Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-23T17:31:09.355Z Has data issue: false hasContentIssue false

2 - Electrodes

Published online by Cambridge University Press:  05 October 2012

Thomas Stieglitz
Affiliation:
Albert-Ludwig-University of Freiburg, Germany
Romain Brette
Affiliation:
Ecole Normale Supérieure, Paris
Alain Destexhe
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Introduction

Electrodes are the first technical interface in a system for recording bioelectrical potentials. The electrochemical and biological processes at the material–tissue interface determine the signal transfer properties and are of utmost importance for the long-term behavior of a chronic implant. Here, “electrode” is used for the whole device that consists of one or multiple active recording sites, a substrate that carries these active sites, as well as interconnections, wires, insulation layers and the connectors to the next stage of a complete recording system, whether it is wire bound or wireless. The application of the electrodes in fundamental neuroscience, diagnosis, therapy, or rehabilitation determines their target specifications. The most important factors are the application site, extracorporal device or implant, acute or chronic contact, size of the electrode (device) and the recording sites, number of active sites on a device, geometrical arrangement of electrodes and type of signal to be recorded. They influence the selection process of electrodes suitable for an envisioned application and help engineers as well as neuroscientists to choose the very best materials for the active sites, substrate and insulation and the most appropriate manufacturing technique. The properties of the recorded signals are also strongly related to this selection process since the tailoring of the transfer characteristics helps to pick up the “right” signal components and to ignore, neglect and reject the “wrong” electrical potentials that might be due to the body itself or the surrounding environment or interference caused by noise from the electrode sites and the amplifier of the recording system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, Q., Wise, K. D. and Anderson, D. J. (2000). A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans. Biomed. Eng., 47, 281–289.Google ScholarPubMed
Boretius, T., Badia, J., Pascual-Font, A., Schuettler, M., Navarro, X., Yoshida, K. and Stieglitz, T. (2010). A transversal intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron., 26, 62–69.CrossRefGoogle Scholar
Brumberg, J. S., Nieto-Castanon, A., Kennedy, P. R. and Guenther, F. H. (2010). Brain–computer interfaces for speech communication. Speech Commun., 52 (4), 367–379.CrossRefGoogle ScholarPubMed
Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W. and Normann, R. A. (1991). A silicon-based three-dimensional neural interface: manufacturing process for an intracortical electrode array. IEEE Bio-Med. Eng., 38, 758–768.Google Scholar
Cordeiro, J., Henle, C., Raab, M., Meier, W., Stieglitz, T., Schulze-Bonhage, A. and Rickert, J. (2008). Micromanufactured electrode for cortical field potentials recording: in vivo study. In: J., van der Sloten, P., Verdonck, M., Nyssen and L., Haueisen (editors), ECIFMBE 2008, IFMBE Proceedings 22, pp. 2375–2378.Google Scholar
Delbeke, J. (2004). Biocompatibility. Workshop on Implanted Device Technology, Annual Conference of the International Functional Electrical Stimulation Society, 4 September, Bournemouth, UK.Google Scholar
Fricke, H. (1932). The theory of electrolytic polarization. Philos. Mag., 14, 310–318.CrossRefGoogle Scholar
Henle, C., Raab, M., Cordeiro, J., Prinz, M., Doostkam, S., Stieglitz, T., Schulze-Bonhage, A. and Rickert, J. (2010). First long term in vivo biocompatibility assessment on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed. Microdev., DOI 10.1007/s10544-010-9471-9.Google Scholar
Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., Branner, A., Chen, D., Penn, R. D. and Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442, 164–171.CrossRefGoogle ScholarPubMed
Hoogerwerf, A. C. and Wise, K. D. (1994). A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. BioMed. Eng., 41, 1136–1146.CrossRefGoogle ScholarPubMed
Kennedy, P. R. (1989). The cone electrode: a long-term electrode that records from neurites grown onto its recording surface. J. Neurosci. Methods, 29, 181–193.CrossRefGoogle ScholarPubMed
Kim, C. and Wise, K. D. (1996). A 64-site multishank CMOS low-profile neural stimulating probe. IEEE J. Solid-State Circuits, 31, 1230–1238.Google Scholar
Lide, D. R. (2003). CRC Handbook on Chemistry and Physics (83rd edition). Boca Raton, FL: CRC Press.Google Scholar
Loeb, G. E., Peck, R. A. and Martyniuk, J. (1995). Towards the ultimate metal microelectrode. J. Neurosci. Methods, 63, 175–183.CrossRefGoogle Scholar
McAdams, E. and Jossinet, J. (1994a). The detection of the onset of electrode–electrolyte interface impedance nonlinearity: a theoretical study. IEEE Trans. Biomed. Eng., 41(5), 498–499.CrossRefGoogle ScholarPubMed
McAdams, E. and Jossinet, J. (1994b). Physical interpretation of Schwan's limit voltage of linearity. Med. Biol. Eng. Comput., 32, 126–130.CrossRefGoogle ScholarPubMed
McAdams, E. T., McLaughlin, J. A. and Holder, D. S. (1992). Neurosensors: a review of some fundamental electrode parameters. Satellite Symposium on Neuroscience and Technology, Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 226–234.Google Scholar
McAdams, E., Lackermeier, A., McLaughlin, J. A., Macken, D. and Jossinet, J. (1995). The linear and non-linear electrical properties of the electrode–electrolyte interface. Biosens. Bioelectron., 10, 67–74.CrossRefGoogle Scholar
Meyer-Waarden, K. (1985). Bioelektrische Signale und ihre Ableitverfahren. Stuttgart: Schattauer-Verlag.Google Scholar
Nagel, J. H. (2000). Biopotential amplifiers. In: J., Bronzino (editor), Biomedical Engineering Handbook, Heidelberg: Springer-Verlag.Google Scholar
Najafi, K. and Wise, K. D. (1986). An implantable multielectrode array with on-chip signal processing. IEEE J. Solid-State Circuits, 21, 1035–1044.CrossRefGoogle Scholar
Nelson, M. J., Pouget, P., Nilsen, E. A., Patten, C. D. and Schall, J. D. (2008). Review of signal distortion through metal microelectrodes recording circuits and filters. J. Neurosci. Methods, 168, 141–157.Google Scholar
Nicolelis, M. A. L., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G., Kralik, J. D. and Wise, S. P. (2003). Chronic, multisite,multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA, 100, 11041–11046.CrossRefGoogle ScholarPubMed
Nordhausen, C. T., Maynard, E. M. and Normann, R. A. (1996). Single unit recording capabilities of a 100 microclectrode array. Brain Res., 726, 129–140.CrossRefGoogle ScholarPubMed
Polikov, V. S., Tresco, P. A. and Reichert, W. M. (2005). Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods, 148, 1–18.CrossRefGoogle ScholarPubMed
Schwan, H. P. (1992). Linear and nonlinear electrode polarization and biological materials. Ann. Biomed. Eng., 20, 269–288.CrossRefGoogle ScholarPubMed
Stensaas, S. S. and Stensaas, L. J. (1978). Histopathological evaluation of materials implanted in the cerebral cortex. Acta Neuropathol., 41, 145–155.CrossRefGoogle ScholarPubMed
Stern, O. (1924). Zur Theorie der Elekrolytischen Doppelschicht. Z. Elektrochem., 30, 508.Google Scholar
Stieglitz, T. (2004). Electrode materials for recording and stimulation. In: K., Horch and G., Dhillon (editors), NEUROPROSTHETICS: Theory and Practice (Series on Bioengineering and Biomedical Engineering, vol 2). Singapore: World Scientific, pp. 471–516.Google Scholar
Stieglitz, T. and Meyer, J.-U. (2006a). Neural implants in clinical practice. In: G. A., Urban (editor), BIOMEMS, Dordrecht: Springer-Verlag, pp. 41–70.Google Scholar
Stieglitz, T. and Meyer, J.-U. (2006b). Biomedical microdevices for neural implants. In: G. A., Urban (editor), BIOMEMS, Dordrecht: Springer-Verlag, pp. 71–138.Google Scholar
Stieglitz, T., Rubehn, B., Henle, C., Kisban, S., Herwik, S., Ruther, P. and Schuettler, M. (2009). Brain–computer interfaces: an overview of the hardware to record neural signals from the cortex. In: J., Verhaagen, E. M., Hol, I., Huitinga, J., Wijnhold, A. B., Bergen, G. J., Boer and D. F., Swaab (editors), Neurotherapy Progress in Restorative Neuroscience and Neurology Prog. Brain Res., 175, 297–315.Google Scholar
Tietze, U. and Schenk, Ch. (2002). Halbleiterschaltungstechnik (12th edition). Berlin: Springer-Verlag.Google Scholar
Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomater., 29, 2841–2953.CrossRefGoogle ScholarPubMed
Wise, K. D., Angell, J. B. and Starr, A. (1969). An integrated circuit approach to extracellular microelectrodes. 8th ICMBE, Palmer House, Chicago, IL, 20 July 1969. Digest of the 8th ICMBE, vol 1, p. 14.Google Scholar
Wise, K. D., Anderson, D. J., Hetke, J. F., Kipke, D. R. and Najafi, K. (2004). Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE, 92, 76–96.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Electrodes
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Electrodes
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Electrodes
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.002
Available formats
×