Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T18:54:00.846Z Has data issue: false hasContentIssue false

6 - Pain modulatory systems

Published online by Cambridge University Press:  05 October 2010

Frederick A. Lenz
Affiliation:
The Johns Hopkins Hospital
Kenneth L. Casey
Affiliation:
University of Michigan, Ann Arbor
Edward G. Jones
Affiliation:
University of California, Davis
William D. Willis
Affiliation:
University of Texas Medical Branch, Galveston
Get access

Summary

Introduction

It is well known that much of the sensory input to the central nervous system can be modulated by centrifugally organized control systems that originate in the central nervous system (Head and Holmes, 1911; Hagbarth, 1960). The control mechanisms can be excitatory or inhibitory processes that may occur in the periphery or within the central nervous system. Inhibition can be at pre- and/or postsynaptic sites (Fig. 6.1(I)). Presynaptic inhibition at the first central synapse of a sensory pathway has the potential advantage of being able to reduce sensory input prior to wide dissemination of that sensory input within the central nervous system through the activation of interneuronal networks and multiple ascending pathways, for example, in the spinal cord (Schmidt, 1973; see Chapter 3).

Pre- and postsynaptic inhibition can have somewhat different effects on the stimulus-response curves of second-order sensory neurons, as shown in Fig. 6.1(II). Postsynaptic inhibition involves inhibitory postsynaptic potentials that sum with excitatory postsynaptic potentials (Fig. 6.1(IIA)). If there is a linear summation, the stimulus-response curve will be shifted to the right in a parallel fashion (Carstens et al., 1980). However, if the IPSP is generated in a membrane area near that in which the EPSP is generated, the excitatory current may be shunted and the slope of the stimulus-response curve reduced, causing a reduction in the gain of synaptic transmission (Fig. 6.1(IIB)). A similar reduction in gain can be produced by presynaptic inhibition.

Type
Chapter
Information
The Human Pain System
Experimental and Clinical Perspectives
, pp. 423 - 452
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, A., Shibata, T., Satoh, M., Takagi, H. (1978) Analgesia induced by microinjection of morphine into and electrical stimulation of the nucleus reticularis paragigantocellularis of the rat medulla oblongata. Neuropharmacology 17: 775–778.CrossRefGoogle ScholarPubMed
Akil, H., Liebeskind, J. C. (1975) Monoaminergic mechanisms of stimulation-produced analgesia. Brain Res 84: 279–296.CrossRefGoogle Scholar
Ammons, W. S., Blair, R. W., Foreman, R. D. (1984) Raphe magnus inhibition of primate T1–T4 spinothalamic cells with cardiopulmonary visceral input. Pain 20: 247–260.CrossRefGoogle ScholarPubMed
Basbaum, A. I., Fields, H. L. (1978) Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 4: 451–462.CrossRefGoogle ScholarPubMed
Basbaum, A. I., Fields, H. L. (1979) The origin of descending pathways in the dorsolateral funiculus of the cord of the cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol 187: 513–532.CrossRefGoogle ScholarPubMed
Basbaum, A. I., Fields, H. L. (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 7: 309–338.CrossRefGoogle ScholarPubMed
Basbaum, A. I., Clanton, C. H., Fields, H. L. (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178: 209–224.CrossRefGoogle ScholarPubMed
Beall, J. E., Martin, R. F., Applebaum, A. E., Willis, W. D. (1976) Inhibition of primate spinothalamic tract neurons by stimulation in the region of the nucleus raphe magnus. Brain Res 114: 328–333.CrossRefGoogle Scholar
Beall, J. E., Applebaum, A. E., Foreman, R. D., Willis, W. D. (1977) Spinal cord potentials evoked by cutaneous afferents in the monkey. J Neurophysiol 40: 199–211.CrossRefGoogle ScholarPubMed
Beecher, H. K. (1959) Measurement of Subjective Responses. New York: Oxford University Press.Google Scholar
Behbehani, M. M., Fields, H. L. (1979) Evidence that an excitatory connection between the periaqueductal grey and nucleus raphe magnus mediates stimulation-produced analgesia. Brain Res 170: 85–93.CrossRefGoogle ScholarPubMed
Beitz, A. J. (1982) The organization of afferent projections to the midbrain periaqueductal grey of the rat. Neuroscience 7: 133–159.CrossRefGoogle ScholarPubMed
Besson, J. M., Oliveras, J. L., Chaouch, A., Rivot, J. P. (1981) Role of the raphe nuclei in stimulation producing analgesia. Adv Exp Med Biol 133: 153–176.CrossRefGoogle ScholarPubMed
Bodnar, R. J., Kelly, D. D., Spiaggia, A., Ehrenberg, C., Glusman, M. (1978) Dose-dependent reductions by naloxone of analgesia induced by cold-water stress. Pharmacol Biochem Behav 8: 667–672.CrossRefGoogle ScholarPubMed
Bodnar, R. J., Kelly, D. D., Brutus, M., Glusman, M. (1980) Stress-induced analgesia: neural and hormonal determinants. Neurosci Biobehav Rev 4: 87–100.CrossRefGoogle ScholarPubMed
Bowker, R. M., Westlund, K. N., Coulter, J. D. (1981) Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study. Brain Res 226: 181–199.CrossRefGoogle ScholarPubMed
Brennan, T. J., Oh, U. T., Girardot, M. N., Ammons, W. S., Foreman, R. D. (1987) Inhibition of cardiopulmonary input to thoracic spinothalamic tract cells by stimulation of the subcoeruleus-parabrachial region in the primate. J Auton Nerv Syst 18: 61–72.CrossRefGoogle ScholarPubMed
Brown, A. G. (1970) Descending control of the spinocervical tract in decerebrate cats. Brain Res 17: 152–155.CrossRefGoogle ScholarPubMed
Brown, A. G. (1971) Effects of descending impulses on transmission through the spinocervical tract. J Physiol 219: 103–125.CrossRefGoogle ScholarPubMed
Brown, A. G., Short, A. D. (1974) Effects from the somatic sensory cortex on transmission through the spinocervical tract. Brain Res 74: 338–341.CrossRefGoogle ScholarPubMed
Brown, A. G., Hamann, W. C., Martin, H. F. (1973a) Descending influences on spinocervical tract cell discharges evoked by non-myelinated cutaneous afferent nerve fibres. Brain Res 53: 222–226.CrossRefGoogle ScholarPubMed
Brown, A. G., Kirk, E. J., Martin, H. F. (1973b) Descending and segmental inhibition of transmission through the spinocervical tract. J Physiol 230: 689–705.CrossRefGoogle ScholarPubMed
Brown, A. G., Coulter, J. D., Rose, P. K., Short, A. D., Snow, P. J. (1977) Inhibition of spinocervical tract discharges from localized areas of the sensorimotor cortex in the cat. J Physiol 264: 1–16.CrossRefGoogle ScholarPubMed
Carlton, S. M., Honda, C. N., Willcockson, W. S.et al. (1991) Descending adrenergic input to the primate spinal cord and its possible role in modulation of spinothalamic cells. Brain Res 543: 77–90.CrossRefGoogle ScholarPubMed
Carstens, E. (1988) Inhibition of rat spinothalamic tract neuronal responses to noxious skin heating by stimulation in midbrain periaqueductal gray or lateral reticular formation. Pain 33: 215–224.CrossRefGoogle ScholarPubMed
Carstens, E., Klumpp, D., Zimmermann, M. (1980) Differential inhibitory effects of medial and lateral midbrain stimulation on neuronal discharges to noxious skin heating in the cat. J Neurophysiol 43: 332–342.CrossRefGoogle ScholarPubMed
Cervero, F., Wolstencroft, J. H. (1984) A positive feedback loop between spinal cord nociceptive pathways and antinociceptive areas of the cat's brain stem. Pain 20: 125–138.CrossRefGoogle ScholarPubMed
Cervero, F., Iggo, S. A., Molony, V. (1977) Responses of spinocervical tract neurones to noxious stimulation of the skin. J Physiol 267: 537–558.CrossRefGoogle Scholar
Chandler, M. J., Garrison, D. W., Brennan, T. J., Foreman, R. D. (1989) Effects of chemical and electrical stimulation of the midbrain on feline T2–T6 spinoreticular and spinal cell actvitiy evoked by cardiopulmonary afferent input. Brain Res 496: 148–164.CrossRefGoogle Scholar
Coulter, J. D., Maunz, R. A., Willis, W. D. (1974) Effects of stimulation of sensorimotor cortex on primate spinothalamic neurons. Brain Res 65: 351–356.CrossRefGoogle ScholarPubMed
Creed, R. S., Denny-Brown, D., Eccles, J. C., Liddell, E. G. T., Sherrington, C. S. (1932) Reflex Activity of the Spinal Cord. Oxford: Oxford University Press.Google Scholar
Cui, M., McAdoo, D. J., Willis, W. D. (1999) Periaqueductal gray stimulation-induced inhibition of nociceptive dorsal horn neurons in rats is associated with the release of norepinephrine, serotonin and amino acids. JPET 289: 868–876.Google ScholarPubMed
D'Amour, F. E., Smith, D. L. (1941) A method for determining loss of pain sensation. JPET 72: 74–79.Google Scholar
Dostrovsky, J. O. (1984) Brainstem influences on transmission of somatosensory information in the spinocervicothalamic pathway. Brain Res 292: 229–238.CrossRefGoogle ScholarPubMed
Dubuisson, D., Dennis, S. G. (1977) The formalin test: a quantitative study of the analgesic effects of morphine, mepyridine and brain stem stimulation in rats and cats. Pain 4: 161–174.CrossRefGoogle Scholar
Eccles, R. M., Lundberg, A. (1959a) Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch Ital Biol 97: 199–221.Google Scholar
Eccles, R. M., Lundberg, A. (1959b) Supraspinal control of interneurones mediating spinal reflexes. J Physiol 147: 565–584.CrossRefGoogle ScholarPubMed
Engberg, I., Lundberg, A., Ryall, R. W. (1968) Reticulospinal inhibition of transmission in reflex pathways. J Physiol 194: 201–223.CrossRefGoogle ScholarPubMed
Fleetwood-Walker, S. M., Hope, P. J., Mitchell, R. (1988) Antinociceptive actions of descending dopaminergic tracts on cat and rat dorsal horn somatosensory neurons. J Physiol 399: 335–348.CrossRefGoogle Scholar
Fetz, E. E. (1968) Pyramidal tract effects on interneurons in the cat lumbar dorsal horn. J Neurophysiol 31: 69–80.CrossRefGoogle ScholarPubMed
Fields, H. L., Basbaum, A. I. (1978) Brainstem control of spinal pain transmission neurons. Annu Rev Physiol 40: 217–248.CrossRefGoogle ScholarPubMed
Fields, H. L., Basbaum, A. I., Clanton, C. H., Anderson, S. D. (1977) Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res 126: 441–453.CrossRefGoogle ScholarPubMed
Gerhart, K. D., Wilcox, T. K., Chung, J. M., Willis, W. D. (1981a) Inhibition of nociceptive and nonnociceptive responses of primate spinothalamic cells by stimulation in medial brain stem. J Neurophysiol 45: 121–136.CrossRefGoogle ScholarPubMed
Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Grossman, A. E., Willis, W. D. (1981b) Inhibition of primate spinothalamic tract neurons by stimulation in ipsilateral or contralateral ventral posterior lateral (VPLc) thalamic nucleus. Brain Res 229: 514–519.CrossRefGoogle ScholarPubMed
Gerhart, K. D., Yezierski, R. P., Fang, Z. R., Willis, W. D. (1983) Inhibition of primate spinothalamic tract neurons by stimulation in ventral posterior lateral (VPLc) thalamic nucleus: possible mechanisms. J Neurophysiol 49: 406–423.CrossRefGoogle ScholarPubMed
Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Willis, W. D. (1984) Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. J Neurophysiol 51: 450–466.CrossRefGoogle ScholarPubMed
Giesler, G. J., Gerhart, K. D., Yezierski, R. P., Wilcox, T. K., Willis, W. D. (1981) Postsynaptic inhibition of primate spinothalamic neurons by stimulation in nucleus raphe magnus. Brain Res 204: 184–188.CrossRefGoogle ScholarPubMed
Girardot, M. N., Brennan, T. J., Ammons, W. S., Foreman, R. D. (1987) Effects of stimulating the subcoeruleus-parabrachial region on the non-noxious and noxious responses of T2–T4 spinothalamic tract neurons in the primate. Brain Res 409: 19–30.CrossRefGoogle Scholar
Gray, B. G., Dostrovsky, J. O. (1983) Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons. J Neurophysiol 49: 932–947.CrossRefGoogle ScholarPubMed
Gybels, J. M., Sweet, W. H. (1989) Neurosurgical Treatment of Persistent Pain. Pain and Headache (Gildenberg, P. L., Series ed.). Basel: Karger.Google Scholar
Haber, L. H., Martin, R. F., Chatt, A. B., Willis, W. D. (1978) Effects of stimulation in nucleus reticularis gigantocellularis on the activity of spinothalamic tract neurons in the monkey. Brain Res 153: 163–168.CrossRefGoogle ScholarPubMed
Haber, L. H., Martin, R. F., Chung, J. M., Willis, W. D. (1980) Inhibition and excitation of primate spinothalamic tract neurons by stimulation in region of nucleus reticularis gigantocellularis. J Neurophysiol 43: 1578–1593.CrossRefGoogle ScholarPubMed
Haber, L. H., Moore, B. D., Willis, W. D. (1982) Electrophysiological response properties of spinoreticular neurons in the monkey. J Comp Neurol 207: 75–84.CrossRefGoogle ScholarPubMed
Hagbarth, K. E. (1960) Centrifugal mechanisms of sensory control. Erg Biol 22: 47–66.Google Scholar
Hammond, D. L., Yaksh, T. L. (1984) Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res 298: 329–337.CrossRefGoogle ScholarPubMed
Hammond, D. L., Tyce, G. M., Yaksh, T. L. (1985) Efflux of 5-hydroxytryptamine and noradrenaline into spinal cord perfusates during stimulation of the rat medulla. J Physiol 359: 151–162.CrossRefGoogle Scholar
Hargreaves, K., Dubner, R., Brown, F., Flores, C., Joris, J. (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77–88.CrossRefGoogle ScholarPubMed
Harrison, P. J., Jankowska, E. (1984) An intracellular study of descending and non-cutaneous afferent input to spinocervical tract neurons in the cat. J Physiol 356: 245–261.CrossRefGoogle ScholarPubMed
Hayes, R. L., Price, D. D., Ruda, M. A., Dubner, R. (1979) Suppression of nociceptive responses in the primate by electrical stimulation of the brain or morphine administration: behavioral and electrophysiological comparisons. Brain Res 167: 417–421.CrossRefGoogle ScholarPubMed
Head, H., Holmes, G. (1911) Sensory disturbances from cerebral lesions. Brain 34: 102–254.CrossRefGoogle Scholar
Holmqvist, B., Lundberg, A. (1959) On the organization of the supraspinal inhibitory control of interneurones of various spinal reflex arcs. Arch Ital Biol 97: 340–356.Google Scholar
Holmqvist, B., Lundberg, A. (1961) Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones. Acta Physiol Scand (Suppl 186) 54: 1–51.Google Scholar
Holmqvist, B., Lundberg, A., Oscarsson, O. (1960) Supraspinal inhibitory control of transmission to three ascending spinal pathways influenced by flexion reflex afferents. Arch Ital Biol 98: 60–80.Google Scholar
Hong, S. K., Kniffki, K. D., Mense, S., Schmidt, R. F., Wendisch, M. (1979) Descending influences on the responses of spinocervical tract neurones to chemical stimulation of fine muscle afferents. J Physiol 290: 129–140.CrossRefGoogle ScholarPubMed
Hori, Y., Lee, K. H., Chung, J. M., Endo, K., Willis, W. D. (1984) The effects of small doses of barbiturate on the activity of primate nociceptive tract cells. Brain Res 307: 9–15.CrossRefGoogle ScholarPubMed
Hosobuchi, Y., Adams, J. E., Linchitz, R. (1977) Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197: 183–186.CrossRefGoogle ScholarPubMed
Hosobuchi, Y., Rossier, J., Bloom, F. E., Guillemin, R. (1979) Stimulation of human periaqueductal gray for pain relief increases immunoreactive β-endorphin in ventricular fluid. Science 203: 279–281.CrossRefGoogle ScholarPubMed
Jones, S. L. (1992) Descending control of nociception. In The Initial Processing of Pain and Its Descending Control: Spinal and Trigeminal Systems (Light, A. R., ed.), Pain and Headache, Vol. 12, pp. 203–295. Basel: Karger.Google Scholar
Jordan, L. M., Kenshalo, D. R., Martin, R. F., Haber, L. H., Willis, W. D. (1979) Two populations of spinothalamic tract neurons with opposite responses to 5-hydroxytryptamine. Brain Res 164: 342–346.CrossRefGoogle ScholarPubMed
Kajander, K. C., Ebner, T. J., Bloedel, J. R. (1984) Effects of periaqueductal gray and raphe magnus stimulation on the responses of spinocervical and other ascending projection neurons to non-noxious inputs. Brain Res 291: 29–37.CrossRefGoogle ScholarPubMed
Lin, Q., Peng, Y., Willis, W. D. (1994) Glycine and GABAa antagonists reduce the inhibition of primate spinothalamic tract neurons produced by stimulation in periaqueductal gray. Brain Res 654: 286–302.CrossRefGoogle ScholarPubMed
Lin, Q., Peng, Y., Willis, W. D. (1996a) Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. J Neurophysiol 75: 109–123.CrossRefGoogle ScholarPubMed
Lin, Q., Peng, Y., Willis, W. D. (1996b) Antinociception and inhibition from the periaqueductal gray are mediated in part by spinal 5HT1A receptors. JPET 276: 958–967.Google Scholar
Lundberg, A., Oscarsson, O. (1961) Three ascending spinal pathways in the dorsal part of the lateral funiculus. Acta Physiol Scand 51: 1–16.CrossRefGoogle ScholarPubMed
Martin, R. F., Haber, L. H., Willis, W. D. (1979) Primary afferent depolarization of identified cutaneous fibers following stimulation in medial brain stem. J Neurophysiol 42: 779–790.CrossRefGoogle ScholarPubMed
Mayer, D. J., Liebeskind, J. C. (1974) Pain reduction by focal electrical stimulation of the brain: an anatomical and behavioral analysis. Brain Res 68: 73–93.CrossRefGoogle ScholarPubMed
Mayer, D. J., Price, D. D. (1976) Central nervous system mechanisms of analgesia. Pain 2: 379–404.CrossRefGoogle Scholar
Mayer, D. J., Wilfle, T. L., Akil, H., Carder, B., Liebeskind, J. C. (1971) Analgesia from electrical stimulation in the brainstem of the rat. Science 174: 1351–1354.CrossRefGoogle ScholarPubMed
McCreery, D. B., Bloedel, J. R. (1975) Reduction of the response of cat spinothalamic neurons to graded mechanical stimuli by electrical stimulation of the lower brain stem. Brain Res 97: 151–156.CrossRefGoogle ScholarPubMed
McCreery, D. B., Bloedel, J. R., Hames, E. G. (1979) Effects of stimulation in raphe nucleus and in reticular formation on response of spinothalamic neurons to mechanical stimuli. J Neurophysiol 42: 166–182.CrossRefGoogle ScholarPubMed
Menétrey, D., Chaouch, A., Besson, J. M. (1980) Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat. J Neurophysiol 44: 862–877.CrossRefGoogle ScholarPubMed
Mitchell, C. L. (1964) A comparison of drug effects upon the jaw jerk to electrical stimulation of the tooth pulp in dogs and cats. JPET 146: 1–6.Google ScholarPubMed
Mokha, S. S., McMillan, J. A., Iggo, A. (1985) Descending control of spinal nociceptive transmission. Actions produced on spinal multireceptive neurons from the nuclei locus coeruleus (LC) and raphe magnus (NRM). Exp Brain Res 58: 213–226.CrossRefGoogle Scholar
Noble, R., Riddell, J. S. (1989) Descending influences on the cutaneous receptive fields of postsynaptic dorsal column neurons in the cat. J Physiol 408: 167–183.CrossRefGoogle ScholarPubMed
Oliveras, J. L., Besson, J. M., Guilbaud, G., Liebeskind, J. C. (1974a) Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Exp Brain Res 20: 32–44.CrossRefGoogle ScholarPubMed
Oliveras, J. L., Woda, A., Guilbaud, G., Besson, J. M. (1974b) Inhibition of the jaw opening reflex by electrical stimulation of the periaqueductal gray matter in the awake, unrestrained cat. Brain Res 72: 328–331.CrossRefGoogle ScholarPubMed
Oliveras, J. L., Redjemi, F., Guilbaud, G., Besson, J. M. (1975) Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1: 139–145.CrossRefGoogle ScholarPubMed
Oliveras, J. L., Hosobuchi, Y., Redjemi, F., Guilbaud, G., Besson, J. M. (1977) Opiate antagonist, naloxone, strongly reduces analgesia induced by stimulation of a raphe nucleus (centralis inferior). Brain Res 120: 221–229.CrossRefGoogle Scholar
Oliveras, J. L., Guilbaud, G., Besson, J. M. (1979) A map of serotoninergic structures involved in stimulation producing analgesia in unrestrained freely moving cats. Brain Res 164: 317–322.CrossRefGoogle ScholarPubMed
Peng, Y. B., Lin, Q., Willis, W. D. (1996a) The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. JPET 276: 116–124.Google ScholarPubMed
Peng, Y. B., Lin, Q., Willis, W. D. (1996b) Involvement of α2- adrenoreceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. JPET 278: 125–135.Google Scholar
Peng, Y. B., Lin, Q., Willis, W. D. (1996c) Effects of GABA and glycine receptor antagonists on the activity and PAG-induced inhibition of rat dorsal horn neurons. Brain Res 736: 189–201.CrossRefGoogle ScholarPubMed
Peng, Y. B., Wu, J., Willis, W. D., Kenshalo, D. R. (2001) GABAa and 5HT3 receptors are involved in dorsal root reflexes: possible role in periaqueductal gray descending inhibition. J Neurophysiol 86: 49–58.CrossRefGoogle Scholar
Reynolds, D. V. (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164: 444–445.CrossRefGoogle ScholarPubMed
Schmidt, R. F. (1973) Control of the access of afferent activity to somatosensory pathways. In Somatosensory System. Handbook of Sensory Physiology, Vol. 2 (Iggo, A., ed.), pp. 151–206. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sorkin, L. S., Steinman, J. L., Hughes, M. G., Willis, W. D., McAdoo, D. J. (1988) Microdialysis recovery of serotonin release in spinal cord dorsal horn. J Neurosci Meth 23: 131–138.CrossRefGoogle ScholarPubMed
Sorkin, L. S., Hughes, M. G., Liu, D., Willis, W. D., McAdoo, D. J. (1991) Release and metabolism of 5-hydroxytryptamine in the cat spinal cord examined with microdialysis. J Pharm Exp Therap 257: 192–199.Google ScholarPubMed
Sorkin, L. S., McAdoo, D. J., Willis, W. D. (1992) Stimulation in the ventral posterior lateral nucleus of the primate thalamus leads to release of serotonin in the lumbar spinal cord. Brain Res 581: 307–310.CrossRefGoogle ScholarPubMed
Sorkin, L. S., McAdoo, D. J., Willis, W. D. (1993) Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res 618: 95–108.CrossRefGoogle ScholarPubMed
Tsou, K., Jang, C. S. (1962) Studies on the site of analgesia action of morphine by intracerebral microinjection. Scientia Sinica 13: 1099–1109.Google Scholar
Wall, P. D. (1958) Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol 142: 1–21.CrossRefGoogle ScholarPubMed
Westlund, K. N., Bowker, R. M., Ziegler, M. G., Coulter, J. D. (1981) Origins of spinal noradrenergic pathways demonstrated by retrograde transport of antibody to dopamine-β-hydroxylase. Neurosci Lett 25: 243–249.CrossRefGoogle ScholarPubMed
Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., Willis, W. D. (1984a) Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 4: 732–740.CrossRefGoogle ScholarPubMed
Willcockson, W. S., Chung, J. M., Hori, Y., Lee, K. H., Willis, W. D. (1984b) Effects of iontophoretrically released peptides on primate spinothalamic tract cells. J Neurosci 4: 741–750.CrossRefGoogle ScholarPubMed
Willcockson, W. S., Kim, J., Shin, H. K., Chung, J. M., Willis, W. D. (1986) Actions of opioids on primate spinothalamic tract neurons. J Neurosci 6: 2509–2520.CrossRefGoogle ScholarPubMed
Willis, W. D. (1982) Control of nociceptive transmission in the spinal cord. In Progress in Sensory Physiology3 (Ottoson, D., Editor-in-Chief). Berlin: Springer-Verlag.Google Scholar
Willis, W. D. (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124: 395–421.CrossRefGoogle ScholarPubMed
Willis, W. D., Haber, L. H., Martin, R. F. (1977) Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey. J Neurophysiol 40: 968–981.CrossRefGoogle ScholarPubMed
Willis, W. D., Gerhart, K. D., Willcockson, W. S.et al. (1984) Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus. J Neurophysiol 51: 467–480.CrossRefGoogle ScholarPubMed
Yaksh, T. L. (1979) Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res 160: 180–185.CrossRefGoogle ScholarPubMed
Yaksh, T. L., Rudy, T. A. (1976) Analgesia mediated by a direct spinal action of narcotics. Science 192: 1357–1358.CrossRefGoogle ScholarPubMed
Yaksh, T. L., Rudy, T. A. (1978) Narcotic analgesics: CNS sites and mechanisms of action as revealed by intracerebral injection techniques. Pain 4: 299–359.CrossRefGoogle ScholarPubMed
Yezierski, R. P. (1990) The effects of midbrain and medullary stimulation on spinomesencephalic tract cells in the cat. J Neurophysiol 63: 240–255.CrossRefGoogle ScholarPubMed
Yezierski, R. P., Schwartz, R. H. (1986) Response and receptive-field properties of spinomesencephalic tract cells in the cat. J Neurophysiol 55: 76–96.CrossRefGoogle ScholarPubMed
Yezierski, R. P., Wilcox, T. K., Willis, W. D. (1982) The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphe magnus or periaqueductal gray. J Pharmacol Exp Ther 220: 266–277.Google ScholarPubMed
Yezierski, R. P., Gerhart, K. D., Schrock, B. J., Willis, W. D. (1983) A further examination of effects of cortical stimulation in primate spinothalamic tract cells. J Neurophysiol 49: 424–441.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×