Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T21:49:38.155Z Has data issue: false hasContentIssue false

29 - Animal models for sleep disorders

Published online by Cambridge University Press:  04 November 2009

Seiji Nishino
Affiliation:
Center for Narcolepsy Stanford University School of Medicine 701B Welch Rd, RM 142 Palo Alto, CA 94304 USA
Nobuhiro Fujiki
Affiliation:
Center for Narcolepsy Stanford University School of Medicine 701B Welch Road Palo Alto, CA 93304 USA
Turgut Tatlisumak
Affiliation:
Helsinki University Central Hospital
Marc Fisher
Affiliation:
University of Massachusetts Medical School
Get access

Summary

Introduction

We spend a significant part (about a third) of our lives sleeping, which is essential to our physical and psychological well-being. Sleep, however, is a fragile state that can easily be impaired by psychological stress or physical illness. For up to 10% of the general population, difficulty falling and/or maintaining sleep occurs several times a week (i.e., chronic insomnia). Some of these problems may be due to existences of obstructive sleep apnea syndrome, a condition that affects over 10% of the population, or due to restless leg syndrome (RLS)/periodic leg movement syndrome (PLMS), sleep-related involuntary leg movements often associated with an abnormal sensation in legs. Excessive daytime sleepiness (EDS), parasomnia, and sleep problems associated with medical/psychiatric conditions are also common. Narcolepsy is a primary EDS disorder affecting about 0.05% of the population. EDS is also often secondary to a severe insomnia associated with obstructive sleep apnea.

Many different pathophysiological/etiological mechanisms for these sleep disorders are considered, and the International Classification of Sleep Disorders (ICSD) lists over 84 different types of disorders (Table 29.1). These sleep-related problems are often chronic and negatively affect the subject's quality of life. In a 24-hr society that encourages sleep deprivation, daytime sleepiness is also an emerging issue even in healthy subjects. Accidents due to sleepiness are now well recognized as a major public hazard. The emergence of clinical sleep medicine has proceeded rapidly during the last 30 years with the awareness of these sleep problems.

Type
Chapter
Information
Handbook of Experimental Neurology
Methods and Techniques in Animal Research
, pp. 504 - 543
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mellinger, GD, Balter, MB, Uhlenhuth, EH. Insomnia and its treatment: prevelance and correlates. Arch. Gen. Psychiatr. 1985, 42: 225–232.CrossRefGoogle Scholar
Young, T. Sleep-disordered breathing in older adults: is it a condition distinct from that in middle-aged adults? Sleep 1996, 19: 529–530.CrossRefGoogle ScholarPubMed
Allen, RP, Earley, CJ. Restless legs syndrome: a review of clinical and pathophysiologic features. J. Clin. Neurophysiol. 2001, 18: 128–147.CrossRefGoogle ScholarPubMed
Nishino, S, Mignot, E. Pharmacological aspects of human and canine narcolepsy. Progr. Neurobiol. 1997, 52: 27–78.CrossRefGoogle ScholarPubMed
American Sleep Disorders Association. International Classification of Sleep Disorders: Diagnostic and Coding Manual. Rochester, MN: American Academy of Sleep Medicine, 2001.
Lin, L, Faraco, J, Li, R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999, 98: 365–376.CrossRefGoogle ScholarPubMed
Chemelli, RM, Willie, JT, Sinton, CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999, 98: 437–451.CrossRefGoogle ScholarPubMed
Thannickal, TC, Moore, RY, Nienhuis, R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000, 27: 469–474.CrossRefGoogle ScholarPubMed
Peyron, C, Faraco, J, Rogers, W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med. 2000, 6: 991–997.CrossRefGoogle Scholar
Nishino, S, Ripley, B, Overeem, S, Lammers, GJ, Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000, 355: 39–40.CrossRefGoogle ScholarPubMed
Ford, , Kamerow, DB. Epidemiologic study of sleep disturbances and psychiatric disorders: an opportunity for prevention? J. Am. Med. Ass. 1989, 262: 1479–1484.CrossRefGoogle Scholar
Nishino, S, Dement, WC. Neuropharmacology of sedative-hypnotics and CNS stimulants in sleep medicine. In Psychiatric Clinics of North America: Annual Drug Therapy. Philadelphia, PA: W. B. Saunders, 1998, pp. 85–144.Google Scholar
Black, JE, Brooks, SN, Nishino, S. Narcolepsy and syndromes of primary excessive daytime somnolence. Semin. Neurol. 2004, 24: 271–282.CrossRefGoogle ScholarPubMed
Guilleminault C. Clinical features and evaluation of obstructive sleep apnea. In Kryger, MH, Roth, T, Dement, WC (eds.) Principles and Practice of Sleep Medicine, 2nd edn. Philadelphia, PA: W. B. Saunders, 1994, pp. 667–677.Google Scholar
Guilleminault, C, Anders, TF. The pathophysiology of sleep disorders in pediatrics. II. Sleep disorders in children. Adv. Pediatr. 1976, 22: 151–174.Google ScholarPubMed
Mahowald, MW, Schenk, CH. REM Sleep Behavior Disorder, 2nd edn. Philadelphia, PA: W. B. Saunders, 1994.Google Scholar
Roehrs, T, Roth, T. Chronic Insomnia Associated with Circadian Rhythm Disorders, 2nd edn. Philadelphia, PA: W. B. Saunders, 1994.Google Scholar
Carskadon M, Dement WC. Normal human sleep. In Kryger, MH, Roth, T, Dement, WC (eds.) Principles and Practice of Sleep Medicine, 2nd edn. Philadelphia, PA: W. B. Saunders, 1994, pp. 16–25.Google Scholar
Borbéry AA. Introduction. In Borbéry, AA, Hayaishi, O, Sejnowski, AJ, Altman, JS (eds.) The Regulation of Sleep. Strasbourg: HFSP, 2000, pp. 17–25.Google Scholar
Borbéry, AA. Sleep Homeostatsis and Models of Sleep Regulation, 2nd edn. Philadelphia, PA: W. B. Saunders, 1994.Google Scholar
Lowrey, PL, Takahashi, JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 2004, 5: 407–441.CrossRefGoogle ScholarPubMed
King, DP, Takahashi, JS. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 2000, 23: 713–742.CrossRefGoogle ScholarPubMed
Reppert, SM, Weaver, DR. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 2001, 63: 647–676.CrossRefGoogle ScholarPubMed
Czeisler, CA, Duffy, JF, Shanahan, TL, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999, 284: 2177–2181.CrossRefGoogle ScholarPubMed
Steriade, M, Contreras, D, Curro Dossi, R, Nunez, A. The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 1993, 13: 3284–3299.CrossRefGoogle ScholarPubMed
Siegel JM. Brainstem mechanisms generating REM sleep. In Kryger, MH, Roth, T, Dement, WC (eds.) Principles and Practice of Sleep Medicine. Philadelphia, PA: W. B. Saunders, 2000, pp. 112–133.Google Scholar
Jones BE. Basic mechanism of sleep–wake states. In Kryger, MH, Roth, T, Dement, WC (eds.) Principles and Practice of Sleep Medicine, 2nd edn. Philadelphia, PA: W. B. Saunders, 1994, pp. 145–162.Google Scholar
Nishino S, Taheri S, Black J, Nofzinger E, Mignot E. The neurobiology of sleep in relation to mental illness. In Charney, DS (ed.) Neurobiology of Mental Illness. New York: Oxford University Press, 2004, pp. 1160–1179.Google Scholar
Sastre, JP, Sakai, K, Jouvet, M. Persistence of paradoxical sleep in the cat after destruction of the pontine gagantocellular tegmental field with kainic acid. C. R. Séances Acad. Sci. D 1979, 289: 959–964. (In French)Google ScholarPubMed
Hendricks, JC, Morrison, AR, Mann, GL. Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res. 1982, 239: 81–105.CrossRefGoogle ScholarPubMed
Saper, CB, Chou, TC, Scammell, TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001, 24: 726–731.CrossRefGoogle ScholarPubMed
Lugaresi, E, Medori, R, Montagna, P, et al. Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. New Engl. J. Med. 1986, 315: 997–1003.CrossRefGoogle ScholarPubMed
Tobler, I, Deboer, T, Fischer, M. Sleep and sleep regulation in normal and prion protein-deficient mice. J. Neurosci. 1997, 17: 1869–1879.CrossRefGoogle ScholarPubMed
Toh, KL, Jones, CR, He, Y, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291: 1040–1043.CrossRefGoogle ScholarPubMed
Desautels, A, Turecki, G, Montplaisir, J, et al. Identification of a major susceptibility locus for restless legs syndrome on chromosome 12q. Am. J. Hum. Genet. 2001, 69: 1266–1270.CrossRefGoogle Scholar
Lecendreux, M, Bassetti, C, Dauvilliers, Y, et al. HLA and genetic susceptibility to sleepwalking. Mol. Psychiatr. 2003, 8: 114–117.CrossRefGoogle ScholarPubMed
Schenck, CH, Garcia-Rill, E, Segall, M, Noreen, H, Mahowald, MW. HLA class II genes associated with REM sleep behavior disorder. Ann. Neurol. 1996, 39: 261–263.CrossRefGoogle ScholarPubMed
Dauvilliers, Y, Mayer, G, Lecendreux, M, et al. Kleine–Levin syndrome: an autoimmune hypothesis based on clinical and genetic analyses. Neurology 2002, 59: 1739–1745.CrossRefGoogle ScholarPubMed
Mignot, EJ, Dement, WC. Narcolepsy in animals and man. Equine Vet. J. 1993, 25: 476–477.CrossRefGoogle ScholarPubMed
Okura, M, Fujiki, N, Ripley, B, et al. Narcoleptic canines display periodic leg movements during sleep. Psychiatr. Clin. Neurosci. 2001, 55: 243–244.CrossRefGoogle ScholarPubMed
Hendricks, JC, Lager, A, O'Brien, D, Morrison, AR. Movement disorders during sleep in cats and dogs. J. Am. Vet. Med. Assoc. 1989, 194: 686–689.Google Scholar
Hendricks, JC, Kline, LR, Kovalski, RJ, et al. The English bulldog: a natural model of sleep-disordered breathing. J. Appl. Physiol. 1987, 63: 1344–1350.CrossRefGoogle ScholarPubMed
Panckeri, KA, Schotland, HM, Pack, AI, Hendricks, JC. Modafinil decreases hypersomnolence in the English bulldog, a natural animal model of sleep-disordered breathing. Sleep 1996, 19: 626–631.CrossRefGoogle ScholarPubMed
Yasuma, F, Kozar, LF, Kimoff, RJ, Bradley, TD, Phillipson, EA. Interaction of chemical and mechanical respiratory stimuli in the arousal response to hypoxia in sleeping dogs. Am. Rev. Respir. Dis. 1991, 143: 1274–1277.CrossRefGoogle ScholarPubMed
Bakehe, M, Miramand, JL, Chambille, B, Gaultier, C, Escourrou, P. Cardiovascular changes during acute episodic repetitive hypoxic and hypercapnic breathing in rats. Eur. Respir. J. 1995, 8: 1675–1680.CrossRefGoogle ScholarPubMed
Fletcher, EC, Bao, G. Effect of episodic eucapnic and hypocapnic hypoxia on systemic blood pressure in hypertension-prone rats. J. Appl. Physiol. 1996, 81: 2088–2094.CrossRefGoogle ScholarPubMed
Bao, G, Metreveli, N, Fletcher, EC. Acute and chronic blood pressure response to recurrent acoustic arousal in rats. Am. J. Hypertens. 1999, 12: 504–510.CrossRefGoogle ScholarPubMed
Carley, DW, Trbovic, S, Radulovacki, M. Sleep apnea in normal and REM sleep-deprived normotensive Wistar–Kyoto and spontaneously hypertensive (SHR) rats. Physiol. Behav. 1996, 59: 827–831.CrossRefGoogle ScholarPubMed
Nakamura, A, Kuwaki, T. Sleep apnea in mice: a useful animal model for study of SIDS? Early Hum. Devel. 2003, 75 (Suppl.): S167–S174.CrossRefGoogle ScholarPubMed
Carley, DW, Radulovacki, M. Role of peripheral serotonin in the regulation of central sleep apneas in rats. Chest 1999, 115: 1397–1401.CrossRefGoogle ScholarPubMed
Desarnaud, F, Murillo-Rodriguez, E, Lin, L, et al. The diurnal rhythm of hypocretin in young and old F344 rats. Sleep 2004, 27: 851–856.CrossRefGoogle Scholar
Nishino, S, Riehl, J, Hong, J, et al. Is narcolepsy REM sleep disorder? Analysis of sleep abnormalities in narcoleptic Dobermans. Neurosci. Res. 2000, 38: 437–446.CrossRefGoogle ScholarPubMed
Kaitin, KI, Kilduff, TS, Dement, WC. Evidence for excessive sleepiness in canine narcoleptics. Electroencephalogr. Clin. Neurophysiol. 1986, 64: 447–454.CrossRefGoogle ScholarPubMed
Sakurai, T, Amemiya, A, Ishil, M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G-protein-coupled receptors that regulate feeding behavior. Cell 1998, 92: 573–585.CrossRefGoogle ScholarPubMed
Lecea, L, Kilduff, TS, Peyron, C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 1998, 95: 322–327.CrossRefGoogle ScholarPubMed
Mignot, E, Lammers, GJ, Ripley, B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol. 2002, 59: 1553–1562.CrossRefGoogle Scholar
Ripley, B, Overeem, S, Fujiki, N, et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 2001, 57: 2253–2258.CrossRefGoogle ScholarPubMed
Ripley, B, Fujiki, N, Okura, M, Mignot, E, Nishino, S. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol. Dis. 2001, 8: 525–534.CrossRefGoogle ScholarPubMed
Hara, J, Beuckmann, CT, Nambu, T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001, 30: 345–354.CrossRefGoogle ScholarPubMed
Nishino, S, Ripley, B, Overeem, S, et al. Low CSF hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 2001, 50: 381–388.CrossRefGoogle ScholarPubMed
Fujiki, N, Ripley, B, Yoshida, Y, Mignot, E, Nishino, S. Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin ligand deficient narcoleptic dog. Sleep 2003, 6: 953–959.CrossRefGoogle Scholar
Schatzberg, SJ, Barrett, J, Cutter, Kl, Ling, L, Mignot, E. Case study: effect of hypocretin replacement therapy in a 3-year-old Weimaraner with narcolepsy. J. Vet. Internal. Med. 2004, 18: 586–588.CrossRefGoogle Scholar
Mieda, M, Willie, JT, Hara, J, et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc. Natl Acad. Sci. USA 2004, 101: 4649–4654.CrossRefGoogle Scholar
Wittig, R, Zorick, F, Piccione, P, Sicklesteel, J, Roth, T. Narcolepsy and disturbed nocturnal sleep. Clin. Electroencephalogr. 1983, 14: 130–134.CrossRefGoogle ScholarPubMed
Walters, AS, Picchietti, DL, Ehrenberg, BL, Wagner, ML. Restless legs syndrome in childhood and adolescence. Pediatr. Neurol. 1994, 11: 241–245.CrossRefGoogle ScholarPubMed
Picchietti, DL, England, SJ, Walters, AS, Willis, K, Verrico, T. Periodic limb movement disorder and restless legs syndrome in children with attention-deficit hyperactivity disorder. J. Child. Neurol. 1998, 13: 588–594.CrossRefGoogle ScholarPubMed
Ekbom, K. Restless legs. Acta Scand. (Suppl.) 1945, 158: 1–123.Google Scholar
Nishino, S, Shiba, T, Yoshida, Y, et al. Hypocretin/dopaminergic interactions: pharmacological studies of cataplexy and PLMS in canine narcolepsy. Sleep 2003, 26 (Suppl.): A345–A346.Google Scholar
Reid, MS, Tafti, M, Nishino, S, et al. Local administration of dopaminergic drugs into the ventral tegmental area modulate cataplexy in the narcoleptic canine. Brain Res. 1996, 733: 83–100.CrossRefGoogle Scholar
Jouvet, M. Recherche sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch. Ital. Biol. 1962, 100: 125–206.Google Scholar
McGinty, DJ, Sterman, MB. Sleep suppression after basal forebrain lesions in the cat. Science 1968, 160: 1253–1255.CrossRefGoogle ScholarPubMed
Sakai K, El Mansari M, Lin JG, Zhang JG, Vanni-Mercier G. The posterior hypothalamus in the regulation of wakefulness and paradoxical sleep. In Mancia, M, Marini, G (eds.) The Diencephalon and Sleep. New York: Raven Press, 1990, pp. 171–198.Google Scholar
Economo, C. Encephalitis Lethargica: Its Sequelae and Treatment. London: Oxford Medical Publications, 1931.Google Scholar
Sherin, J, Shiromani, P, McCarley, R, Saper, C. Activation of ventrolateral preoptic neurons during sleep. Science 1996, 271: 216–220.CrossRefGoogle ScholarPubMed
Lu, J, Greco, MA, Shiromani, P, Saper, CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci. 2000, 20: 3830–3842.CrossRefGoogle ScholarPubMed
Kapas, L, Obal, F Jr, Book, AA, et al. The effects of immunolesions of nerve growth factor-receptive neurons by 192 IgG-saporin on sleep. Brain Res. 1996, 712: 53–59.CrossRefGoogle Scholar
Gerashchenko, D, Kohls, MD, Greco, M, et al. Hypocretin-2–saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J. Neurosci. 2001, 21: 7273–7283.CrossRefGoogle ScholarPubMed
Gerashchenko, D, Chou, TC, Blanco-Centurion, CA, Saper, CB, Shiromani, PJ. Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Sleep 2004, 27: 1275–1281.CrossRefGoogle ScholarPubMed
Vitaterna, MH, King, DP, Chang, AM, et al. Mutagenesis and mapping of a mouse gene clock, essential for circadian behavior. Science 1994, 264: 719–725.CrossRefGoogle ScholarPubMed
Naylor, E, Bergmann, BM, Krauski, K, et al. The circadian clock mutation alters sleep homeostasis in the mouse. J. Neurosci. 2000, 20: 8138–8143.CrossRefGoogle ScholarPubMed
King, DP, Zhao, Y, Sangoram, AM, et al. Positional cloning of the mouse clock gene. Cell 1997, 89: 641–653.CrossRefGoogle Scholar
Nolan, PM, Peters, J, Vizor, L, et al. Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm. Genome 2000, 11: 500–506.CrossRefGoogle ScholarPubMed
Berrettini, WH, Ferraro, TN, Alexander, RC, Buchberg, AM, Vogel, WH. Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nature Genet. 1994, 7: 54–58.CrossRefGoogle ScholarPubMed
Tarricone, BJ, Hingtgen, JN, Belknap, JK, Mitchell, SR, Nurnberger, JI Jr. Quantitative trait loci associated with the behavioral response of B × D recombinant inbred mice to restraint stress: a preliminary communication. Behav. Genet. 1995, 25: 489–495.CrossRefGoogle Scholar
Lander, ES, Schork, NJ. Genetic dissection of complex traits. Science 1994, 265: 2037–2048.CrossRefGoogle ScholarPubMed
Lindblad-Toh, K, Winchester, E, Daly, MJ, et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nature Genet. 2000, 24: 381–386.CrossRefGoogle ScholarPubMed
Hudson, TJ, Church, DM, Greenaway, S, et al. A radiation hybrid map of mouse genes. Nature Genet. 2001, 29: 201–205.CrossRefGoogle ScholarPubMed
Franken, P, Chollet, D, Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 2001, 21: 2610–2621.CrossRefGoogle ScholarPubMed
Franken, P, Malafosse, A, Tafti, M. Genetic variation in EEG activity during sleep in inbred mice. Am. J. Physiol. 1998, 275: R1127–R1137.Google ScholarPubMed
Tafti, M, Chollet, D, Valatx, JL, Franken, P. Quantitative trait loci approach to the genetics of sleep in recombinant inbred mice. J. Sleep Res. 1999, 8(Suppl. 1): 37–43.CrossRefGoogle ScholarPubMed
Tafti, M, Petit, B, Chollet, D, et al. Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nature Genet. 2003, 34: 320–325.CrossRefGoogle ScholarPubMed
Tafti, M, Franken, P, Kitahama, K, et al. Localization of candidate genomic regions influencing paradoxical sleep in mice. NeuroReport 1997, 8: 3755–3758.CrossRefGoogle ScholarPubMed
Toth, , Williams, RW. A quantitative genetic analysis of slow-wave sleep and rapid-eye movement sleep in CXB recombinant inbred mice. Behav. Genet. 1999, 29: 329–337.CrossRefGoogle ScholarPubMed
Nadeau, JH, Singer, JB, Matin, A, Lander, ES. Analysing complex genetic traits with chromosome substitution strains. Nature Genet. 2000, 24: 221–225.CrossRefGoogle ScholarPubMed
Franken, P, Malafosse, A, Tafti, M. Genetic determinants of sleep regulation in inbred mice. Sleep 1999, 22: 155–169.Google ScholarPubMed
Cirelli, C, Tononi, G. Gene expression in the brain across the sleep–waking cycle. Brain Res. 2000, 885: 303–321.CrossRefGoogle ScholarPubMed
Kong, J, Shepel, PN, Holden, CP, et al. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci. 2002, 22: 5581–5587.CrossRefGoogle ScholarPubMed
Porkka-Heiskanen, T, Kalinchuk, A, Alanko, L, Urrila, A, Stenberg, D. Adenosine, energy metabolism, and sleep. Sci. World J. 2003, 3: 790–798.CrossRefGoogle ScholarPubMed
Gardi, J, Obal, F Jr, Fang, J, Zhang, J, Krueger, JM. Diurnal variations and sleep deprivation-induced changes in rat hypothalamic GHRH and somatostatin contents. Am. J. Physiol. 1999, 277: R1339–R1344.Google ScholarPubMed
Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 1998, 18: 19–24.CrossRefGoogle ScholarPubMed
Su, H, Wang, X, Bradley, A. Nested chromosomal deletions induced with retroviral vectors in mice. Nature Genet. 2000, 24: 92–95.CrossRefGoogle ScholarPubMed
Capecchi, MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 1989, 5: 70–76.CrossRefGoogle ScholarPubMed
Jaenisch, R. Transgenic animals. Science 1988, 240: 1468–1474.CrossRefGoogle ScholarPubMed
Williams, RS, Wagner, PD. Transgenic animals in integrative biology: approaches and interpretations of outcome. J. Appl. Physiol. 2000, 88: 1119–1126.CrossRefGoogle Scholar
Tobler, I, Gaus, SE, Deboer, T, et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 1996, 380: 639–642.CrossRefGoogle ScholarPubMed
Zhang, J, Obal, F Jr, Fang, J, Collins, BJ, Krueger, JM. Non-rapid eye movement sleep is suppressed in transgenic mice with a deficiency in the somatotropic system. Neurosci. Lett. 1996, 220: 97–100.CrossRefGoogle ScholarPubMed
Wisor, JP, Nishino, S, Sora, I, et al. Dopaminergic role in stimulant-induced wakefulness. J. Neurosci. 2001, 21: 1787–1794.CrossRefGoogle ScholarPubMed
Parmentier, R, Ohtsu, H, Djebbara-Hannas, Z, et al. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J. Neurosci. 2002, 22: 7695–7711.CrossRefGoogle ScholarPubMed
Huang, ZL, Qu, WM, Li, WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl Acad. Sci. USA 2001, 98: 9965–9970.CrossRefGoogle ScholarPubMed
Toyota, H, Dugovic, C, Koehl, M, et al. Behavioral characterization of mice lacking histamine H(3)-receptors. M. l. Pharmacol. 2002, 62: 389–397; erratum, M. l. Pharmacol. 2002, 62: 763.CrossRefGoogle ScholarPubMed
Boutrel, B, Monaca, C, Hen, R, Hamon, M, Adrien, J. Involvement of 5-HT1 A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1 A knock-out mice. J. Neurosci. 2002, 22: 4686–4692.CrossRefGoogle Scholar
Laposky, AD, Homanics, GE, Basile, A, Mendelson, WB. Deletion of the GABA(A) receptor beta 3 subunit eliminates the hypnotic actions of oleamide in mice. NeuroReport 2001, 12: 4143–4147.CrossRefGoogle ScholarPubMed
Boutrel, B, Franc, B, Hen, R, Hamon, M, Adrien, J. Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J. Neurosci. 1999, 19: 3204–3212.CrossRefGoogle ScholarPubMed
Frank, MG, Stryker, MP, Tecott, LH. Sleep and sleep homeostasis in mice lacking the 5-HT2c receptor. Neuropsychopharmacology 2002, 27: 869–873.CrossRefGoogle ScholarPubMed
Krueger, JM, Takahashi, S, Kapas, L. Cytokines in sleep regulation. Adv. Neuroimmunol. 1995, 5: 171–188.CrossRefGoogle ScholarPubMed
Fang, J, Wang, Y, Krueger, JM. Effects of interleukin-1 beta on sleep are mediated by the type I receptor. Am. J. Physiol. 1998, 274: R655–R660.Google ScholarPubMed
Toth, , Opp, MR. Cytokine- and microbially induced sleep responses of interleukin-10 deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280: R1806–R1814.CrossRefGoogle ScholarPubMed
Deboer, T, Fontana, A, Tobler, I. Tumor necrosis factor (TNF) ligand and TNF receptor deficiency affects sleep and the sleep EEG. J. Neurophysiol. 2002, 88: 839–846.CrossRefGoogle ScholarPubMed
Kopp, C, Albrecht, U, Zheng, B, Tobler, I. Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 2002, 16: 1099–1106.CrossRefGoogle ScholarPubMed
Wisor, JP, O'Hara, BF, Terao, A, et al. A role for cryptochromes in sleep regulation. BMC Neurosci. 2002, 3: 20.CrossRefGoogle ScholarPubMed
Franken, P, Lopez-Molina, L, Marcacci, L, Schibler, U, Tafti, M. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J. Neurosci. 2000, 20: 617–625.CrossRefGoogle ScholarPubMed
Kapfhamer, D, Valladares, O, Sun, Y, et al. Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Nature Genet. 2002, 32: 290–295.CrossRefGoogle ScholarPubMed
Willie, JT, Chemelli, RM, Sinton, CM, et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 2003, 38: 715–730.CrossRefGoogle ScholarPubMed
Tobler, I, Kopp, C, Deboer, T, Rudolph, U. Diazepam-induced changes in sleep: role of the alpha 1 GABA(A) receptor subtype. Proc. Natl Acad. Sci. USA 2001, 98: 6464–6469.CrossRefGoogle ScholarPubMed
Bucan, M, Abel, T. The mouse: genetics meets behaviour. Nature Genet. 2002, 3: 114–123.CrossRefGoogle ScholarPubMed
Man in ‘t Veld, A, Boomsma, F, Lenders, J, et al. Patients with congenital dopamine beta-hydroxylase deficiency: a lesson in catecholamine physiology. Am. J. Hypertens. 1988, 1: 231–238.CrossRefGoogle ScholarPubMed
Hunsley, MS, Palmiter, RD. Norepinephrine-deficient mice exhibit normal sleep–wake states but have shorter sleep latency after mild stress and low doses of amphetamine. Sleep 2003, 26: 521–526.Google ScholarPubMed
Lewandoski, M. Conditional control of gene expression in the mouse. Nature Genet. 2001, 2: 743–755.CrossRefGoogle ScholarPubMed
Beuckmann, CT, Sinton, CM, Williams, SC, et al. Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy–cataplexy in the rat. J. Neurosci. 2004, 24: 4469–4477.CrossRefGoogle ScholarPubMed
Twigger, S, Lu, J, Shimoyama, M, et al. Rat Genome Database (RGD): mapping disease onto the genome. Nucleic Acids Res. 2002, 30: 125–128.CrossRefGoogle ScholarPubMed
Weiss, B, Davidkova, G, Zhang, SP. Antisense strategies in neurobiology. Neurochem. Int. 1997, 31: 321–348.CrossRefGoogle ScholarPubMed
Cirelli, C, Pompeiano, M, Arrighi, P, Tononi, G. Sleep–waking changes after c-fos antisense injections in the medial preoptic area. NeuroReport 1995, 6: 801–805.CrossRefGoogle ScholarPubMed
Xi, MC, Morales, FR, Chase, MH. Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J. Neurophysiol. 1999, 82: 2015–2019.CrossRefGoogle ScholarPubMed
Thakkar, MM, Ramesh, V, Strecker, RE, McCarley, RW. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch. Ital. Biol. 2001, 139: 313–328.Google ScholarPubMed
Thakkar, MM, Winston, S, McCarley, RW. A1 receptor and adenosinergic homeostatic regulation of sleep–wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain. J. Neurosci. 2003, 23: 4278–4287.CrossRefGoogle ScholarPubMed
Fabre, V, Boutrel, B, Hanoun, N, et al. Homeostatic regulation of serotonergic function by the serotonin transporter as revealed by nonviral gene transfer. J. Neurosci. 2000, 20: 5065–5075.CrossRefGoogle ScholarPubMed
Hendricks, JC, Sehgal, A, Pack, AI. The need for a simple animal model to understand sleep. Progr. Neurobiol. 2000, 61: 339–351.CrossRefGoogle ScholarPubMed
Borbely, AA, Tobler, I. Sleep regulation: relation to photoperiod, sleep duration, waking activity, and torpor. Progr. Brain Res. 1996, 111: 343–348.CrossRefGoogle ScholarPubMed
Johnson, CH, Golden, SS, Ishiura, M, Kondo, T. Circadian clocks in prokaryotes. Mol. Microbiol. 1996, 21: 5–11.CrossRefGoogle ScholarPubMed
Pittendrigh, CS. Circadian systems. I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc. Natl Acad. Sci. USA 1967, 58: 1762–1767.CrossRefGoogle ScholarPubMed
Moore, RY. Circadian rhythms: basic neurobiology and clinical appplications. Annu. Rev. Med. 1997, 49: 253–266.CrossRefGoogle Scholar
Sehgal, A, Price, JL, Man, B, Young, MW. Loss of behavioral rhythms and per RNA oscillations in the Drosophilia mutant timeless. Science 1994, 263: 1603–1605.CrossRefGoogle Scholar
Ishiura, M, Kutsuna, S, Aoki, S, et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 1998, 281: 1519–1523.CrossRefGoogle ScholarPubMed
Garceau, NY, Liu, Y, Loros, JJ, Dunlap, JC. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 1997, 89: 469–476.CrossRefGoogle ScholarPubMed
Shearman, LP, Zylka, MJ, Weaver, DR, Kolakowski, LF Jr, Reppert, SM. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 1997, 19: 1261–1269.CrossRefGoogle ScholarPubMed
Sun, ZS, Albrecht, U, Zhuchenko, O, et al. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 1997, 90: 1003–1011.CrossRefGoogle ScholarPubMed
Tei, H, Okamura, H, Shigeyoshi, Y, et al. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 1997, 389: 512–516.CrossRefGoogle ScholarPubMed
Campbell, SS, Tobler, I. Animal sleep: a review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 1984, 8: 269–300.CrossRefGoogle ScholarPubMed
Hendricks, JC. Invited review: Sleeping flies don't lie: the use of Drosophila melanogaster to study sleep and circadian rhythms. J. Appl. Physiol. 2003, 94: 1660–1672; discussion 1673.CrossRefGoogle ScholarPubMed
Engels, WR. P elements in Drosophila. Curr. Topics Microbiol. Immunol. 1996, 204: 103–123.Google ScholarPubMed
Belle, JS, Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 1994, 263: 692–695.CrossRefGoogle ScholarPubMed
Yin, JC, Vecchio, Del M, Zhou, H, Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 1995, 81: 107–115.CrossRefGoogle ScholarPubMed
Saudou, F, Hen, R. 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. Neurochem. Int. 1994, 25: 503–532.CrossRefGoogle ScholarPubMed
Nassel, DR. Histamine in the brain of insects: a review. Microsc. Res. Tech. 1999, 44: 121–136.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Nassel, DR. Neuropeptides, amines and amino acids in an elementary insect ganglion: functional and chemical anatomy of the unfused abdominal ganglion. Progr. Neurobiol. 1996, 48: 325–420.CrossRefGoogle Scholar
Tobler, I, Neuner-Jehle, M. 24-h variation of vigilance in the cockroach Blaberus giganteus. J. Sleep Res. 1992, 1: 231–239.CrossRefGoogle ScholarPubMed
Nitz, DA, Swinderen, B, Tononi, G, Greenspan, RJ. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 2002, 12: 1934–1940.CrossRefGoogle ScholarPubMed
Cirelli, C. Searching for sleep mutants of Drosophila melanogaster. BioEssays 2003, 25: 940–949.CrossRefGoogle ScholarPubMed
Cox, KJ, Fetcho, JR. Labeling blastomeres with a calcium indicator: a non-invasive method of visualizing neuronal activity in zebrafish. J. Neurosci. Methods 1996, 68: 185–191.CrossRefGoogle ScholarPubMed
Fetcho, JR, O'Malley, DM. Visualization of active neural circuitry in the spinal cord of intact zebrafish. J. Neurophysiol. 1995, 73: 399–406.CrossRefGoogle ScholarPubMed
Ekstrom, P. Developmental changes in the brainstem serotonergic nuclei of teleost fish and neural plasticity. Cell Mol. Neurobiol. 1994, 14: 381–393.CrossRefGoogle ScholarPubMed
Ma, PM. Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J. Comp. Neurol. 1994, 344: 242–255.CrossRefGoogle ScholarPubMed
Ma, PM. Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus. J. Comp. Neurol. 1994, 344: 256–269.CrossRefGoogle ScholarPubMed
Eriksson, KS, Peitsaro, N, Karlstedt, K, Kaslin, J, Panula, P. Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems. Eur. J. Neurosci. 1998, 10: 3799–3812.CrossRefGoogle ScholarPubMed
Liang, MR, Alestrom, P, Collas, P. Glowing zebrafish: integration, transmission, and expression of a single luciferase transgene promoted by noncovalent DNA-nuclear transport peptide complexes. Mol. Reprod. Devel. 2000, 55: 8–13.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Yokogawa, T, Zhang, J, Renier, C, Mignot, E. Characterization of a sleep-like state in adult zebrafish. Sleep 2004, 27(Abstract Suppl.): A84.Google Scholar
Renier, CM, Rosa, FM, Mignot, E. Pharmacogenomics of sleep-promoting drugs in zebrafish. Sleep 2004, 27(Abstract Suppl.): A389.Google Scholar
Faraco, JH, Chan, Y, Mignot, E. Characterization of the hypocretin/orexin ligand and receptor loci in the zebrafish. Sleep 2003, 26(Abstract Suppl.): A422.Google Scholar
Gaus, SE, Faraco, J, Mignot, E. Hypocretin/orexin gene expression in the developing zebrafish. Sleep 2003, 26(Abstract Suppl.): A417–418.Google Scholar
Gaus, SE, Faraco, J, Renier, C, et al. Developing zebrafish through random mutagenesis. Sleep 2004, 27(Abstract Suppl.): A386–387.Google Scholar
Fujiki, N, Morris, L, Mignot, E, Nishino, S. Analysis of onset location, laterality and propagation of cataplexy in canine narcolepsy. Psychiatr. Clin. Neurosci. 2002, 56: 275–276.CrossRefGoogle ScholarPubMed
Huitron-Resendiz, S, Sanchez-Alavez, M, Gallegos, R, et al. Age-independent and age-related deficits in visuospatial learning, sleep-wake states, thermoregulation and motor activity in PDAPP mice. Brain Res. 2002, 928: 126–137.CrossRefGoogle ScholarPubMed
Hajdu, I, Obal, F Jr, Fang, J, Krueger, JM, Rollo, CD. Sleep of transgenic mice producing excess rat growth hormone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282: R70–R76.CrossRefGoogle ScholarPubMed
Valatx, JL, Douhet, P, Bucchini, D. Human insulin gene insertion in mice: effects on the sleep–wake cycle? J. Sleep Res. 1999, 8(Suppl. 1): 65–68.CrossRefGoogle ScholarPubMed
Pinzar, E, Kanaoka, Y, Inui, T, et al. Prostaglandin D synthase gene is involved in the regulation of non-rapid eye movement sleep. Proc. Natl Acad. Sci. USA 2000, 97: 4903–4907.CrossRefGoogle ScholarPubMed
Fang, J, Wang, Y, Krueger, JM. Mice lacking the TNF 55 kDa receptor fail to sleep more after TNF-alpha treatment. J. Neurosci. 1997, 17: 5949–5955.CrossRefGoogle Scholar
Vyazovskiy, VV, Deboer, T, Rudy, B, et al. Sleep EEG in mice that are deficient in the potassium channel subunit K.v.3.2. Brain Res. 2002, 947: 204–211.CrossRefGoogle ScholarPubMed
Shiromani, PJ, Basheer, R, Thakkar, J, et al. Sleep and wakefulness in c-fos and fos B gene knockout mice. Brain Res. Mol. Brain Res. 2000, 80: 75–87.CrossRefGoogle ScholarPubMed
Kapfhamer, D, Valladares, O, Sun, Y, et al. Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Nature Genet. 2002, 32: 290–295.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Animal models for sleep disorders
    • By Seiji Nishino, Center for Narcolepsy Stanford University School of Medicine 701B Welch Rd, RM 142 Palo Alto, CA 94304 USA, Nobuhiro Fujiki, Center for Narcolepsy Stanford University School of Medicine 701B Welch Road Palo Alto, CA 93304 USA
  • Edited by Turgut Tatlisumak, Marc Fisher
  • Book: Handbook of Experimental Neurology
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541742.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Animal models for sleep disorders
    • By Seiji Nishino, Center for Narcolepsy Stanford University School of Medicine 701B Welch Rd, RM 142 Palo Alto, CA 94304 USA, Nobuhiro Fujiki, Center for Narcolepsy Stanford University School of Medicine 701B Welch Road Palo Alto, CA 93304 USA
  • Edited by Turgut Tatlisumak, Marc Fisher
  • Book: Handbook of Experimental Neurology
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541742.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Animal models for sleep disorders
    • By Seiji Nishino, Center for Narcolepsy Stanford University School of Medicine 701B Welch Rd, RM 142 Palo Alto, CA 94304 USA, Nobuhiro Fujiki, Center for Narcolepsy Stanford University School of Medicine 701B Welch Road Palo Alto, CA 93304 USA
  • Edited by Turgut Tatlisumak, Marc Fisher
  • Book: Handbook of Experimental Neurology
  • Online publication: 04 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541742.029
Available formats
×