Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-05T21:52:09.259Z Has data issue: false hasContentIssue false

Chapter 6 - The FTD-ALS spectrum

from Section 2 - Clinical phenotypes

Published online by Cambridge University Press:  05 May 2016

Bradford C. Dickerson
Affiliation:
Department of Neurology, Massachusetts General Hospital
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bak, TH. Motor neuron disease and frontotemporal dementia: one, two, or three diseases? Annals of Indian Academy of Neurology 2010;13(Suppl 2):S81.Google Scholar
Bak, TH. The importance of looking in dark places. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2013;14(1):12.Google Scholar
Snowden, JS, Rollinson, S, Thompson, JC, Harris, JM, Stopford, CL, Richardson, AM, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012;135(3):693708.Google Scholar
Bak, TH, O'Donovan, DG, Xuereb, JH, Boniface, S, Hodges, JR. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease – dementia – aphasia syndrome. Brain 2001;124(1):103–20.CrossRefGoogle ScholarPubMed
Lillo, P, Garcin, B, Hornberger, M, Bak, TH, Hodges, JR. Neurobehavioral features in frontotemporal dementia with amyotrophic lateral sclerosis. Archives of Neurology 2010;67(7):826–30.Google Scholar
Mioshi, E, Caga, J, Lillo, P, Hsieh, S, Ramsey, E, Devenney, E, et al. Neuropsychiatric changes precede classic motor symptoms in ALS and do not affect survival. Neurology 2014;82(2):149–55. doi: 10.1212/WNL. 0000000000000023.CrossRefGoogle Scholar
Hudson, AJ. Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review. Brain 1981;104(2):217–47.CrossRefGoogle ScholarPubMed
Neary, D, Snowden, J, Mann, D, Northen, B, Goulding, P, Macdermott, N. Frontal lobe dementia and motor neuron disease. Journal of Neurology, Neurosurgery, and Psychiatry 1990;53(1):2332.Google Scholar
Rascovsky, K, Hodges, JR, Knopman, D, Mendez, MF, Kramer, JH, Neuhaus, J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134(9):2456–77.Google Scholar
Gorno-Tempini, M, Hillis, A, Weintraub, S, Kertesz, A, Mendez, M, Cappa, S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76(11):1006–14.CrossRefGoogle ScholarPubMed
Bak, TH, Hodges, JR. Cognition, language and behaviour in motor neurone disease: evidence of frontotemporal dysfunction. Dementia and Geriatric Cognitive Disorders 1999;10(Suppl 1):2932.Google Scholar
Neumann, M, Sampathu, DM, Kwong, LK, Truax, AC, Micsenyi, MC, Chou, TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314(5796):130–3.Google Scholar
DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, Boxer, AL, Baker, M, Rutherford, NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72(2):245–56.Google Scholar
Renton, AE, Majounie, E, Waite, A, Simon-Sanchez, J, Rollinson, S, Gibbs, JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72(2):257–68.Google Scholar
Bak, TH, Hodges, JR. Motor neurone disease, dementia and aphasia: coincidence, co-occurrence or continuum? Journal of Neurology 2001;248(4):260–70.CrossRefGoogle ScholarPubMed
Lillo, P, Savage, S, Mioshi, E, Kiernan, MC, Hodges, JR. Amyotrophic lateral sclerosis and frontotemporal dementia: a behavioural and cognitive continuum. Amyotrophic Lateral Sclerosis 2012;13(1):102–9.Google Scholar
Strong, MJ, Grace, GM, Freedman, M, Lomen-Hoerth, C, Woolley, S, Goldstein, LH, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis 2009;10(3):131–46.CrossRefGoogle ScholarPubMed
Taylor, LJ, Brown, RG, Tsermentseli, S, Al-Chalabi, A, Shaw, CE, Ellis, CM, et al. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? Journal of Neurology, Neurosurgery, and Psychiatry 2013;84(5):494–8.Google Scholar
Goldstein, L. SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. Journal of Neurology 2009;256(2):234–41.Google Scholar
Canu, E, Agosta, F, Galantucci, S, Chiò, A, Riva, N, Silani, V, et al. Extramotor damage is associated with cognition in primary lateral sclerosis patients. PloS One 2013;8(12):e82017.Google Scholar
Silani, V, Poletti, B, Zago, S. Frontotemporal syndromes of primary lateral sclerosis. In Strong, MJ, ed. Amyotrophic Lateral Sclerosis and the Frontotemporal Dementias Oxford, UK: Oxford University Press. 2012; 171–86.Google Scholar
Raaphorst, J, de Visser, M, van Tol, M-J, Linssen, WH, van der Kooi, AJ, de Haan, RJ, et al. Cognitive dysfunction in lower motor neuron disease: executive and memory deficits in progressive muscular atrophy. Journal of Neurology, Neurosurgery, and Psychiatry 2011;82(2):170–5.Google Scholar
Wicks, P, Abrahams, S, Leigh, P, Williams, T, Goldstein, L. Absence of cognitive, behavioral, or emotional dysfunction in progressive muscular atrophy. Neurology 2006;67(9):1718–19.Google Scholar
Goldstein, LH, Abrahams, S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurology 2013;12(4):368–80.Google Scholar
Kew, J, Leigh, N. Dementia with motor neurone disease. Bailliere's Clinical Neurology 1992;1(3):611–26.Google ScholarPubMed
Barson, F, Kinsella, G, Ong, B, Mathers, S. A neuropsychological investigation of dementia in motor neurone disease (MND). Journal of the Neurological Sciences 2000;180(1):107–13.Google Scholar
Ringholz, G, Appel, S, Bradshaw, M, Cooke, N, Mosnik, D, Schulz, P. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 2005;65(4):586–90.Google Scholar
Phukan, J, Elamin, M, Bede, P, Jordan, N, Gallagher, L, Byrne, S, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery, and Psychiatry 2012;83(1):102–8.Google Scholar
Abrahams, S, Leigh, P, Harvey, A, Vythelingum, G, Grise, D, Goldstein, L. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 2000;38(6):734–47.CrossRefGoogle ScholarPubMed
Raaphorst, J, De Visser, M, Linssen, WH, De Haan, RJ, Schmand, B. The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotrophic Lateral Sclerosis 2010;11(1–2):2737.Google Scholar
Abrahams, S, Leigh, P, Goldstein, L. Cognitive change in ALS: a prospective study. Neurology 2005;64(7):1222–6.Google Scholar
Elamin, M, Bede, P, Byrne, S, Jordan, N, Gallagher, L, Wynne, B, et al. Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology 2013;80(17):1590–7.Google Scholar
Olney, R, Murphy, J, Forshew, D, Garwood, E, Miller, B, Langmore, S, et al. The effects of executive and behavioral dysfunction on the course of ALS. Neurology 2005;65(11):1774–7.Google Scholar
Elamin, M, Phukan, J, Bede, P, Jordan, N, Byrne, S, Pender, N, et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 2011;76(14):1263–9.Google Scholar
Abrahams, S, Goldstein, L, Al-Chalabi, A, Pickering, A, Morris, R, Passingham, R, et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry 1997;62(5):464–72.Google Scholar
Massman, P, Sims, J, Cooke, N, Haverkamp, L, Appel, V, Appel, S. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry 1996;61(5):450–5.Google Scholar
Abrahams, S, Goldstein, L, Kew, J, Brooks, D, Lloyd, C, Frith, C, et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain 1996;119(6):2105–20.Google Scholar
Donaghy, C, Pinnock, R, Abrahams, S, Cardwell, C, Hardiman, O, Patterson, V, et al. Ocular fixation instabilities in motor neurone disease. Journal of Neurology 2009;256(3):420–6.Google Scholar
Witgert, M, Salamone, A, Strutt, A, Jawaid, A, Massman, P, Bradshaw, M, et al. Frontal-lobe mediated behavioral dysfunction in amyotrophic lateral sclerosis. European Journal of Neurology 2010;17(1):103–10.Google Scholar
Libon, DJ, McMillan, C, Avants, B, Boller, A, Morgan, B, Burkholder, L, et al. Deficits in concept formation in amyotrophic lateral sclerosis. Neuropsychology 2012;26(4):422–9.Google Scholar
Pettit, LD, Bastin, ME, Smith, C, Bak, TH, Gillingwater, TH, Abrahams, S. Executive deficits, not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis. Brain 2013;136(11):3290–304.Google Scholar
Girardi, A, MacPherson, SE, Abrahams, S. Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology 2011;25(1):5365.Google Scholar
Štukovnik, V, Zidar, J, Podnar, S, Repovš, G. Amyotrophic lateral sclerosis patients show executive impairments on standard neuropsychological measures and an ecologically valid motor-free test of executive functions. Journal of Clinical and Experimental Neuropsychology 2010;32(10):1095–109.Google Scholar
Meier, SL, Charleston, AJ, Tippett, LJ. Cognitive and behavioural deficits associated with the orbitomedial prefrontal cortex in amyotrophic lateral sclerosis. Brain 2010;133(11):3444–57.CrossRefGoogle ScholarPubMed
Caselli, RJ, Windebank, AJ, Petersen, RC, Komori, T, Parisi, JE, Okazaki, H, et al. Rapidly progressive aphasic dementia and motor neuron disease. Annals of Neurology 1993;33(2):200–7.Google Scholar
Bak, T, Hodges, J. Noun-verb dissociation in three patients with motor neuron disease and aphasia. Brain and Language 1997;60(1):3841.Google Scholar
Bak, TH, Hodges, JR. The effects of motor neurone disease on language: further evidence. Brain and Language 2004;89(2):354–61.Google Scholar
Hillis, AE, Heidler-Gary, J, Newhart, M, Chang, S, Ken, L, Bak, TH. Naming and comprehension in primary progressive aphasia: the influence of grammatical word class. Aphasiology 2006;20(02–04):246–56.CrossRefGoogle Scholar
Grossman, M, Anderson, C, Khan, A, Avants, B, Elman, L, McCluskey, L. Impaired action knowledge in amyotrophic lateral sclerosis. Neurology 2008;71(18):1396–401.Google Scholar
Bak, TH, Chandran, S. What wires together dies together: verbs, actions and neurodegeneration in motor neuron disease. Cortex 2012;48(7):936–44.CrossRefGoogle ScholarPubMed
Bak, TH. The neuroscience of action semantics in neurodegenerative brain diseases. Current Opinion in Neurology 2013;26(6):671–7.CrossRefGoogle ScholarPubMed
Ichikawa, H, Hieda, S, Ohno, H, Ohnaka, Y, Shimizu, Y, Nakajima, M, et al. Kana versus kanji in amyotrophic lateral sclerosis: a clinicoradiological study of writing errors. European Neurology 2010;64(3):148–55.Google Scholar
Abrahams, S, Newton, J, Niven, E, Foley, J, Bak, TH. Screening for cognition and behaviour changes in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2014;15(1–2):914.Google Scholar
Abrahams, S. Executive dysfunction in ALS is not the whole story. Journal of Neurology, Neurosurgery, and Psychiatry 2013;84(5):474–5.Google Scholar
Bak, TH, Hodges, JR. Kissing and dancing – a test to distinguish the lexical and conceptual contributions to noun/verb and action/object dissociation. Preliminary results in patients with frontotemporal dementia. Journal of Neurolinguistics 2003;16(2):169–81.Google Scholar
Cavallo, M, Adenzato, M, MacPherson, SE, Karwig, G, Enrici, I, Abrahams, S. Evidence of social understanding impairment in patients with amyotrophic lateral sclerosis. PloS One 2011;6(10):e25948.Google Scholar
Schmolck, H, Mosnik, D, Schulz, P. Rating the approachability of faces in ALS. Neurology 2007;69(24):2232–5.Google Scholar
Lulé, D, Diekmann, V, Kassubek, J, Kurt, A, Birbaumer, N, Ludolph, AC, et al. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabilitation and Neural Repair 2007;21(6):518–26.Google Scholar
Papps, B, Abrahams, S, Wicks, P, Leigh, P, Goldstein, L. Changes in memory for emotional material in amyotrophic lateral sclerosis (ALS). Neuropsychologia 2005;43(8):1107–14.Google Scholar
Lomen-Hoerth, C, Murphy, J, Langmore, S, Kramer, J, Olney, R, Miller, B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 2003;60(7):1094–7.Google Scholar
Grossman, AB, Woolley-Levine, S, Bradley, WG, Miller, RG. Detecting neurobehavioral changes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis 2007;8(1):5661.Google Scholar
Lillo, P, Mioshi, E, Zoing, MC, Kiernan, MC, Hodges, JR. How common are behavioural changes in amyotrophic lateral sclerosis? Amyotrophic Lateral Sclerosis 2011;12(1):4551.Google Scholar
Raaphorst, J, Beeldman, E, Schmand, B, Berkhout, J, Linssen, WH, van den Berg, LH, et al. The ALS-FTD-Q: a new screening tool for behavioral disturbances in ALS. Neurology 2012;79(13):1377–83.Google Scholar
Bak, TH, Crawford, LM, Berrios, G, Hodges, JR. Behavioural symptoms in progressive supranuclear palsy and frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry 2010;81(9):1057–9.Google Scholar
Woolley, SC, York, MK, Moore, DH, Strutt, AM, Murphy, J, Schulz, PE, et al. Detecting frontotemporal dysfunction in ALS: utility of the ALS Cognitive Behavioral Screen (ALS-CBS™). Amyotrophic Lateral Sclerosis 2010;11(3):303–11.Google Scholar
Chiò, A, Vignola, A, Mastro, E, Giudici, AD, Iazzolino, B, Calvo, A, et al. Neurobehavioral symptoms in ALS are negatively related to caregivers’ burden and quality of life. European Journal of Neurology 2010;17(10):1298–303.Google Scholar
Abrahams, S, Goldstein, L, Simmons, A, Brammer, M, Williams, S, Giampietro, V, et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain 2004;127(7):1507–17.Google Scholar
Bastin, ME, Pettit, LD, Bak, TH, Gillingwater, TH, Smith, C, Abrahams, S. Quantitative tractography and tract shape modeling in amyotrophic lateral sclerosis. Journal of Magnetic Resonance Imaging 2013;38(5):1140–5.Google Scholar
Bede, P, Elamin, M, Byrne, S, McLaughlin, RL, Kenna, K, Vajda, A, et al. Basal ganglia involvement in amyotro-phic lateral sclerosis. Neurology 2013;81(24):2107–15.Google Scholar
Kew, J, Goldstein, L, Leigh, P, Abrahams, S, Cosgrave, N, Passingham, R, et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain 1993;116(6):1399–423.CrossRefGoogle ScholarPubMed
Goldstein, L, Newsom-Davis, I, Bryant, V, Brammer, M, Leigh, P, Simmons, A. Altered patterns of cortical activation in ALS patients during attention and cognitive response inhibition tasks. Journal of Neurology 2011;258(12):2186–98.Google Scholar
Wicks, P, Turner, MR, Abrahams, S, Hammers, A, Brooks, DJ, Leigh, PN, et al. Neuronal loss associated with cognitive performance in amyotrophic lateral sclerosis: an (11C)-flumazenil PET study. Amyotrophic Lateral Sclerosis 2008;9(1):43–9.Google Scholar
Sarro, L, Agosta, F, Canu, E, Riva, N, Prelle, A, Copetti, M, et al. Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. American Journal of Neuroradiology 2011;32(10):1866–72.Google Scholar
Palmieri, A, Naccarato, M, Abrahams, S, Bonato, M, D'Ascenzo, C, Balestreri, S, et al. Right hemisphere dysfunction and emotional processing in ALS: an fMRI study. Journal of Neurology 2010;257(12):1970–8.Google Scholar
Cerami, C, Dodich, A, Canessa, N, Crespi, C, Iannaccone, S, Corbo, M, et al. Emotional empathy in amyotrophic lateral sclerosis: a behavioural and voxel-based morphometry study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2014;15(1–2):21–9.Google Scholar
Woolley, SC, Zhang, Y, Schuff, N, Weiner, MW, Katz, JS. Neuroanatomical correlates of apathy in ALS using 4 Tesla diffusion tensor MRI. Amyotrophic Lateral Sclerosis 2011;12(1):52–8.Google Scholar
Mioshi, E, Lillo, P, Yew, B, Hsieh, S, Savage, S, Hodges, JR, et al. Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology 2013;80(12):1117–23.Google Scholar
Munoz, DG, Neumann, M, Kusaka, H, Yokota, O, Ishihara, K, Terada, S, et al. FUS pathology in basophilic inclusion body disease. Acta Neuropathologica 2009;118(5):617–27.Google Scholar
Ravits, JM, La Spada, AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 2009;73(10):805–11.CrossRefGoogle ScholarPubMed
Brettschneider, J, Del Tredici, K, Toledo, JB, Robinson, JL, Irwin, DJ, Grossman, M, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Annals of neurology 2013;74(1):2038.Google Scholar
Brettschneider, J, Del Tredici, K, Irwin, DJ, Grossman, M, Robinson, JL, Toledo, JB, et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathologica 2014;127(3):423–39.Google Scholar
Byrne, S, Heverin, M, Elamin, M, Bede, P, Lynch, C, Kenna, K, et al. Aggregation of neurologic and neuropsychiatric disease in amyotrophic lateral sclerosis kindreds: a population-based case–control cohort study of familial and sporadic amyotrophic lateral sclerosis. Annals of Neurology 2013;74(5):699708.Google Scholar
Czell, D, Andersen, PM, Neuwirth, C, Morita, M, Weber, M. Progressive aphasia as the presenting symptom in a patient with amyotrophic lateral sclerosis with a novel mutation in the OPTN gene. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2013;14(2):138–40.Google Scholar
Bak, TH. Movement disorders: why movement and cognition belong together. Nature Reviews Neurology 2010;7(1):1012.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×