture Notes Geom. Topology 3, K., Johannson, ed., Internat. Press, Cambridge, MA, 1994b.Google Scholar
Minsky, Y. N., “The classification of punctured-torus groups”, Ann. of Math. (2) 149:2 (1999), 559–626.CrossRefGoogle Scholar
Minsky, Y., “Kleinian groups and the complex of curves”, Geom. Top. 4 (2000), 117–148.Google Scholar
Minsky, Y. N., “Bounded geometry for Kleinian groups”, Invent. Math. 146:1 (2001), 143–192.CrossRefGoogle Scholar
Minsky, Y., “The Classification of Kleinian surface groups, I: Models and bounds,” Ann. of Math., 171 (2010), 1–107.CrossRefGoogle Scholar
Minsky, Y. N., “Combinatorial and geometrical aspects of hyperbolic 3-manifolds”, pp. 3–40 in Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001), London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press, Cambridge, 2003.Google Scholar
Mirzakhani, M., “Growth of the number of simple closed geodesics on hyperbolic surfaces”, Ann. Math. 168 (2008), 97–125.CrossRefGoogle Scholar
Miyachi, H., “Cusps in complex boundaries of one-dimensional Teichmüller space”, Conform. Geom. Dyn. 7 (2003), 103–151.CrossRefGoogle Scholar
Mj(Mitra), M., “Cannon-Thurston maps for hyperbolic group extensions”, Topology 37:3 (1998a), 527–538.Google Scholar
Mj(Mitra), M., “Cannon-Thurston maps for trees of hyperbolic metric spaces”, J. Differential Geom. 48:1 (1998b), 135–164.Google Scholar
Mj, M., “Ending laminations and Cannon-Thurston maps”, Geom. Funct. Anal. 24 (2014), 297–321.CrossRefGoogle Scholar
Mj, M., “Cannon-Thurston maps for kleinian groups”, arXiv:1002.0996v3[math.GT] (2011), 22pp.
Mj, M., “The Cannon-Thurston maps for surface groups”, Ann. of Math. 179 (2014), 1–80.CrossRefGoogle Scholar
Montesinos, J. M., Classical tessellations and three-manifolds, Universitext, Springer, Berlin, 1987.CrossRefGoogle Scholar
Moore, R. L., “Concerning upper semi-continuous collections of continuua”, Trans. A.M.S. 27 (1927), 416–428.Google Scholar
Morgan, J.W., “On Thurston's uniformization theorem for three-dimensional manifolds”, pp. 37–125 in The Smith conjecture (New York, 1979), Pure Appl. Math. 112, Academic Press, Orlando, FL, 1984.Google Scholar
Morgan, J. W., “Recent progress on the Poincaré conjecture and the classification of 3-manifolds”, Bull. Amer. Math. Soc. (N.S.) 42:1 (2005), 57–78.Google Scholar
Morgan, J. and Tian, G., Ricci Flow and the Poincaré Conjecture, 3V, Clay Math. Monographs, A.M.S. (2007).
Morgan, J. and Tian, G., “Completion of the proof of the geometrization conjecture,” arXiv:0809.4040.
Morgan, J.W. and Shalen, P. B., “Valuations, trees, and degenerations of hyperbolic structures, I,” Ann. of Math. (2) 120:3 (1984), 401–476.CrossRefGoogle Scholar
Morgan, J. W. and Shalen, P. B., “Degenerations of hyperbolic structures, II: Measured laminations in 3-manifolds”, Ann. of Math. (2) 127:2 (1988), 403–456.CrossRefGoogle Scholar
Morgan, J. W. and Shalen, P. B., “Degenerations of hyperbolic structures, III: Actions of 3-manifold groups on trees and Thurston's compactness theorem”, Ann. of Math. (2) 127:3 (1988), 457–519.CrossRefGoogle Scholar
Mosher, L., “Geometric survey of subgroups of mapping class groups,” pp. 387–410 in Handbook of Teichmüller theory. Vol. I. IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007.Google Scholar
Mostow, G. D., Strong rigidity of locally symmetric spaces, Princeton Univ. Press, Princeton, NJ, 1973.Google Scholar
Mulase, M. and Penkava, M., “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over Q”, Asian J. Math. 2:4 (1998), 875–919.CrossRefGoogle Scholar
Mumford, D., “A remark on Mahler's compactness theorem”, Proc. Amer. Math. Soc. 28 (1971), 289–294.Google Scholar
Mumford, D., Series, C. and Wright, D., Indra's pearls, Cambridge Univ. Press, New York, 2002.CrossRefGoogle Scholar
Munkres, J., “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math. (2) 72 (1960), 521–554.CrossRefGoogle Scholar
Munzner, T., “H3: Laying out large directed graphs in hyperbolic space”, pp. 2–10 in Proc. 1997 IEEE Symposium on Information Visualization, 1997.
Myers, R., “Simple knots in compact, orientable 3-manifolds”, Trans. Amer. Math. Soc. 273:1 (1982), 75–91.Google Scholar
Myers, R., “End reductions, fundamental groups, and covering spaces of irreducible open 3-manifolds”, Geom. Topol. 9 (2005), 971–990.CrossRefGoogle Scholar
Namazi, H. and Souto, J., “Non-realizability and ending laminations; Proof of the Density Conjecture”, Acta Math. 209 (2012), 323–395.CrossRefGoogle Scholar
Nash, J., “The imbedding problem for Riemannian manifolds,” Ann. of Math. 63 1956, 20–63.CrossRefGoogle Scholar
Neumann, W. D., “Notes on geometry and 3-manifolds”, pp. 191–267 in Low dimensional topology (Eger, 1996, and Budapest, 1998), edited by J., Károly Böröczky et al., Bolyai Soc. Math. Stud. 8, János Bolyai Math. Soc., Budapest, 1999.
Neumann, W. D. and Reid, A. W., “Arithmetic of hyperbolic manifolds”, pp. 273–310 in Topology ’90 (Columbus, OH, 1990), edited by B., Apanasov et al., de Gruyter, Berlin, 1992.Google Scholar
Nicholls|P. J., The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series 143, Cambridge Univ. Press, Cambridge, 1989.
Ohshika, K., “Ending laminations and boundaries for deformation spaces of Kleinian groups”, J. London Math. Soc. (2) 42:1 (1990), 111–121.Google Scholar
Ohshika, K., “Geometrically finite Kleinian groups and parabolic elements”, Proc. Edinburgh Math. Soc. (2) 41:1 (1998a), 141–159.CrossRefGoogle Scholar
Ohshika, K., “Rigidity and topological conjugates of topologically tame Kleinian groups”, Trans. Amer. Math. Soc. 350:10 (1998b), 3989–4022.CrossRefGoogle Scholar
Ohshika, K., Discrete groups, Translations of Mathematical Monographs 207, Amer. Math. Soc., Providence, RI, 2002.Google Scholar
Ohshika, K., Kleinian groups which are limits of geometrically finite groups, Mem. Amer. Math. Soc. 834, Amer. Math. Soc., Providence, 2005.Google Scholar
Ohshika, K., “Constructing geometrically infinite groups on boundaries of deformation spaces,” J. Math. Soc. Japan 61 (2009), 1261–1291.CrossRefGoogle Scholar
Ohshika, K., “Realising end invariants by limits of minimally parabolic, geometrically finite groups,” Geometry & Topology 15 (2011), 827–890.CrossRefGoogle Scholar
Ohshika, K. and Soma, T., Geometry and topology of geometric limits I arXiv:1002.4266 (2010).
Ol'shanskii, A. Y., “Almost every group is hyperbolic”, Internat. J. Algebra Comput. 2:1 (1992), 1–17.Google Scholar
Otal, J.-P., “Sur le nouage des géodésiques dans les variétés hyperboliques”, C. R. Acad. Sci. Paris Sér. I Math. 320:7 (1995), 847–852.Google Scholar
Otal, J.-P., Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235, 1996. English translation, The hyperbolization theorem for fibered manifolds of dimension 3, SMF/AMS Texts and Monographs 7, Amer. Math. Soc., Providence, RI, 2001.Google Scholar
Otal, J.-P., “Thurston's hyperbolization of Haken manifolds”, pp. 77–194 in Surveys in differential geometry, vol. III edited by C. C., Hsiung and S.-T., Yau, International Press, Boston, 1998.Google Scholar
Parker, J. R. and Series, C., “Bending formulae for convex hull boundaries”, J. Anal. Math. 67 (1995), 165–198.CrossRefGoogle Scholar
Patterson, S. J., “Lectures on measures on limit sets of Kleinian groups”, pp. 281–323 in Analytical and geometric aspects of hyperbolic space (Warwick and Durham, 1984), edited by D. B. A., Epstein, London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press, Cambridge, 1987. Reprinted in Canary et al. [2006]Google Scholar
Penner, R. C., “The decorated Teichmüller space of punctured surfaces”, Commun. Math. Phys. 113 (1987), 299–339.CrossRefGoogle Scholar
Penner, R. C., “Bounds on least dilatations”, Proc. A.M.S 113 (1991), 443–450.CrossRefGoogle Scholar
Penner, R. C., and Harer, J. L., Combinatorics of train tracks, Annals of Mathematics Studies 125, Princeton Univ. Press, Princeton, NJ, 1992.Google Scholar
Perelman, G., “Finite extinction time for the solutions to the Ricci flow on certain threemanifolds”, arXiv:math.DG/0307245, (2003a).
Perelman, G., “Ricci flow with surgery on three-manifolds”, arXiv:math.DG/0303109, (2003b).
Petronio, C. and Porti, J., “Negatively oriented ideal triangulations and a proof of Thurston's hyperbolic Dehn filling theorem”, Expo. Math. 18:1 (2000), 1–35.Google Scholar
Petronio, C. and Weeks, J. R., “Partially flat ideal triangulations of cusped hyperbolic 3-manifolds,” Osaka J. Math. 37:2 (2000), 453–466.Google Scholar
Pollicott, M. and Sharp, R., “Length asymptotics in higher Teichmüller theory”, Proc. A.M.S. 142 (2014), 101–112.Google Scholar
Pommerenke, C., “On uniformly perfect sets and Fuchsian groups”, Analysis 4:3-4 (1984), 299–321.CrossRefGoogle Scholar
Pommerenke, C., Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften 299, Springer, Berlin, 1992.CrossRefGoogle Scholar
Prasad, G., “Strong rigidity of Q-rank 1 lattices”, Invent. Math. 21 (1973), 255–286.CrossRefGoogle Scholar
Przeworski, A., “Tubes in hyperbolic 3-manifolds”, Topology Appl. 128:2-3 (2003), 103–122.CrossRefGoogle Scholar
Purcell, J. S. and Suoto, J., “Geometric limits of knot complements”, J. Topol 3 (2010), 759–785.CrossRefGoogle Scholar
Rafi, K. and Schleimer, S., “Curve complexes are rigid”, Duke Math. J. 158 (2011), 225–246.CrossRefGoogle Scholar
Ratcliffe, J. G., Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer, New York, 1994.CrossRefGoogle Scholar
Ratcliffe, J. G. and Tschantz, S. T., “The volume spectrum of hyperbolic 4-manifolds”, Experiment. Math. 9:1 (2000), 101–125.CrossRefGoogle Scholar
Rees, M., “An alternative approach to the ergodic theory of measured foliations on surfaces”, Ergodic Theory Dynamical Systems 1:4 (1981), 461–488 (1982).CrossRefGoogle Scholar
Reimann, H. M., “Invariant extension of quasiconformal deformations”, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 477–492.CrossRefGoogle Scholar
Riley, R., “A quadratic parabolic group”, Math. Proc. Cambridge Philos. Soc. 77 (1975), 281–288.CrossRefGoogle Scholar
Riley, R., “Applications of a computer implementation of Poincaré's theorem on fundamental polyhedra,” Math. Comp. 40:162 (1983), 607–632.Google Scholar
Rivin, I., “A characterization of ideal polyhedra in hyperbolic 3-space”, Ann. of Math. (2) 143:1 (1996), 51–70.CrossRefGoogle Scholar
Rodin, B. and Sullivan, D., “The convergence of circle packings to the Riemann mapping”, J. Differential Geom. 26:2 (1987), 349–360.CrossRefGoogle Scholar
Roeder, R. K. W., Hubbard|J. H. and Dunbar|D., “Andreev's theorem on hyperbolic polyhedra,” Ann. Inst. Fourier, Grenoble 57 (2007), 825–882.
Rolfsen|D., Knots and links, Math. Lecture Series 7, Publish and Perish, Berkeley, 1976. Second printing, 1990.
Royden|H. L., “Automorphisms and isometries of Teichmüller space”, pp. 369–383 in Advances in the theory of Riemann surfaces (Stony Brook, NY, 1969), edited by L. Ahlfors et al., Ann. of Math. Studies 66, Princeton Univ. Press, Princeton, NJ, 1971.
Rüedy, R. A., “Embeddings of open Riemann surfaces”, Comment. Math. Helv. 46 (1971), 214–225.CrossRefGoogle Scholar
Sageev, M., “Ends of group pairs and non-positively curved cube complexes”, Proc. London Math. Soc. 71 (1995), 585–617.Google Scholar
Sageev, M., “CAT(0) cube complexes and groups,” IAS/Park City mathematics series, A.M.S.
Scannell, K. P. and Wolf, M., “The grafting map of Teichmüller space”, J. Amer. Math. Soc. 15:4 (2002), 893–927.CrossRefGoogle Scholar
Schafer, J. A., “Representing homology classes on surfaces”, Canad. Math. Bull. 19:3 (1976), 373–374.CrossRefGoogle Scholar
Schleimer, S., lecture at a Columbia conference, Aug. 2013.
Schneps, L., (editor), The Grothendieck theory of dessins d'enfants, edited by L., Schneps, London Mathematical Society Lecture Note Series 200, Cambridge Univ. Press, Cambridge, 1994.CrossRefGoogle Scholar
Schwartz, R. E., “A conformal averaging process on the circle”, Geometriae Dedicata 117 (2006), 19–46.CrossRefGoogle Scholar
Scott, G. P., “Compact submanifolds of 3-manifolds”, J. London Math. Soc. (2) 7 (1973a), 246–250.Google Scholar
Scott, G. P., “Finitely generated 3-manifold groups are finitely presented”, J. London Math. Soc. (2) 6 (1973b), 437–440.Google Scholar
Scott, P., “Subgroups of surface groups are almost geometric”, J. London Math. Soc. (2) 17:3 (1978), 555–565.Google Scholar
Scott, P., “A new proof of the annulus and torus theorems”, Amer. J. Math. 102:2 (1980), 241–277.CrossRefGoogle Scholar
Scott, P., “The geometries of 3-manifolds”, Bull. London Math. Soc. 15:5 (1983), 401–487.CrossRefGoogle Scholar
Scott, P. and Tucker, T., “Some examples of exotic noncompact 3-manifolds”, Quart. J. Math. Oxford Ser. (2) 40:160 (1989), 481–499.CrossRefGoogle Scholar
Selberg, A., “On discontinuous groups in higher-dimensional symmetric spaces”, pp. 147–164 in Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960.
Seppälä, M. and Sorvali, T., “Paramaterization of Teichmüller spaces by geodesic length functions,” in Holomorphic Functions and Moduli, Vol II, Drasin, et al eds., MSRI publ., Springer-Verlag, 1988.Google Scholar
Sen, H. “Virtual domination of 3-manifolds,” http://msp.org/gt/2015/19-4/p10.xhtml.
Series, C., “An extension of Wolpert's derivative formula”, Pacific J. Math. 197 (2001), 223–239.CrossRefGoogle Scholar
Series, C., “Thurston's bending measure conjecture for once punctured torus groups”, pp. 75–89 in Spaces of Kleinian groups, L.M.S. Lecture Note 329, Cambridge Univ. Press, Cambridge, 2006.Google Scholar
Shalen, P., “A generic Margulis number for hyperbolic 3-manifolds”, in pp. 103–109 in Topology and geometry in dimension three, Contemp. Math. 560, A.M.S., 2011.Google Scholar
Shiga, H. and Tanigawa, H., “Projective structures with discrete holonomy representations”, Trans. Amer. Math. Soc. 351:2 (1999), 813–823.CrossRefGoogle Scholar
Shimizu, H., “On discontinuous groups operating on the product of the upper half planes”, Ann. of Math. (2) 77 (1963), 33–71.CrossRefGoogle Scholar
Slodkowski, Z., “Holomorphic motions and polynomial hulls”, Proc. Amer. Math. Soc. 111 :2 (1991), 347–355.CrossRefGoogle Scholar
Soma, T., “Geometric limits of quasi-fuchsian groups”, math.GT/0702725.
Soma, T., “Existence of ruled wrappings in hyperbolic 3-manifolds”, Geom. Topol. 10 (2006), 1173–1184.CrossRefGoogle Scholar
Souto, J., “A note on the tameness of hyperbolic 3-manifolds”, Topology 44:2 (2005), 459–474.CrossRefGoogle Scholar
Souto, J., “Short geodesics in hyperbolic compression bodies are not knotted,” www.math.ubc.ca/jsouto.
Springer, G., Introduction to Riemann surfaces, reprinted by AMS Chelsea Pub., 2002.
Stephenson, K., “The approximation of conformal structures via circle packing”, pp. 551–582 in Computational methods and function theory (Nicosia, 1997), Ser. Approx. Decompos. 11, World Scientific, River Edge, NJ, 1999.Google Scholar
Stephenson, K., “Circle packing: a mathematical tale”, Notices Amer. Math. Soc. 50:11 (2003), 1376–1388.Google Scholar
Stephenson, K., Introduction to circle packing, Cambridge Univ. Press, Cambridge, 2005.Google Scholar
Stillwell|J., Sources of hyperbolic geometry, History of Mathematics 10, Amer. Math. Soc., Providence, RI, 1996.
Storm, P. A., “Minimal volume Alexandrov spaces”, J. Differential Geom. 61:2 (2002), 195–225.CrossRefGoogle Scholar
Storm, P., “The barycenter method on singular spaces”, Comment. Math. Helv. 82 (2007), 133–173.Google Scholar
Strebel, K., Quadratic differentials, vol. 5, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer, Berlin, 1984.CrossRefGoogle Scholar
Struik, D. J., Lectures on classical differential geometry, Addison-Wesley, Cambridge, MA, 1950.Google Scholar
Sturm, J. and Shinnar, M., “The maximal inscribed ball of a Fuchsian group”, pp. 439–443 in Discontinuous groups and Riemann surfaces (College Park, MD, 1973), edited by L., Greenberg, Ann. of Math. Studies 79, Princeton Univ. Press, Princeton, NJ, 1974.Google Scholar
Sullivan, D., “The density at infinity of a discrete group of hyperbolic motions”, Inst. Hautes C? tudes Sci. Publ. Math. 50 (1979), 171–202.
Sullivan, D., “On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions”, pp. 465–496 in Riemann surfaces and related topics (Stony Brook, NY, 1978), edited by I., Kra and B., Maskit, Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, NJ, 1981.Google Scholar
Sullivan, D., “Quasiconformal homeomorphisms and dynamics, II: Structural stability implies hyperbolicity for Kleinian groups”, Acta Math. 155:3-4 (1985), 243–260.CrossRefGoogle Scholar
Sullivan, D., “Related aspects of positivity in Riemannian geometry”, J. Differential Geom. 25:3 (1987), 327–351.CrossRefGoogle Scholar
Sun, H., “Virtual domination of 3-manifolds”, MathGT/arXiv:1401.7049 (2014).
Swarup, G. A., “Two finiteness properties in 3-manifolds”, Bull. London Math. Soc. 12:4 (1980), 296–302.CrossRefGoogle Scholar
Tanigawa, H., “Grafting, harmonic maps and projective structures on surfaces”, J. Differential Geom. 47:3 (1997), 399–419.CrossRefGoogle Scholar
Thurston, W. P., “The geometry and topology of three-manifolds”, lecture notes, Princeton University, 1979a. The 2003 electronic edition is available at Available at http://msri. org/publications/books/gt3m.
Thurston, W., “Hyperbolic geometry and 3-manifolds”, pp. 9–25 in Low-dimensional topology (Bangor, 1979), London Math. Soc. Lecture Note Ser. 48, Cambridge Univ. Press, Cambridge, 1979b.Google Scholar
Thurston, W. P., “Hyperbolic structures on 3-manifolds: overall logic”, lecture notes, Bowdoin College, 1980.
Thurston, W. P., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc. (N.S.) 6:3 (1982), 357–381.CrossRefGoogle Scholar
Thurston, W. P., “Earthquakes in two-dimensional hyperbolic geometry”, pp. 91–112 in Analytical and geometric aspects of hyperbolic space (Warwick and Durham, 1984), edited by D. B. A., Epstein, London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press, Cambridge, 1986a. Reprinted in Canary et al. [2006].Google Scholar
Thurston, W. P., “Hyperbolic structures on 3-manifolds, I: Deformation of acylindrical manifolds”, Ann. of Math. (2) 124:2 (1986b), 203–246.CrossRefGoogle Scholar
Thurston, W. P., “Hyperbolic structures on 3-manifolds, II: surface groups and 3-manifolds which fiber over the circle”, preprint, 1986c. Available at www.arXiv.org/abs/math.GT/ 9801045.
Thurston, W. P., “Zippers and univalent functions”, pp. 185–197 in The Bieberbach conjecture (West Lafayette, Ind., 1985), Math. Surveys Monogr. 21, Amer. Math. Soc., Providence, RI, 1986d.Google Scholar
Thurston, W. P., “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.) 19:2 (1988), 417–431.CrossRefGoogle Scholar
Thurston, W. P., Three-dimensional geometry and topology, vol. 1, S., Levy, ed., Princeton Mathematical Series 35, Princeton Univ. Press, Princeton, NJ, 1997.CrossRefGoogle Scholar
Thurston, W. P. “Minimal stretch maps between hyperbolic surfaces”, preprint, 1998. Available at www.arXiv.org/abs/math.GT/9801039.
Tucker, T. W., “Non-compact 3-manifolds and the missing-boundary problem”, Topology 13 (1974), 267–273.CrossRefGoogle Scholar
Tucker, T.W., “A correction to a paper of A. Marden(Ann. of Math. (2) 99 (1974), 383–462)”, Ann. of Math. (2) 102:3 (1975), 565–566.Google Scholar
Tukia, P., “On two-dimensional quasiconformal groups,” Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 73–78.CrossRefGoogle Scholar
Tukia, P., “Differentiability and rigidity of Möbius groups”, Invent. Math. 82:3 (1985a), 557–578.CrossRefGoogle Scholar
Tukia, P., “On isomorphisms of geometrically finite Möbius groups”, Inst. Hautes Études Sci. Publ. Math. no. 61 (1985b), 171–214.Google Scholar
Tukia, P., “Quasiconformal extension of quasiisometric mappings compatible with a Möbius group”, Acta Math. 154 (1985c), 153–193.CrossRefGoogle Scholar
Tukia, P., 2005. private communication.
Van Vleck, E. B., “On the combination of non-loxodromic substitutions”, Trans. Amer. Math. Soc. 20:4 (1919), 299–312.CrossRefGoogle Scholar
Vogtmann, K., “What is outer space?AMS Notices 55 (7), Aug. 2008.Google Scholar
Vuorinen, M., Conformal geometry and quasiregular mappings, Lecture Notes in Math. 1319, Springer, Berlin, 1988.CrossRefGoogle Scholar
Wada, M., “Exploring the space of twice punctured torus groups”, Aug. 3 2003. Lecture at the Cambridge workshop Spaces of Kleinian Groups and Hyperbolic 3-Manifolds.
Wada, M., “OPTi's algorithm for discreteness determination”, Experiment. Math. 15:1 (2006), 61–66.CrossRefGoogle Scholar
Wada, M., “OPTi”, A computer program to visualize quasiconformal deformations of oncepunctured torus groups (2011). Available at http://www.math.sci.osaka-u.ac.jp/wada.
Waldhausen, F., “On irreducible 3-manifolds which are sufficiently large”, Ann. of Math. (2) 87 (1968), 56–88.CrossRefGoogle Scholar
Wang, H. C., “Discrete nilpotent subgroups of Lie groups”, J. Differential Geometry 3 (1969), 481–492.CrossRefGoogle Scholar
Wang, H. C., “Topics on totally discontinuous groups”, pp. 459–487 in Symmetric spaces (St.Louis|MO, 1969–1970), edited by W. M., Boothby and G. L., Weiss, Pure and Appl. Math. 8, Dekker, New York, 1972.Google Scholar
Weeks, J. R., The shape of space 2nd ed. Monographs and Textbooks in Pure and Applied Mathematics, 249, Marcel Dekker, Inc., New York, 2002.Google Scholar
Weeks, J. R., “Convex hulls and isometries of cusped hyperbolic 3-manifolds”, Topology Appl. 52:2 (1993), 127–149.CrossRefGoogle Scholar
Weeks, J., “The Poincaré dodecahedral space and the mystery of the missing fluctuations”, Notices Amer. Math. Soc. 51:6 (2004), 610–619.Google Scholar
Weeks, J., “SnapPea,” Available at www.geometrygames.org/SnapPea/ (2012). Then click on “SnapPy”, or go to www.math.uic.edu/t3m/SnapPy/doc/. Original software to compute hyperbolic manifolds.
Weeks, J., “Computation of hyperbolic structures in knot theory”, in Handbook of knot theory, edited by W. W., Menasco and M. B., Thistlethwaite, Elsevier, Amsterdam, 2005.Google Scholar
Weiss, H., “Local rigidity of 3-dimensional cone-manifolds,” J. Differential Geom. 71 (2004), 437–506.Google Scholar
Whitehead, G.W., Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer, New York, 1978.CrossRefGoogle Scholar
Wielenberg, N. J., “Discrete Moebius groups: fundamental polyhedra and convergence”, Amer. J. Math. 99:4 (1977), 861–877.CrossRefGoogle Scholar
Wielenberg, N., “The structure of certain subgroups of the Picard group”, Math. Proc. Cambridge Philos. Soc. 84:3 (1978), 427–436.CrossRefGoogle Scholar
Wielenberg, N. J., “Hyperbolic 3-manifolds which share a fundamental polyhedron”, pp. 505–513 in Riemann surfaces and related topics (Stony Brook, NY, 1978), edited by I., Kra and B., Maskit, Ann. of Math. Stud. 97, Princeton Univ. Press, Princeton, NJ, 1981.
Wise, D. T., “The structure of groups with a quasiconvex hierarchy”, www.math.mcgill.ca/wise/papers.html (2011) 187pp.
Wise, D. T., From riches to raags: 3-manifolds, right angled Artin groups, and cubical geometry, CBMS Lecture Notes, 2012.
Wolpert, S., “The length spectrum as moduli for compact Riemann surfaces”, Annals of Math. 109 (1979), 323–351.CrossRefGoogle Scholar
Wolpert, S., “An elementary formula for the Fenchel-Nielsen twist”, Comment. Math. Helvetici 56 (1981), 132–135.CrossRefGoogle Scholar
Wolpert, S. A., “TheWeil-Petersson metric geometry”, pp. 47–64 in Handbook of Teichmüller theory, Vol. II, IRMA Lect. Math. Theor. Phys. 13, Eur. Math. Soc., Zürich, 2009.Google Scholar
Wright, D. J., “Searching for the cusp”, in Spaces of kleinian groups, edited by Y., Minsky et al., London Math. Soc. Lecture Notes 329, Camb. Univ. Press, 2006.Google Scholar
Yamada, A., “On Marden's universal constant of Fuchsian groups. II,” J. Analyse Math. 41 (1982), 234–248.CrossRefGoogle Scholar
Zhu, X. and Bonahon, F., “The metric space of geodesic laminations on a surface: I”, Topology and Geometry, 8 (2004), 539–564.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Albert Marden, University of Minnesota
  • Book: Hyperbolic Manifolds
  • Online publication: 05 January 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316337776.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Albert Marden, University of Minnesota
  • Book: Hyperbolic Manifolds
  • Online publication: 05 January 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316337776.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Albert Marden, University of Minnesota
  • Book: Hyperbolic Manifolds
  • Online publication: 05 January 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316337776.010
Available formats
×