Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-09T04:12:24.674Z Has data issue: false hasContentIssue false

Chapter 57 - Autologous Hematopoietic Cell Transplants for Autoimmune Diseases: Specific Diseases and Controversies

from Section 15 - Hematopoietic Cell Transplants for Non-Neoplastic Diseases

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 535 - 551
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Marmont, AM. Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 1998; 83(8): 733743.Google Scholar
Tyndall, A, Gratwohl, A. Blood and marrow stem cell transplants in autoimmune disease. A consensus report written on behalf of the European League Against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation (EBMT). Br J Rheumatol 1997; 36(3): 390392.Google Scholar
Snowden, JA, Saccardi, R, Allez, M, Ardizzone, S, Arnold, R, Cervera, R et al. Haematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2012; 47(6): 770790. doi: 10.1038/bmt.2011.185CrossRefGoogle ScholarPubMed
Gratwohl, A, Passweg, J, Bocelli-Tyndall, C, Fassas, A, van Laar, JM, Farge, D et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant 2005; 35(9): 869879. doi: 10.1038/sj.bmt.1704892Google Scholar
Farge, D, Labopin, M, Tyndall, A, Fassas, A, Mancardi, GL, Van Laar, J et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica 2010; 95(2): 284292. doi: 10.3324/haematol.2009.013458Google Scholar
Sun, L. Stem cell transplantation: progress in Asia. Lupus 2010; 19(12): 14681473. doi: 10.1177/0961203310370051Google Scholar
Passweg, JR, Baldomero, H, Peters, C, Gaspar, HB, Cesaro, S, Dreger, P et al. Hematopoietic SCT in Europe: data and trends in 2012 with special consideration of pediatric transplantation. Bone Marrow Transplant 2014; 49(6): 744750. doi: 10.1038/bmt.2014.55Google Scholar
Gratwohl, A, Baldomero, H, Gratwohl, M, Aljurf, M, Bouzas, LF, Horowitz, M et al. Quantitative and qualitative differences in use and trends of hematopoietic stem cell transplantation: a Global Observational Study. Haematologica 2013; 98(8): 12821290. doi: 10.3324/haematol.2012.076349Google Scholar
Snowden, JA, Pearce, RM, Lee, J, Kirkland, K, Gilleece, M, Veys, P et al. Haematopoietic stem cell transplantation (HSCT) in severe autoimmune diseases: analysis of UK outcomes from the British Society of Blood and Marrow Transplantation (BSBMT) data registry 1997–2009. Br J Haematol 2012; 157(6): 742746. doi: 10.1111/j.1365–2141.2012.09122.xGoogle Scholar
Pasquini, MC, Voltarelli, J, Atkins, HL, Hamerschlak, N, Zhong, X, Ahn, KW et al. Transplantation for autoimmune diseases in north and South America: a report of the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant 2012; 18(10): 14711478. doi: 10.1016/j.bbmt.2012.06.003Google Scholar
Sullivan, KM, Muraro, P, Tyndall, A. Hematopoietic cell transplantation for autoimmune disease: updates from Europe and the United States. Biol Blood Marrow Transplant 2010; 16(1 Suppl): S48–56. doi: 10.1016/j.bbmt.2009.10.034CrossRefGoogle ScholarPubMed
Sureda, A, Bader, P, Cesaro, S, Dreger, P, Duarte, RF, Dufour, C et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant 2015; 50(8):10371056. doi: 10.1038/bmt.2015.6Google Scholar
Burt, RK, Loh, Y, Cohen, B, Stefoski, D, Stefosky, D, Balabanov, R et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 2009; 8(3): 244253. doi: 10.1016/S1474-4422(09)70017-1CrossRefGoogle ScholarPubMed
Burt, RK, Balabanov, R, Voltarelli, J, Barreira, A, Burman, J. Autologous hematopoietic stem cell transplantation for multiple sclerosis – if confused or hesitant, remember: ‘treat with standard immune suppressive drugs and if no inflammation, no response’. Mult Scler 2012; 18(6): 772775. doi: 10.1177/1352458512442993Google Scholar
Reston, JT, Uhl, S, Treadwell, JR, Nash, RA, Schoelles, K. Autologous hematopoietic cell transplantation for multiple sclerosis: a systematic review. Mult Scler 2011; 17(2): 204213. doi: 10.1177/1352458510383609CrossRefGoogle ScholarPubMed
Burt, RK, Kozak, T. Hematopoietic stem cell transplantation for multiple sclerosis: finding equipoise. Bone Marrow Transplant 2003; 32 (Suppl 1): S45–48. doi: 10.1038/sj.bmt.1703942Google Scholar
Nash, RA, Bowen, JD, McSweeney, PA, Pavletic, SZ, Maravilla, KR, Park, MS et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 2003; 102(7): 23642372. doi: 10.1182/blood-2002-12-3908Google Scholar
Burt, RK, Cohen, B, Rose, J, Petersen, F, Oyama, Y, Stefoski, D et al. Hematopoietic stem cell transplantation for multiple sclerosis. Arch Neurol 2005; 62(6): 860864. doi: 10.1001/archneur.62.6.860CrossRefGoogle ScholarPubMed
Saccardi, R, Kozak, T, Bocelli-Tyndall, C, Fassas, A, Kazis, A, Havrdova, E et al. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European Group for Blood and Marrow Transplantation autoimmune diseases working party database. Mult Scler 2006; 12(6): 814823.Google Scholar
Saccardi, R, Mancardi, GL, Solari, A, Bosi, A, Bruzzi, P, Di Bartolomeo, P et al. Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood 2005; 105(6): 26012607. doi: 10.1182/blood-2004-08-3205Google Scholar
Hamerschlak, N, Rodrigues, M, Moraes, DA, Oliveira, MC, Stracieri, AB, Pieroni, F et al. Brazilian experience with two conditioning regimens in patients with multiple sclerosis: BEAM/horse ATG and CY/rabbit ATG. Bone Marrow Transplant 2010; 45(2): 239248. doi: 10.1038/bmt.2009.127Google Scholar
Krasulová, E, Trneny, M, Kozák, T, Vacková, B, Pohlreich, D, Kemlink, D et al. High-dose immunoablation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience. Mult Scler 2010; 16(6): 685693. doi: 10.1177/1352458510364538Google Scholar
Xu, J, Ji, BX, Su, L, Dong, HQ, Sun, WL, Wan, SG et al. Clinical outcome of autologous peripheral blood stem cell transplantation in opticospinal and conventional forms of secondary progressive multiple sclerosis in a Chinese population. Ann Hematol 2011; 90(3): 343348. doi: 10.1007/s00277-010–1071-5Google Scholar
Burt, RK, Balabanov, R, Han, X, Sharrack, B, Morgan, A, Quigley, K et al. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA 2015; 313(3): 275284. doi: 10.1001/jama.2014.17986CrossRefGoogle ScholarPubMed
Nash, RA, Hutton, GJ, Racke, MK, Popat, U, Devine, SM, Griffith, LM et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol 2015; 72(2): 159169. doi: 10.1001/jamaneurol.2014.3780Google Scholar
Mancardi, GL, Sormani, MP, Gualandi, F, Saiz, A, Carreras, E, Merelli, E et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 2015; 84(10): 981988. doi: 10.1212/WNL.0000000000001329Google Scholar
Burman, J, Iacobaeus, E, Svenningsson, A, Lycke, J, Gunnarsson, M, Nilsson, P et al. Autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: the Swedish experience. J Neurol Neurosurg Psychiatry 2014; 85(10):11161121. doi: 10.1136/jnnp-2013–307207Google Scholar
Carreras, E, Saiz, A, Marín, P, Martínez, C, Rovira, M, Villamor, N et al. CD34+ selected autologous peripheral blood stem cell transplantation for multiple sclerosis: report of toxicity and treatment results at one year of follow-up in 15 patients. Haematologica 2003; 88(3): 306314.Google Scholar
van Laar, JM, Farge, D, Tyndall, A. Stem cell transplantation: a treatment option for severe systemic sclerosis? Ann Rheum Dis 2008; 67 (Suppl 3): iii35–38. doi: 10.1136/ard.2008.098384CrossRefGoogle ScholarPubMed
Burt, RK, Oliveira, MC, Shah, SJ, Moraes, DA, Simoes, B, Gheorghiade, M et al. Cardiac involvement and treatment-related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: a retrospective analysis. Lancet 2013; 381(9872): 11161124. doi: 10.1016/S0140-6736(12)62114-XGoogle Scholar
Burt, RK, Shah, SJ, Dill, K, Grant, T, Gheorghiade, M, Schroeder, J et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 2011; 378(9790): 498506. doi: 10.1016/S0140-6736(11)60982-3Google Scholar
Binks, M, Passweg, JR, Furst, D, McSweeney, P, Sullivan, K, Besenthal, C et al. Phase I/II trial of autologous stem cell transplantation in systemic sclerosis: procedure related mortality and impact on skin disease. Ann Rheum Dis 2001; 60(6): 577584.Google Scholar
Farge, D, Marolleau, JP, Zohar, S, Marjanovic, Z, Cabane, J, Mounier, N et al. Autologous bone marrow transplantation in the treatment of refractory systemic sclerosis: early results from a French multicentre phase I-II study. Br J Haematol 2002; 119(3): 726739.Google Scholar
van Laar, JM, Farge, D, Sont, JK, Naraghi, K, Marjanovic, Z, Larghero, J et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 2014; 311(24): 24902498. doi: 10.1001/jama.2014.6368Google Scholar
Oyama, Y, Craig, RM, Traynor, AE, Quigley, K, Statkute, L, Halverson, A et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohn’s disease. Gastroenterology 2005; 128(3): 552563.CrossRefGoogle ScholarPubMed
Burt, RK, Craig, RM, Milanetti, F, Quigley, K, Gozdziak, P, Bucha, J et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in patients with severe anti-TNF refractory Crohn disease: long-term follow-up. Blood 2010; 116(26): 61236132. doi: 10.1182/blood-2010-06-292391Google Scholar
Craig, RM, Traynor, A, Oyama, Y, Burt, RK. Hematopoietic stem cell transplantation for severe Crohn’s disease. Bone Marrow Transplant 2003; 32 (Suppl 1): S57–59. doi: 10.1038/sj.bmt.1703945CrossRefGoogle ScholarPubMed
Nash, RA, McDonald, GB. Crohn disease: remissions but no cure. Blood 2010; 116(26): 57905791. doi: 10.1182/blood-2010-09-309252Google Scholar
Hommes, DW, Duijvestein, M, Zelinkova, Z, Stokkers, PC, Ley, MH, Stoker, J et al. Long-term follow-up of autologous hematopoietic stem cell transplantation for severe refractory Crohn’s disease. J Crohns Colitis 2011; 5(6): 543549. doi: 10.1016/j.crohns.2011.05.004Google Scholar
Burt, RK, Traynor, A, Statkute, L, Barr, WG, Rosa, R, Schroeder, J et al. Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus. JAMA 2006; 295(5): 527535. doi: 10.1001/jama.295.5.527Google Scholar
Traynor, AE, Schroeder, J, Rosa, RM, Cheng, D, Stefka, J, Mujais, S et al. Treatment of severe systemic lupus erythematosus with high-dose chemotherapy and haemopoietic stem-cell transplantation: a phase I study. Lancet 2000; 356(9231): 701707. doi: 10.1016/S0140-6736(00)02627–1CrossRefGoogle ScholarPubMed
Alchi, B, Jayne, D, Labopin, M, Demin, A, Sergeevicheva, V, Alexander, T et al. Autologous haematopoietic stem cell transplantation for systemic lupus erythematosus: data from the European Group for Blood and Marrow Transplantation registry. Lupus 2013; 22(3): 245253. doi: 10.1177/0961203312470729Google Scholar
Marmont du Haut Champ, AM. Hematopoietic stem cell transplantation for systemic lupus erythematosus. Clin Dev Immunol 2012; 2012: 380391. doi: 10.1155/2012/380391CrossRefGoogle ScholarPubMed
Illei, GG, Cervera, R, Burt, RK, Doria, A, Hiepe, F, Jayne, D et al. Current state and future directions of autologous hematopoietic stem cell transplantation in systemic lupus erythematosus. Ann Rheum Dis 2011; 70(12): 20712074. doi: 10.1136/ard.2010.148049Google Scholar
Couri, CE, Oliveira, MC, Stracieri, AB, Moraes, DA, Pieroni, F, Barros, GM et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2009; 301(15): 15731579. doi: 10.1001/jama.2009.470Google Scholar
Voltarelli, JC, Couri, CE, Stracieri, AB, Oliveira, MC, Moraes, DA, Pieroni, F et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2007; 297(14): 15681576. doi: 10.1001/jama.297.14.1568Google Scholar
D’Addio, F, Valderrama Vasquez, A, Ben Nasr, M, Franek, E, Zhu, D, Li, L et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in new-onset type 1 diabetes: a multicenter analysis. Diabetes 2014. doi: 10.2337/db14-0295Google Scholar
Burt, RK, Loh, Y, Pearce, W, Beohar, N, Barr, WG, Craig, R et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 2008; 299(8): 925936. doi: 10.1001/jama.299.8.925Google Scholar
Ikehara, S. Bone marrow transplantation for autoimmune diseases. Acta Haematol 1998; 99(3): 116132. doi: 40826Google Scholar
Ikehara, S, Good, RA, Nakamura, T, Sekita, K, Inoue, S, Oo, MM et al. Rationale for bone marrow transplantation in the treatment of autoimmune diseases. Proc Natl Acad Sci U S A 1985; 82(8): 24832487.Google Scholar
van Bekkum, DW. Stem cell transplantation for autoimmune disorders. Preclinical experiments. Best Pract Res Clin Haematol 2004; 17(2): 201222. doi: 10.1016/j.beha.2004.04.003Google Scholar
van Bekkum, DW. Stem cell transplantation in experimental models of autoimmune disease. J Clin Immunol 2000; 20(1): 1016.Google Scholar
Van Bekkum, DW. Experimental basis for the treatment of autoimmune diseases with autologous hematopoietic stem cell transplantation. Bone Marrow Transplant 2003; 32 (Suppl 1): S37–39. doi: 10.1038/sj.bmt.1703941Google Scholar
van Bekkum, DW. Experimental basis of hematopoietic stem cell transplantation for treatment of autoimmune diseases. J Leukoc Biol 2002; 72(4): 609620.Google Scholar
van Bekkum, DW. Autologous stem cell transplantation for treatment of autoimmune diseases. Stem Cells 1999; 17(3): 172178. doi: 10.1002/stem.170172Google Scholar
Nelson, JL, Torrez, R, Louie, FM, Choe, OS, Storb, R, Sullivan, KM. Pre-existing autoimmune disease in patients with long-term survival after allogeneic bone marrow transplantation. J Rheumatol Suppl 1997; 48: 2329.Google Scholar
Marmont, AM. Stem cell transplantation for autoimmune disorders. Coincidental autoimmune disease in patients transplanted for conventional indications. Best Pract Res Clin Haematol 2004; 17(2): 223232. doi: 10.1016/j.beha.2004.04.004CrossRefGoogle ScholarPubMed
Burt, RK, Traynor, AE, Pope, R, Schroeder, J, Cohen, B, Karlin, KH et al. Treatment of autoimmune disease by intense immunosuppressive conditioning and autologous hematopoietic stem cell transplantation. Blood 1998; 92(10): 35053514.Google Scholar
Burt, RK, Cohen, BA, Russell, E, Spero, K, Joshi, A, Oyama, Y et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood 2003; 102(7): 23732378. doi: 10.1182/blood-2003-03-0877CrossRefGoogle ScholarPubMed
Tyndall, A, Saccardi, R. Haematopoietic stem cell transplantation in the treatment of severe autoimmune disease: results from phase I/II studies, prospective randomized trials and future directions. Clin Exp Immunol 2005; 141(1): 19. doi: 10.1111/j.1365–2249.2005.02806.xGoogle Scholar
Alexander, T, Bondanza, A, Muraro, PA, Greco, R, Saccardi, R, Daikeler, T et al. SCT for severe autoimmune diseases: consensus guidelines of the European Society for Blood and Marrow Transplantation for immune monitoring and biobanking. Bone Marrow Transplant 2015; 50(2):173–80. doi: 10.1038/bmt.2014.251Google Scholar
Saccardi, R, Tyndall, A, Coghlan, G, Denton, C, Edan, G, Emdin, M et al. Consensus statement concerning cardiotoxicity occurring during haematopoietic stem cell transplantation in the treatment of autoimmune diseases, with special reference to systemic sclerosis and multiple sclerosis. Bone Marrow Transplant 2004; 34(10): 877881. doi: 10.1038/sj.bmt.1704656Google Scholar
Illei, GG. Hematopoietic stem cell transplantation in autoimmune diseases: is the glass half full or half empty? Arthritis Rheum 2006; 54(12): 37303734. doi: 10.1002/art.22257Google Scholar
Domsic, RT, Medsger, TA. Connective tissue diseases: Predicting death in SSc: planning and cooperation are needed. Nat Rev Rheumatol 2011; 7(11): 628630. doi: 10.1038/nrrheum.2011.152CrossRefGoogle ScholarPubMed
Fransen, J, Popa-Diaconu, D, Hesselstrand, R, Carreira, P, Valentini, G, Beretta, L et al. Clinical prediction of 5-year survival in systemic sclerosis: validation of a simple prognostic model in EUSTAR centres. Ann Rheum Dis 2011; 70(10): 17881792. doi: 10.1136/ard.2010.144360CrossRefGoogle ScholarPubMed
Burt, RK, Shah, SJ, Gheorghiade, M, Ruderman, E, Schroeder, J. Hematopoietic stem cell transplantation for systemic sclerosis: if you are confused, remember: “it is a matter of the heart”. J Rheumatol 2012; 39(2): 206209. doi: 10.3899/jrheum.111302Google Scholar
Burt, RK, Oliveira, MC, Shah, SJ. Cardiac assessment before stem cell transplantation for systemic sclerosis. JAMA 2014; 312(17): 1803. doi: 10.1001/jama.2014.12566Google Scholar
Houssiau, FA, Vasconcelos, C, D’Cruz, D, Sebastiani, GD, Garrido Ed Ede, E, Danieli, MG et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 2002; 46(8): 21212131. doi: 10.1002/art.10461Google Scholar
Contreras, G, Pardo, V, Leclercq, B, Lenz, O, Tozman, E, O’Nan, P et al. Sequential therapies for proliferative lupus nephritis. N Engl J Med 2004; 350(10): 971980. doi: 10.1056/NEJMoa031855Google Scholar
Illei, GG, Austin, HA, Crane, M, Collins, L, Gourley, MF, Yarboro, CH et al. Combination therapy with pulse cyclophosphamide plus pulse methylprednisolone improves long-term renal outcome without adding toxicity in patients with lupus nephritis. Ann Intern Med 2001; 135(4): 248257.Google Scholar
Doria, A, Iaccarino, L, Ghirardello, A, Zampieri, S, Arienti, S, Sarzi-Puttini, P et al. Long-term prognosis and causes of death in systemic lupus erythematosus. Am J Med 2006; 119(8): 700706. doi: 10.1016/j.amjmed.2005.11.034Google Scholar
Jayne, D, Tyndall, A. Autologous stem cell transplantation for systemic lupus erythematosus. Lupus 2004; 13(5): 359365.Google Scholar
Traynor, AE, Barr, WG, Rosa, RM, Rodriguez, J, Oyama, Y, Baker, S et al. Hematopoietic stem cell transplantation for severe and refractory lupus. Analysis after five years and fifteen patients. Arthritis Rheum 2002; 46(11): 29172923. doi: 10.1002/art.10594CrossRefGoogle ScholarPubMed
Moore, J, Brooks, P, Milliken, S, Biggs, J, Ma, D, Handel, M et al. A pilot randomized trial comparing CD34-selected versus unmanipulated hemopoietic stem cell transplantation for severe, refractory rheumatoid arthritis. Arthritis Rheum 2002; 46(9): 23012309. doi: 10.1002/art.10495Google Scholar
Snowden, JA, Passweg, J, Moore, JJ, Milliken, S, Cannell, P, Van Laar, J et al. Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR. J Rheumatol 2004; 31(3): 482488.Google Scholar
Snowden, JA, Kapoor, S, Wilson, AG. Stem cell transplantation in rheumatoid arthritis. Autoimmunity 2008; 41(8): 625631. doi: 10.1080/08916930802198550Google Scholar
Verburg, RJ, Sont, JK, van Laar, JM. Reduction of joint damage in severe rheumatoid arthritis by high-dose chemotherapy and autologous stem cell transplantation. Arthritis Rheum 2005; 52(2): 421424. doi: 10.1002/art.20859Google Scholar
Teng, YK, Verburg, RJ, Sont, JK, van den Hout, WB, Breedveld, FC, van Laar, JM. Long-term followup of health status in patients with severe rheumatoid arthritis after high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation. Arthritis Rheum 2005; 52(8): 22722276. doi: 10.1002/art.21219Google Scholar
Moore, J, Ma, D, Will, R, Cannell, P, Handel, M, Milliken, S. A phase II study of Rituximab in rheumatoid arthritis patients with recurrent disease following haematopoietic stem cell transplantation. Bone Marrow Transplant 2004; 34(3): 241247. doi: 10.1038/sj.bmt.1704570CrossRefGoogle ScholarPubMed
Roord, ST, de Jager, W, Boon, L, Wulffraat, N, Martens, A, Prakken, B et al. Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4+CD25+Foxp3+ regulatory T cells. Blood 2008; 111(10): 52335241. doi: 10.1182/blood-2007-12-128488Google Scholar
Wulffraat, NM, de Kleer, IM, Prakken, B. Refractory juvenile idiopathic arthritis: using autologous stem cell transplantation as a treatment strategy. Expert Rev Mol Med 2006; 8(26): 111. doi: 10.1017/S1462399406000135Google Scholar
Wu, Q, Pesenacker, AM, Stansfield, A, King, D, Barge, D, Foster, HE et al. Immunological characteristics and T-cell receptor clonal diversity in children with systemic juvenile idiopathic arthritis undergoing T-cell-depleted autologous stem cell transplantation. Immunology 2014; 142(2): 227236. doi: 10.1111/imm.12245Google Scholar
Mancardi, GL, Sormani, MP, Di Gioia, M, Vuolo, L, Gualandi, F, Amato, MP et al. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler 2012; 18(6): 835842. doi: 10.1177/1352458511429320Google Scholar
Bowen, JD, Kraft, GH, Wundes, A, Guan, Q, Maravilla, KR, Gooley, TA et al. Autologous hematopoietic cell transplantation following high-dose immunosuppressive therapy for advanced multiple sclerosis: long-term results. Bone Marrow Transplant 2012; 47(7): 946951. doi: 10.1038/bmt.2011.208Google Scholar
Saccardi, R, Freedman, MS, Sormani, MP, Atkins, H, Farge, D, Griffith, LM et al. A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper. Mult Scler 2012; 18(6): 825834. doi: 10.1177/1352458512438454Google Scholar
Phillips, JT, Giovannoni, G, Lublin, FD, O’Connor, PW, Polman, CH, Willoughby, E et al. Sustained improvement in Expanded Disability Status Scale as a new efficacy measure of neurological change in multiple sclerosis: treatment effects with natalizumab in patients with relapsing multiple sclerosis. Mult Scler 2011; 17(8): 970979. doi: 10.1177/1352458511399611Google Scholar
Greco, R, Bondanza, A, Oliveira, MC, Badoglio, M, Burman, J, Piehl, F et al. Autologous hematopoietic stem cell transplantation in neuromyelitis optica: a registry study of the EBMT Autoimmune Diseases Working Party. Mult Scler 2015; 21(2): 189197. doi: 10.1177/1352458514541978Google Scholar
Matiello, M, Pittock, SJ, Porrata, L, Weinshenker, BG. Failure of autologous hematopoietic stem cell transplantation to prevent relapse of neuromyelitis optica. Arch Neurol 2011; 68(7): 953955. doi: 10.1001/archneurol.2011.38Google Scholar
Peng, F, Qiu, W, Li, J, Hu, X, Huang, R, Lin, D et al. A preliminary result of treatment of neuromyelitis optica with autologous peripheral hematopoietic stem cell transplantation. Neurologist 2010; 16(6): 375378. doi: 10.1097/NRL.0b013e3181b126e3Google Scholar
Bewtra, M, Kaiser, LM, TenHave, T, Lewis, JD. Crohn’s disease and ulcerative colitis are associated with elevated standardized mortality ratios: a meta-analysis. Inflamm Bowel Dis 2013; 19(3): 599613. doi: 10.1097/MIB.0b013e31827f27aeGoogle Scholar
Gu, Y, Gong, C, Peng, X, Wei, L, Su, C, Qin, M et al. Autologous hematopoietic stem cell transplantation and conventional insulin therapy in the treatment of children with newly diagnosed type 1 diabetes: long term follow-up. Chin Med J (Engl) 2014; 127(14): 26182622.Google ScholarPubMed
Gu, W, Hu, J, Wang, W, Li, L, Tang, W, Sun, S et al. Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care 2012; 35(7): 14131419. doi: 10.2337/dc11-2161Google Scholar
Snarski, E, Milczarczyk, A, Torosian, T, Paluszewska, M, Urbanowska, E, Król, M et al. Independence of exogenous insulin following immunoablation and stem cell reconstitution in newly diagnosed diabetes type I. Bone Marrow Transplant 2011; 46(4): 562566. doi: 10.1038/bmt.2010.147Google Scholar
Notkins, AL, Lernmark, A. Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 2001; 108(9): 12471252. doi: 10.1172/JCI14257Google Scholar
Burt, RK, Fassas, A, Snowden, J, van Laar, JM, Kozak, T, Wulffraat, NM et al. Collection of hematopoietic stem cells from patients with autoimmune diseases. Bone Marrow Transplant 2001; 28(1): 112. doi: 10.1038/sj.bmt.1703081Google Scholar
De Santis, GC, de Pina Almeida Prado, B, de Lima Prata, K, Brunetta, DM, Orellana, MD, Palma, PV et al. Mobilization and harvesting of PBPC in newly diagnosed type 1 diabetes mellitus. Bone Marrow Transplant 2012; 47(7): 993994. doi: 10.1038/bmt.2011.188Google Scholar
Dubinsky, AN, Burt, RK, Martin, R, Muraro, PA. T-cell clones persisting in the circulation after autologous hematopoietic SCT are undetectable in the peripheral CD34+ selected graft. Bone Marrow Transplant 2010; 45(2): 325331. doi: 10.1038/bmt.2009.139Google Scholar
Nash, RA, Dansey, R, Storek, J, Georges, GE, Bowen, JD, Holmberg, LA et al. Epstein–Barr virus-associated posttransplantation lymphoproliferative disorder after high-dose immunosuppressive therapy and autologous CD34-selected hematopoietic stem cell transplantation for severe autoimmune diseases. Biol Blood Marrow Transplant 2003; 9(9): 583591.Google Scholar
Tsukamoto, H, Ayano, M, Miyamoto, T, Niiro, H, Arinobu, Y, Akahoshi, M et al. Comparison of CD34-selected and unmanipulated autologous hematopoietic stem cell transplantation for systemic sclerosis: four-year follow-up results. EULAR Conference 2014; 73 (Suppl 2): 9697.Google Scholar
Oliveira, M, Labopin, M, Henes, J, Moore, J, Del Papa, N, Stanciu, S et al. Does ex vivo CD34+ cell selection change the outcome of systemic sclerosis patients treated with autologous hematopoietic stem cell transplantation (AHSCT), an ADWP EBMT Study? ASH Conference 2014; 124(21).Google Scholar
Nash, RA, McSweeney, PA, Crofford, LJ, Abidi, M, Chen, CS, Godwin, JD et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: long-term follow-up of the US multicenter pilot study. Blood 2007; 110(4): 13881396. doi: 10.1182/blood-2007-02-072389Google Scholar
Burt, RK, Marmont, A, Oyama, Y, Slavin, S, Arnold, R, Hiepe, F et al. Randomized controlled trials of autologous hematopoietic stem cell transplantation for autoimmune diseases: the evolution from myeloablative to lymphoablative transplant regimens. Arthritis Rheum 2006; 54(12): 37503760. doi: 10.1002/art.22256Google Scholar
McSweeney, PA, Nash, RA, Sullivan, KM, Storek, J, Crofford, LJ, Dansey, R et al. High-dose immunosuppressive therapy for severe systemic sclerosis: initial outcomes. Blood 2002; 100(5): 16021610.Google Scholar
Openshaw, H, Lund, BT, Kashyap, A, Atkinson, R, Sniecinski, I, Weiner, LP et al. Peripheral blood stem cell transplantation in multiple sclerosis with busulfan and cyclophosphamide conditioning: report of toxicity and immunological monitoring. Biol Blood Marrow Transplant 2000; 6(5A): 563575.Google Scholar
Nannini, C, West, CP, Erwin, PJ, Matteson, EL. Effects of cyclophosphamide on pulmonary function in patients with scleroderma and interstitial lung disease: a systematic review and meta-analysis of randomized controlled trials and observational prospective cohort studies. Arthritis Res Ther 2008; 10(5): R124. doi: 10.1186/ar2534Google Scholar
Henes, JC, Koetter, I, Horger, M, Schmalzing, M, Mueller, K, Eick, C et al. Autologous stem cell transplantation with thiotepa-based conditioning in patients with systemic sclerosis and cardiac manifestations. Rheumatology (Oxford) 2014; 53(5): 919922. doi: 10.1093/rheumatology/ket464Google Scholar
Chen, B, Zhou, M, Ouyang, J, Zhou, R, Xu, J, Zhang, Q et al. Long-term efficacy of autologous haematopoietic stem cell transplantation in multiple sclerosis at a single institution in China. Neurol Sci 2012; 33(4): 881886. doi: 10.1007/s10072-011–0859-yGoogle Scholar
Curro’, D, Vuolo, L, Gualandi, F, Bacigalupo, A, Roccatagliata, L, Capello, E et al. Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: A MRI-based clinical study. Mult Scler 2015; 21(11):14231430. doi: 10.1177/1352458514564484Google Scholar
Greco, R, Bondanza, A, Vago, L, Moiola, L, Rossi, P, Furlan, R et al. Allogeneic hematopoietic stem cell transplantation for neuromyelitis optica. Ann Neurol 2014; 75(3): 447453. doi: 10.1002/ana.24079Google Scholar
Aouad, P, Li, J, Arthur, C, Burt, R, Fernando, S, Parratt, J. Resolution of aquaporin-4 antibodies in a woman with neuromyelitis optica treated with human autologous stem cell transplant. J Clin Neurosci 2015; 22(7): 12151217. doi: 10.1016/j.jocn.2015.02.007Google Scholar
Clerici, M, Cassinotti, A, Onida, F, Trabattoni, D, Annaloro, C, Della Volpe, A et al. Immunomodulatory effects of unselected haematopoietic stem cells autotransplantation in refractory Crohn’s disease. Dig Liver Dis 2011; 43(12): 946952. doi: 10.1016/j.dld.2011.07.021Google Scholar
Kriván, G, Szabó, D, Kállay, K, Benyó, G, Kassa, C, Sinkó, J et al. [Successful autologous haematopoietic stem cell transplantation in severe, therapy-resistant childhood Crohn’s disease. Report on the first case in Hungary]. Orv Hetil 2014; 155(20): 789792. doi: 10.1556/OH.2014.29892Google Scholar
Kountouras, J, Sakellari, I, Tsarouchas, G, Tsiaousi, E, Michael, S, Zavos, C et al. Autologous haematopoietic stem cell transplantation in a patient with refractory Crohn’s disease. J Crohns Colitis 2011; 5(3): 275276. doi: 10.1016/j.crohns.2011.03.004Google Scholar
Hasselblatt, P, Drognitz, K, Potthoff, K, Bertz, H, Kruis, W, Schmidt, C et al. Remission of refractory Crohn’s disease by high-dose cyclophosphamide and autologous peripheral blood stem cell transplantation. Aliment Pharmacol Ther 2012; 36(8): 725735. doi: 10.1111/apt.12032Google Scholar
Bryan, C, Knight, C, Black, CM, Silman, AJ. Prediction of five-year survival following presentation with scleroderma: development of a simple model using three disease factors at first visit. Arthritis Rheum 1999; 42(12): 26602665. doi: 10.1002/1529-0131(199912)42:12<2660::AID-ANR23>3.0.CO;2-NGoogle Scholar
Hussein, H, Lee, P, Chau, C, Johnson, SR. The effect of male sex on survival in systemic sclerosis. J Rheumatol 2014; 41(11): 21932200. doi: 10.3899/jrheum.140006Google Scholar
Sampaio-Barros, PD, Bortoluzzo, AB, Marangoni, RG, Rocha, LF, Del Rio, AP, Samara, AM et al. Survival, causes of death, and prognostic factors in systemic sclerosis: analysis of 947 Brazilian patients. J Rheumatol 2012; 39(10): 19711978. doi: 10.3899/jrheum.111582Google Scholar
Rahman, P, Gladman, DD, Urowitz, MB, Hallett, D, Tam, LS. Early damage as measured by the SLICC/ACR damage index is a predictor of mortality in systemic lupus erythematosus. Lupus 2001; 10(2): 9396.Google Scholar
Kaufman, DW, Reshef, S, Golub, HL, Peucker, M, Corwin, MJ, Goodin, DS et al. Survival in commercially insured multiple sclerosis patients and comparator subjects in the U.S. Mult Scler Relat Disord 2014; 3(3): 364371. doi: 10.1016/j.msard.2013.12.003CrossRefGoogle ScholarPubMed
Mancardi, G, Saccardi, R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol 2008; 7(7): 626636. doi: 10.1016/S1474-4422(08)70138–8Google Scholar
Kohno, K, Nagafuji, K, Tsukamoto, H, Horiuchi, T, Takase, K, Aoki, K et al. Infectious complications in patients receiving autologous CD34-selected hematopoietic stem cell transplantation for severe autoimmune diseases. Transpl Infect Dis 2009; 11(4): 318323. doi: 10.1111/j.1399–3062.2009.00401.xGoogle Scholar
Bloomgren, G, Richman, S, Hotermans, C, Subramanyam, M, Goelz, S, Natarajan, A et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 2012; 366(20): 18701880. doi: 10.1056/NEJMoa1107829Google Scholar
Pfitzer, C, Orawa, H, Balcerek, M, Langer, T, Dirksen, U, Keslova, P et al. Dynamics of fertility impairment and recovery after allogeneic haematopoietic stem cell transplantation in childhood and adolescence: results from a longitudinal study. J Cancer Res Clin Oncol 2015; 141(1): 135142. doi: 10.1007/s00432-014–1781-5Google Scholar
Nabhan, SK, Bitencourt, MA, Duval, M, Abecasis, M, Dufour, C, Boudjedir, K et al. Fertility recovery and pregnancy after allogeneic hematopoietic stem cell transplantation in Fanconi anemia patients. Haematologica 2010; 95(10): 17831787. doi: 10.3324/haematol.2010.023929Google Scholar
Snarski, E, Snowden, JA, Oliveira, MC, Simoes, B, Badoglio, M, Carlson, K et al. Onset and outcome of pregnancy after autologous haematopoietic SCT (AHSCT) for autoimmune diseases: a retrospective study of the EBMT autoimmune diseases working party (ADWP). Bone Marrow Transplant 2015; 50(2): 216220. doi: 10.1038/bmt.2014.248Google Scholar
Leal, AM, Oliveira, MC, Couri, CE, Moraes, DA, Stracieri, AB, Pieroni, F et al. Testicular function in patients with type 1 diabetes treated with high-dose CY and autologous hematopoietic SCT. Bone Marrow Transplant 2012; 47(3): 467468. doi: 10.1038/bmt.2011.113Google Scholar
Daikeler, T, Tichelli, A, Passweg, J. Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune diseases. Pediatr Res 2012; 71(4 Pt 2): 439444. doi: 10.1038/pr.2011.57Google Scholar
Bohgaki, T, Atsumi, T, Koike, T. Autoimmune disease after autologous hematopoietic stem cell transplantation. Autoimmun Rev 2008; 7(3): 198203. doi: 10.1016/j.autrev.2007.11.005Google Scholar
Holbro, A, Abinun, M, Daikeler, T. Management of autoimmune diseases after haematopoietic stem cell transplantation. Br J Haematol 2012; 157(3): 281290. doi: 10.1111/j.1365–2141.2012.09070.xGoogle Scholar
Daikeler, T, Labopin, M, Di Gioia, M, Abinun, M, Alexander, T, Miniati, I et al. Secondary autoimmune diseases occurring after HSCT for an autoimmune disease: a retrospective study of the EBMT Autoimmune Disease Working Party. Blood 2011; 118(6): 16931698. doi: 10.1182/blood-2011-02-336156Google Scholar
Loh, Y, Oyama, Y, Statkute, L, Quigley, K, Yaung, K, Gonda, E et al. Development of a secondary autoimmune disorder after hematopoietic stem cell transplantation for autoimmune diseases: role of conditioning regimen used. Blood 2007; 109(6): 26432548. doi: 10.1182/blood-2006-07-035766Google Scholar
Muraro, PA, Douek, DC. Renewing the T cell repertoire to arrest autoimmune aggression. Trends Immunol 2006; 27(2): 6167. doi: 10.1016/j.it.2005.12.003Google Scholar
Abrahamsson, S, Muraro, PA. Immune re-education following autologous hematopoietic stem cell transplantation. Autoimmunity 2008; 41(8): 577584. doi: 10.1080/08916930802197081Google Scholar
Hügle, T, Daikeler, T. Stem cell transplantation for autoimmune diseases. Haematologica 2010; 95(2): 185188. doi: 10.3324/haematol.2009.017038Google Scholar
Muraro, PA, Robins, H, Malhotra, S, Howell, M, Phippard, D, Desmarais, C et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest 2014; 124(3): 11681172. doi: 10.1172/JCI71691Google Scholar
Muraro, PA, Douek, DC, Packer, A, Chung, K, Guenaga, FJ, Cassiani-Ingoni, R et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 2005; 201(5): 805816. doi: 10.1084/jem.20041679Google Scholar
Baraut, J, Grigore, EI, Jean-Louis, F, Khelifa, SH, Durand, C, Verrecchia, F et al. Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study. Bone Marrow Transplant 2014; 49(3): 349354. doi: 10.1038/bmt.2013.202Google Scholar
Farge, D, Henegar, C, Carmagnat, M, Daneshpouy, M, Marjanovic, Z, Rabian, C et al. Analysis of immune reconstitution after autologous bone marrow transplantation in systemic sclerosis. Arthritis Rheum 2005; 52(5): 15551563. doi: 10.1002/art.21036Google Scholar
Alexander, T, Thiel, A, Rosen, O, Massenkeil, G, Sattler, A, Kohler, S et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 2009; 113(1): 214223. doi: 10.1182/blood-2008-07-168286Google Scholar
Li, HW, Sykes, M. Emerging concepts in haematopoietic cell transplantation. Nat Rev Immunol 2012; 12(6): 403416. doi: 10.1038/nri3226CrossRefGoogle ScholarPubMed
Sykes, M, Nikolic, B. Treatment of severe autoimmune disease by stem-cell transplantation. Nature 2005; 435(7042): 620627. doi: 10.1038/nature03728Google Scholar
Zhang, L, Bertucci, AM, Ramsey-Goldman, R, Burt, RK, Datta, SK. Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. J Immunol 2009; 183(10): 63466358. doi: 10.4049/jimmunol.0901773Google Scholar
Abrahamsson, SV, Angelini, DF, Dubinsky, AN, Morel, E, Oh, U, Jones, JL et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 2013; 136(Pt 9): 28882903. doi: 10.1093/brain/awt182Google Scholar
Darlington, PJ, Touil, T, Doucet, JS, Gaucher, D, Zeidan, J, Gauchat, D et al. Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol 2013; 73(3): 341354. doi: 10.1002/ana.23784Google Scholar
Tsukamoto, H, Nagafuji, K, Horiuchi, T, Mitoma, H, Niiro, H, Arinobu, Y et al. Analysis of immune reconstitution after autologous CD34+ stem/progenitor cell transplantation for systemic sclerosis: predominant reconstitution of Th1 CD4+ T cells. Rheumatology (Oxford) 2011; 50(5): 944952. doi: 10.1093/rheumatology/keq414Google Scholar
Li, L, Shen, S, Ouyang, J, Hu, Y, Hu, L, Cui, W et al. Autologous hematopoietic stem cell transplantation modulates immunocompetent cells and improves β-cell function in Chinese patients with new onset of type 1 diabetes. J Clin Endocrinol Metab 2012; 97(5): 17291736. doi: 10.1210/jc.2011–2188Google Scholar
Bohgaki, T, Atsumi, T, Bohgaki, M, Furusaki, A, Kondo, M, Sato-Matsumura, KC et al. Immunological reconstitution after autologous hematopoietic stem cell transplantation in patients with systemic sclerosis: relationship between clinical benefits and intensity of immunosuppression. J Rheumatol 2009; 36(6): 12401248. doi: 10.3899/jrheum.081025Google Scholar
de Oliveira, GL, Malmegrim, KC, Ferreira, AF, Tognon, R, Kashima, S, Couri, CE et al. Up-regulation of fas and fasL pro-apoptotic genes expression in type 1 diabetes patients after autologous haematopoietic stem cell transplantation. Clin Exp Immunol 2012; 168(3): 291302. doi: 10.1111/j.1365–2249.2012.04583.xGoogle Scholar
Arruda, LC, Lorenzi, JC, Sousa, AP, Zanette, DL, Palma, PV, Panepucci, RA et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142–3p expression in multiple sclerosis patients. Bone Marrow Transplant 2014;50:380389Google Scholar
Connick, P, Kolappan, M, Crawley, C, Webber, DJ, Patani, R, Michell, AW et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11(2): 150156. doi: 10.1016/S1474-4422(11)70305-2Google Scholar
Gu, F, Wang, D, Zhang, H, Feng, X, Gilkeson, GS, Shi, S et al. Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol 2014; 33(11): 16111619. doi: 10.1007/s10067-014–2754-4Google Scholar
Carlsson, PO, Schwarcz, E, Korsgren, O, Le Blanc, K. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes 2015; 64(2): 587592. doi: 10.2337/db14-0656Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×