Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-26T23:11:05.842Z Has data issue: false hasContentIssue false

8 - Color vision changes in normal aging

from Part III - Development of and differences in color vision

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balazsi, A. G., Rootman, J., Drance, S. M., Schulzer, M., and Douglas, G. R. (1984). The effect of age on the nerve fiber population of the human optic nerve. American Journal of Ophthalmology, 97, 760–6.CrossRefGoogle ScholarPubMed
Barbur, J. L., Harlow, J. A., and Williams, C. (1997). Light scattered in the eye and its effect on the measurement of the colour constancy index. In Cavonius, C. R. (ed.), Colour Vision Deficiencies XIII (pp. 439–48). Dordrecht: Kluwer Academic.Google Scholar
Barbur, J. L., Konstantakopoulou, E., Rodriguez-Carmona, M., Harlow, J. A. Robson, A. G., and Moreland, J. D. (2010). The Macular Assessment Profile Test – a new VDU-based technique for measuring the spatial distribution of the macular pigment, lens density and rapid flicker sensitivity. Ophthalmic and Physiological Optics, 30, 470–83.CrossRefGoogle Scholar
Barbur, J. L., and Rodriguez-Carmona, M. (2012). Variability in normal and defective colour vision: consequences for occupational environments. In Best, J. (ed.), Colour Design (pp. 2482). Cambridge: Woodhead.CrossRefGoogle Scholar
Barbur, J. L., Rodriguez-Carmona, M., and Harlow, J. A. (2006). Establishing the statistical limits of “normal” chromatic sensitivity. Ottawa: CIE Publication x030:2006.Google Scholar
Barbur, J. L., Rodriguez-Carmona, M., and Morgan, M. J. (2002). “Double-blindsight” in human vision. Investigative Ophthalmology and Visual Science, 43, E-abstract 3909.Google Scholar
Birch, J. (2008). Performance of colour-deficient people on the Holmes–Wright lantern (type A): consistency of occupational colour vision standards in aviation. Ophthalmic and Physiological Optics, 28, 253–8.CrossRefGoogle ScholarPubMed
Birch, J., Barbur, J. L., and Harlow, J. A. (1992). New method based on random luminance masking for measuring isochromatic zones using high resolution colour displays. Ophthalmic and Physiological Optics, 12, 133–6.CrossRefGoogle ScholarPubMed
Bronson-Castain, K. W., Bearse, M. A. Jr., Neuville, J., et al. (2012). Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina, 32, 92102.CrossRefGoogle ScholarPubMed
Calkins, D. J. (2013). Age-related changes in the visual pathways: blame it on the axon. Investigative Ophthalmology and Visual Science, 54, ORSF3741.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F. III, Huang, E. P., Kronauer, R. E., and Eskew, R. T. (1993). Colour is what the eye sees best. Nature, 361, 348–50.CrossRefGoogle ScholarPubMed
Chylack, L. T. Jr., Wolfe, J. K., and Friend, J., et al. (1993). Quantitating cataract and nuclear brunescence, the Harvard and LOCS systems. Optometry and Vision Science, 70, 886–95.CrossRefGoogle ScholarPubMed
Cranwell, M. B., Pearce, B., Loveridge, C., and Hurlbert, A. (2013). Performance on the Farnsworth–Munsell 100-hue test is significantly related to non-verbal IQ. Poster presented at the 23rd Symposium of the International Colour Vision Society, 14–17 July, Winchester, UK.Google Scholar
Curcio, C. A., and Drucker, D. N. (1993). Retinal ganglion cells in Alzheimer’s disease and aging. Annals of Neurology, 33, 248–57.CrossRefGoogle ScholarPubMed
Curcio, C. A., Millican, C. L., Allen, K. A., and Kalina, R. E. (1993). Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Investigative Ophthalmology and Visual Science, 34, 3278–96.Google ScholarPubMed
Enoch, J. M., and Werner, J. S., Haegerstrom-Portnoy, G., Lakshminarayanan, V., Rynders, M. (1999). Forever young: visual functions not affected or minimally affected by aging: a review. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 54, B336–51.CrossRefGoogle ScholarPubMed
Feitosa-Santana, C., Paramei, G. V., Nishi, M., Gualtieri, M., Costa, M. F., and Ventura, D. F. (2010). Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test. Ophthalmic and Physiological Optics, 30, 717–23.CrossRefGoogle ScholarPubMed
Graven, S. N. (2004). Early neurosensory visual development of the fetus and newborn. Clinics in Perinatology, 31, 199216.CrossRefGoogle ScholarPubMed
Haegerstrom-Portnoy, G., Schneck, M. E., and Brabyn, J. A. (1999). Seeing into old age: vision function beyond acuity. Optometry and Vision Science, 76, 141–58.CrossRefGoogle ScholarPubMed
Harrison, W. W., Chang, A., and Cardenas, M. G., et al. (2012). Blood pressure, vessel caliber, and retinal thickness in diabetes. Optometry and Vision Science, 89, 1715–20.CrossRefGoogle ScholarPubMed
Haug, H., Kuhl, S., Mecke, E., Sass, N. L., and Wasner, K. (1984). The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. Journal für Hirnforschung, 25, 353–74.Google ScholarPubMed
Hirata, Y., and Nishiwaki, H. (2006). The choroidal circulation assessed by laser-targeted angiography. Progress in Retinal and Eye Research, 25, 129–47.CrossRefGoogle ScholarPubMed
Hofer, H., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25, 9669–79.CrossRefGoogle ScholarPubMed
Hurlbert, A., Loveridge, C., Ling, Y., Kourkoulou, A., and Leekam, S. (2011). Color discrimination and preference in autism spectrum disorder. Journal of Vision, 11, 429.CrossRefGoogle Scholar
Johnson, B. M., Miao, M., and Sadun, A. A. (1989). Age-related decline of human optic nerve axon populations. Age, 10, 59.CrossRefGoogle Scholar
Jonas, J. B., Muller-Bergh, J. A., Schlotzer-Schrehardt, U. M., and Naumann, G. O. (1990). Histomorphometry of the human optic nerve. Investigative Ophthalmology and Visual Science, 31, 736–44.Google ScholarPubMed
Jonas, J. B., Schmidt, A. M., Muller-Bergh, J. A., Schlotzer-Schrehardt, U. M., and Naumann, G. O. (1992). Human optic nerve fiber count and optic disc size. Investigative Ophthalmology and Visual Science, 33, 2012–18.Google ScholarPubMed
Kinnear, P. R. (1970). Proposals for scoring and assessing the 100-hue test. Vision Research, 10, 423–33.CrossRefGoogle Scholar
Kinnear, P. R., and Sahraie, A. (2002). New Farnsworth–Munsell 100-hue test norms of normal observers for each year of age 5–22 and for age decades 30–70. British Journal of Ophthalmology, 86, 1408–11.CrossRefGoogle Scholar
Knoblauch, K., Barbur, J. L., and Vital-Durand, F. (1995). Development and aging of chromatic sensitivity. Investigative Ophthalmology and Visual Science, 36(4), S910.Google Scholar
Knoblauch, K., Saunders, F., and Kusuda, M., et al. (1987). Age and illuminance effects in the Farnsworth–Munsell 100-hue test. Applied Optics, 26, 1441–8.CrossRefGoogle ScholarPubMed
Knoblauch, K., Vital-Durand, F., and Barbur, J. L. (2001). Variation of chromatic sensitivity across the life span. Vision Research, 41, 2336.CrossRefGoogle ScholarPubMed
Koenker, R. (1981). A note on studentizing a test for heteroscedasticity. Journal of Econometrics, 17(1), 107–12.CrossRefGoogle Scholar
Marvasti, A. H., Tatham, A. J., and Zangwill, L. M., et al. (2013). The relationship between visual field index and estimated number of retinal ganglion cells in glaucoma. PLoS ONE, 8, e76590.CrossRefGoogle ScholarPubMed
Neitz, M., Carroll, J., Renner, A., Knau, H., Werner, J. S., and Neitz, J. (2004). Variety of genotypes in males diagnosed as dichromatic on a conventional clinical anomaloscope. Vision Neuroscience, 21, 205–16.CrossRefGoogle ScholarPubMed
Neitz, J., and Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51, 633–51.CrossRefGoogle ScholarPubMed
Neufeld, A. H., and Gachie, E. N. (2003). The inherent, age-dependent loss of retinal ganglion cells is related to the lifespan of the species. Neurobiology of Aging, 24, 167–72.CrossRefGoogle Scholar
Owsley, C. (2011). Aging and vision. Vision Research, 51, 1610–22.CrossRefGoogle ScholarPubMed
Panda-Jonas, S., Jonas, J. B., and Jakobczyk-Zmija, M. (1996). Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. American Journal of Ophthalmology, 121, 181–9.CrossRefGoogle ScholarPubMed
Paramei, G. V., and Oakley, B. (2014). Variation of color discrimination across the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, A37584.CrossRefGoogle ScholarPubMed
Peters, A., Moss, M. B., and Sethares, C. (2000). Effects of aging on myelinated nerve fibers in monkey primary visual cortex. Journal of Comparative Neurolology, 419, 364–76.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Peters, A., Moss, M. B., and Sethares, C. (2001). The effects of aging on layer 1 of primary visual cortex in the rhesus monkey. Cerebral Cortex, 11, 93103.CrossRefGoogle ScholarPubMed
Peters, A., Sethares, C., and Moss, M. B. (2010). How the primate fornix is affected by age. Journal of Comparative Neurolology, 518, 3962–80.CrossRefGoogle ScholarPubMed
Rauscher, F. G., Chisholm, C. M., Edgar, D. F., and Barbur, J. L. (2013). Assessment of novel binocular colour, motion and contrast tests in glaucoma. Cell and Tissue Research, 353, 297310.CrossRefGoogle ScholarPubMed
Regan, B. C., Reffin, J. P., and Mollon, J. D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Research, 34, 1279–99.CrossRefGoogle ScholarPubMed
Repka, M. X., and Quigley, H. A. (1989). The effect of age on normal human optic nerve fiber number and diameter. Ophthalmology, 96, 2632.CrossRefGoogle ScholarPubMed
Rodriguez-Carmona, M., Harlow, J. A., Walker, G., and Barbur, J. L. (2005). The variability of normal trichromatic vision and the establishment of the “normal” range. Proceedings of 10th Congress of the International Colour Association (Granada), pp. 979–82.Google Scholar
Rodriguez-Carmona, M., Kvansakul, J., Harlow, J. A., Kopcke, W., Schalch, W., and Barbur, J. L. (2006). The effects of supplementation with lutein and/or zeaxanthin on human macular pigment density and colour vision. Ophthalmic and Physiological Optics, 26, 137–47.CrossRefGoogle ScholarPubMed
Rodriguez-Carmona, M., O’Neill-Biba, M., and Barbur, J. L. (2012). Assessing the severity of color vision loss with implications for aviation and other occupational environments. Aviation, Space and Environmental Medicine, 83, 1929.CrossRefGoogle ScholarPubMed
Roorda, A., and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397, 520–2.CrossRefGoogle ScholarPubMed
Squire, T. J., Rodriguez-Carmona, M., Evans, A. D., and Barbur, J. L. (2005). Color vision tests for aviation: comparison of the anomaloscope and three lantern types. Aviation, Space and Environmental Medicine, 76, 421–9.Google ScholarPubMed
Tam, J., Dhamdhere, K. P., Tiruveedhula, P., et al. (2012). Subclinical capillary changes in non-proliferative diabetic retinopathy. Optometry and Vision Science, 89, E692703.CrossRefGoogle ScholarPubMed
Tatham, A. J., Meira-Freitas, D., Weinreb, R. N., Marvasti, A. H., Zangwill, L. M., and Medeiros, F. A. (2014). Estimation of retinal ganglion cell loss in glaucomatous eyes with a relative afferent pupillary defect. Investigative Ophthalmology and Visual Science, 55, 513–22.Google ScholarPubMed
Tucker, T. R., and Fitzpatrick, D. (2004). Contributions of vertical and horizontal circuits to the response properties of neurons in primary visual cortex. In Chalupa, L. M. and Wertheim, A. H. (eds.), The Visual Neurosciences (pp. 733–46). Cambridge, MA: MIT Press.Google Scholar
Verriest, G. (1963). Further studies on acquired deficiency of color discrimination. Journal of the Optical Society of America, 53, 185–95.CrossRefGoogle ScholarPubMed
Vincent, S. L., Peters, A., and Tigges, J. (1989). Effects of aging on the neurons within area 17 of rhesus monkey cerebral cortex. Anatomical Record, 223, 329–41.CrossRefGoogle ScholarPubMed
Vital-Durand, F. (1996). An acuity cards cookbook. Strabismus, 4, 8997.CrossRefGoogle ScholarPubMed
Werner, J. S., Delahunt, P. B., and Hardy, J. L. (2004). Chromatic-spatial vision of the aging eye. Optical Review, 11, 226–34.CrossRefGoogle ScholarPubMed
Werner, J. S., Peterzell, D. H., and Scheetz, A. J. (1990). Light, vision, and aging. Optometry and Vision Science, 67, 214–29.CrossRefGoogle ScholarPubMed
Werner, J. S., and Steele, V. G. (1988). Sensitivity of human foveal color mechanisms throughout the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5, 2122–30.CrossRefGoogle ScholarPubMed
Wong, R., Khan, J., Adewoyin, T., Sivaprasad, S., Arden, G. B., and Chong, V. (2008). The ChromaTest, a digital color contrast sensitivity analyzer, for diabetic maculopathy: a pilot study. BMC Ophthalmology, 8(15).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×