Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T06:06:15.911Z Has data issue: false hasContentIssue false

16 - Advances and applications in biofuel cells

from Part III - Fuel cells

Published online by Cambridge University Press:  05 September 2015

Frank Davis
Affiliation:
Cranfield University
Séamus P.J. Higson
Affiliation:
Cranfield University
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Introduction

Every year we see a constant increase in the need for energy. Whereas most of this is supplied by large, fixed location units, i.e. power stations and distribution networks, there is a market for smaller, units which can be fixed, portable, or even self-propelling. Much of this need is supplied by products such as generators and vehicle engines, but this places a constant demand on the fossil fuel supply. One potential alternative is the fuel cell.

Conventional fuel cells offer a possible (and partial) solution to this problem, allowing the direct production of electricity from the chemical reaction of a suitable fuel with oxygen obtained from the atmosphere. The most common type of fuel cell uses hydrogen, but this is of course a gas and highly explosive, with the storage and transport challenges this entails. Another common series of fuel cells utilize methanol, and other cells have been developed that run on other fuels such as hydrocarbons [1,2]. These still, however, utilize highly flammable liquids and are often reliant on a fossil fuel supply. Moreover, many of these cells use expensive materials such as platinum as catalysts.

There is a wide range of common organic products, often waste products, that contain large amounts of stored energy which could potentially be used to supply energy. Common methods include incineration, but a much more attractive approach would be to use these materials as fuels in fuel cells.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 202 - 214
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Bruijn, F.. “The current status of fuel cell technology for mobile and stationary applications.” Green Chem. vol. 7, pp. 132–150, 2005.CrossRefGoogle Scholar
Bagotzky, V.S., Osetrova, N.V., Skundin, A.M.. “Fuel cells: State-of-the-art and major scientific and engineering problems.” Russ. J. Electrochem. vol. 39, pp. 919–934, 2003.CrossRefGoogle Scholar
Potter, M.C.. “Electrical effects accompanying the decomposition of organic compounds.” Proc. Roy. Soc. (London), vol. B84, pp.260–276, 1911.CrossRefGoogle Scholar
Cohen, B.. “The bacterial culture as an electrical half-cell.” J. Bacteriol. vol. 21, pp. 18–19, 1931.Google Scholar
Aston, W.J., Turner, A.P.F.. “Biosensors and biofuel cells.” Biotech. Gen. Eng. Rev. vol. 1, pp. 89–120, 1982.CrossRefGoogle Scholar
Bennetto, H.P., Delaney, G.M., Mason, J.R. et al. “The sucrose fuel cell: Efficient biomass conversion using a microbial catalyst.” Biotech. Lett. vol. 7, pp. 699–704, 1985.CrossRefGoogle Scholar
Katz, E., Shipway, A.N., Willner, I.. “Biofuel cells: Functional design and operation” in Handbook of Fuel Cells – Fundamentals, Technology, Applications vol. 1, Vielstich, W., Gasteiger, H., Lamm, A. Eds. New York: Wiley, 2003, pp. 355–381.Google Scholar
Barton, S.C., Gallaway, J., Atanassov, P.. “Enzymatic biofuel cells for implantable and microscale devices.” Chem. Rev. vol. 104, pp. 4867–4886, 2004.CrossRefGoogle ScholarPubMed
Shukla, A.K., Suresh, P., Berchmans, S., Rajendran, A.. “Biological fuel cells and their applications.” Curr. Sci. vol. 87, pp. 455–468, 2004.Google Scholar
Rabaey, K., Verstraete, W.. “Microbial fuel cells: novel biotechnology for energy generation.” Trends Biotech, vol. 23, pp. 291–298, 2005.CrossRefGoogle ScholarPubMed
Bullen, R.A., Arnot, T.C., Lakeman, J.B., Walsh, F.C.. “Biofuel cells and their development.” Biosens. Bioelec. vol. 21, pp. 2015–2045.Google Scholar
Davis, F., Higson, S.P.J.. “Biofuel cells – recent advances.” Biosens. Bioelec., vol. 22, pp. 1224–1235, 2007.CrossRefGoogle ScholarPubMed
Moehlenbrock, M.J., Minteer, S.D.. “Extended lifetime biofuel cells.” Chem. Soc. Rev. vol. 37, pp. 1188–1196, 2008.CrossRefGoogle ScholarPubMed
Willner, I., Yan, Y.-M., Willner, B., Tel-Vered, R.. “Integrated enzyme-based biofuel cells – a reviewFuel Cells, vol. 9, pp. 7–24, 2009.CrossRefGoogle Scholar
Zhou, M., Wang, J.. “Biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review.” Electroanalysis, vol. 24, pp. 197–209, 2012.CrossRefGoogle Scholar
Davis, Y.B., Yarbrough, H.F.. “Preliminary experiments on a microbial fuel cell.” Science, vol. 137, pp. 615–616, 1962.CrossRefGoogle ScholarPubMed
Wiebel, M.K., Dodge, C.. “Biochemical fuel cells: Demonstration of an obligatory pathway involving an external circuit for the enzymatically catalyzed aerobic oxidation of glucose.” Arch. Biochem. Biophys. vol. 169, pp. 146–151, 1975.CrossRefGoogle Scholar
Katz, E., Willner, I., Kotlyar, A.B.. “A non-compartmentalized glucose | O2 biofuel cell by bioengineered electrode surfaces.” J. Electroanal. Chem. vol. 479, pp. 64–68, 1999.CrossRefGoogle Scholar
Palmore, G.T.R., Kim, H.H.. “Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell.” J. Electroanal. Chem. vol. 464, pp. 110–117, 1999.CrossRefGoogle Scholar
Mano, N., Fernandez, J.L., Kim, Y. et al. “Oxygen is electroreduced to water on a “wired” enzyme electrode at a lesser overpotential than on platinum.” J. Am. Chem. Soc. vol. 125, pp. 15290–15291, 2003.CrossRefGoogle Scholar
Tsujimura, S., Kano, K., Ikeda, T.. “Glucose/O2 biofuel cell operating at physiological conditions.” Electrochem. vol. 70, pp. 940–942, 2002.Google Scholar
Mano, N., Mao, F., Heller, A.. “Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant.” J. Am. Chem. Soc. vol. 125, pp. 6588–6594, 2003.CrossRefGoogle Scholar
Mano, N., Mao, F., Heller, A.. “A miniature membrane-less biofuel cell operating at +0.60 V under physiological conditions.” Chembiochem, vol. 51, pp. 1703–1705, 2004.CrossRefGoogle Scholar
Topcagic, S., Minteer, S.D., “Development of a membraneless ethanol/oxygen biofuel cell,” Electrochim. Acta, vol. 51, 2168–2172, 2006.CrossRefGoogle Scholar
Arechederra, R., Treu, B.L., Minteer, S.D.. “Development of glycerol/oxygen biofuel cells,” J. Power Sources, vol. 173, 156–161, 2007.CrossRefGoogle Scholar
Kerr, J., Minteer, S. D.. “Development of lipoxygenase bioanodes for biofuel cells.” Polym. Mater. Sci. Eng. vol. 94, pp. 594–595, 2006.Google Scholar
Klotzbach, T.L., Watt, M.M., Ansari, Y.A., Minteer, S. D.. “Effect of hydrophobic modification of chitosan and Nafion on transport properties, ion exchange capacities, and enzyme immobilization,” J. Membrane Sci., vol. 282, 276–283, 2006.CrossRefGoogle Scholar
Moore, C.M., Minteer, S.D., Martin, R.S.. “Microchip-based ethanol/oxygen biofuel cell.” Lab on a Chip, vol. 5, pp. 218–225, 2005.CrossRefGoogle ScholarPubMed
Akers, N.L., Moore, C.M., Minteer, S.D.. “Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes.” Electrochim. Acta. vol. 50, pp. 2521–2525, 2005.CrossRefGoogle Scholar
Kjeang, E., Djilali, N., Sinton, D.. “Microfluidic fuel cells: a review.” J. Power Sources, vol. 186, pp. 353–369, 2009.CrossRefGoogle Scholar
Kjeang, E., Harrington, D.A., Sinton, D.. “Strategic enzyme patterning for microfluidic biofuel cells.” J. Power Sources, vol. 1, pp. 1–12, 2006.CrossRefGoogle Scholar
Togo, M., Takamura, A., Asai, T., Kaji, H., Nishizawa, M.. “An enzyme-based microfluidic biofuel cell using vitamin K-3-mediated glucose oxidation.” Electrochim. Acta, vol. 52, pp. 4669–4674, 2007.CrossRefGoogle Scholar
Lim, K.G., Palmore, G.T.R.. “Microfluidic biofuel cells: The influence of electrode diffusion layer on performance.” Biosens. Bioelec. vol. 22, pp. 941–947, 2006.CrossRefGoogle ScholarPubMed
Pandey, P., Datta, M., Malhotra, B.D.. “Prospects of nanomaterials in biosensors.” Anal. Lett. vol. 41, pp. 159–209, 2008.CrossRefGoogle Scholar
Siangprob, W., Dungchai, W., Chaailpakul, O.. “Nanoparticle-based electrochemical detection in conventional and miniaturised systems and their bioanalytical applications, A review.” Anal. Chim. Acta, vol. 690, pp. 10–25, 2011.CrossRefGoogle Scholar
Granot, E., Katz, E., Basnar, B., Willner, I.. “Enhanced bioelectrocatalysis using Au-nanoparticle/polyaniline hybrid systems in thin films and microstructured rods assembled on electrodes.” Chem. Mater. vol. 17, pp. 4600–4609, 2005.CrossRefGoogle Scholar
Kim, J., Jia, H., Wang, P.. “Challenges in biocatalysis for enzyme-based biofuel cells.” Biotechnol. Adv. vol. 24, pp. 296–308, 2006.CrossRefGoogle ScholarPubMed
Lim, J., Malati, P., Bonet, F., Dunn, B.. “Nanostructured sol-gel electrodes for biofuel cells batteries and energy storage.” J. Electrochem. Soc. vol. 154, pp. A140–A145, 2007.CrossRefGoogle Scholar
Fischback, M.B., Youn, J.K., Zhao, X. et al. “Miniature biofuel cells with improved stability under continuous operation.” Electroanalysis, vol. 18, pp. 2016–2022, 2006.CrossRefGoogle Scholar
Yan, Y., Zheng, W., Su, L., Mao, L.. “Carbon-nanotube-based glucose/O2 biofuel cells.” Adv. Mater. vol. 18, pp. 2639–2643, 2006.CrossRefGoogle Scholar
Gao, F., Yan, Y., Su, L., Wang, L., Mao, L., “An enzymatic glucose/O2 biofuel cell: Preparation, characterization and performance in serum.” Electrochem. Commun. vol. 9, pp. 989–996, 2007.CrossRefGoogle Scholar
Tasca, F., Gorton, L., Harreither, W. et al. “Direct electron transfer at cellobiose dehydrogenase modified anodes for biofuel cells.” J. Phys. Chem. C vol. 112, pp. 9956–9961, 2008.CrossRefGoogle Scholar
Yan, Y., Yehezkeli, O., Willner, I.. “Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.” Chem. Eur. J. vol. 13, pp. 10168–10175, 2007.CrossRefGoogle ScholarPubMed
Gao, F., Viry, L., Maugey, M., Poulin, P., Mano, N.. “Engineering hybrid nanotube wires for high-power biofuel cells.” Nature Comm. vol. 1, paper 2, 2010.Google ScholarPubMed
Katz, E., Buckmann, A. F., Willner, I.. “Self-powered enzyme-based biosensors.” J. Am. Chem. Soc. vol. 123, pp. 10752–10753, 2001.CrossRefGoogle ScholarPubMed
Kakehi, N., Yamazaki, T., Tsugawa, W., Sode, K.. “A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell.” Biosens. Bioelec. vol. 22, pp. 2250–2255, 2007.CrossRefGoogle ScholarPubMed
Wen, D., Deng, L., Guo, S., Dong, S.. “Self-powered sensor for trace Hg2+ detection.” Anal. Chem. vol. 83, pp. 3968–3972, 2011.CrossRefGoogle ScholarPubMed
Deng, L., Chen, C., Zhou, M. et al. “Integrated self-powered microchip biosensor for endogenous biological cyanide.” Anal. Chem. vol. 82, pp. 4283–4287, 2010.CrossRefGoogle ScholarPubMed
Germain, M.N., Arechederra, R.L., Minteer, S.D.. “Nitroaromatic actuation of mitochondrial bioelectrocatalysis for self-powered explosive sensors.” J. Am. Chem. Soc. vol. 130, pp. 15272–15273, 2008.CrossRefGoogle ScholarPubMed
Meredith, M.T., Minteer, S.D.. “Inhibition and activation of glucose oxidase bioanodes for use in a self-powered EDTA sensor.” Anal. Chem. vol. 83, pp. 5436–5441, 2011.CrossRefGoogle Scholar
Katz, E., Willner, I.. “A biofuel cell with electrochemically switchable and tunable power output.” J. Am. Chem. Soc. vol. 125, pp. 6803–6813, 2003.CrossRefGoogle ScholarPubMed
Zhou, M., Wang, F., Dong, S.. “Boolean logic gates based on oxygen-controlled biofuel cell in “one pot”.” Electrochim. Acta vol. 56, pp. 4112–4118, 2011.CrossRefGoogle Scholar
Zhou, M., Zhou, N., Kuralay, F.. et al. “A self-powered “sense-act-treat” system that is based on a biofuel cell and controlled by boolean logic.” Angew. Chem. Int. Ed. vol. 51, pp. 2686–2689, 2012.CrossRefGoogle ScholarPubMed
Zhou, M., Zheng, X., Wang, J., Dong, S.. “Non-destructive’ biocomputing security system based on gas-controlled biofuel cell and potentially used for intelligent medical diagnostics.” Bioinformatics, vol. 27, pp. 399–404, 2011.CrossRefGoogle ScholarPubMed
Zhou, M., Du, Y., Chen, C. et al. “Aptamer-controlled biofuel cells in logic systems and used as self-powered and intelligent logic aptasensors.” J. Am. Chem. Soc. vol. 132, pp. 2172–2174, 2010.CrossRefGoogle ScholarPubMed
Zhou, M., Chen, C., Du, Y. et al. “An IMP-Reset gate-based reusable and self-powered “smart” logic aptasensor on a microfluidic biofuel cell.” Lab Chip, vol. 10, pp. 2932–2936, 2010.CrossRefGoogle ScholarPubMed
Li, Z., Rosenbaum, M.A., Venkataraman, A. et al. “Bacteria-based AND logic gate: a decision-making and self-powered biosensor.” Chem. Commun. vol. 47, pp. 3060–3062, 2011.CrossRefGoogle ScholarPubMed
Das, S., Mangwani, N.. “Recent developments in microbial fuel cells: a review.” J. Scient. Indust. Res. vol. 69, pp. 727–731, 2010.Google Scholar
Lefebvre, O., Uzabiaga, A., Chang, I.S., Kim, B-H., Ng, H. Y.. “Microbial fuel cells for energy self-sufficient domesticwastewater treatment – a review and discussion from energetic consideration”. Appl Microbiol Biotechnol. vol. 89, pp. 259–270, 2011.CrossRefGoogle ScholarPubMed
Franks, A.E., Nevin, K.P.. “Microbial fuel cells, a current review.” Energies, vol. 3, pp. 899–919, 2010.CrossRefGoogle Scholar
Wang, H-Y., Bernard, A., Huang, C-Y., Lee, D-J., Chang, J-S.. “Micro-sized microbial fuel cell: A mini-review.” Bioresource Technol. vol. 102, 235–243, 2011.CrossRefGoogle ScholarPubMed
Bennetto, H.P.. “Microbes come to power.” New Scientist, vol. 114, pp. 36–39, 1987.Google Scholar
Allen, R.M., Bennetto, H.P.. “Microbial fuel-cells – Electricity production from carbohydrates.” Appl. Biochem. Biotech. vol. 39, pp. 27–40, 1993.CrossRefGoogle Scholar
Rabaey, K., Lissens, G., Siciliano, S.D., Verstraete, W.. “A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency.” Biotech. Lett. vol. 25, pp. 1531–1535, 2003.CrossRefGoogle Scholar
Gil, G.C., Chang, I.S., Kim, B.H. et al. “Operational parameters affecting the performance of a mediator-less microbial fuel cell.” Biosens. Bioelec. vol. 18, pp. 327–334, 2003.CrossRefGoogle Scholar
Vostiar, I., Ferapontova, E.E., Gorton, L.. “Electrical “wiring” of viable Gluconobacter oxydans cells with a flexible osmium-redox polyelectrolyte.” Electrochem. Comm. vol. 6, pp. 621–626, 2004.CrossRefGoogle Scholar
Niessen, J., Schroder, U., Scholz, F.. “Exploiting complex carbohydrates for microbial electricity generation – A bacterial fuel cell operating on starch.” Electrochem. Comm. vol. 6, pp. 955–958, 2004.CrossRefGoogle Scholar
Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M., Verstraete, W.. “Biofuel cells select for microbial consortia that self-mediate electron transfer.” Appl. Environ. Microbiol. vol. 70, pp. 5373–5382, 2004.CrossRefGoogle ScholarPubMed
Rabaey, K., Boon, N., Hofte, M., Verstraete, W.. “Microbial phenazine production enhances electron transfer in biofuel cells.” Environ. Sci. Tech. vol. 39, pp. 3401–3408, 2005.CrossRefGoogle ScholarPubMed
Ieropoulos, L., Greenman, J., Melhuish, C., Hart, J.. “Energy accumulation and improved performance in microbial fuel cells.” J. Power Sources, vol. 145, pp. 253–256, 2005.CrossRefGoogle Scholar
Lowy, D.A., Tender, L.M., Zeikus, J.D., Park, D.H., Lovley, D.R.. “Harvesting energy from the marine sediment-water interface II: Kinetic activity of anode materials.” Biosens Bioelec. vol. 21, pp. 2058–2063, 2006.CrossRefGoogle ScholarPubMed
Tender, L, Gray, S., Groveman, E. et al. “The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy.” J. Power Sources. vol. 179, pp. 571–575, 2008.CrossRefGoogle Scholar
Rezaei, F., Richard, T.L., Brennan, R.A., Logan, B.E.. “Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems.” Environ. Sci. Technol. vol. 41, pp. 4053–4058, 2007.CrossRefGoogle ScholarPubMed
Rhoads, A., Beyenal, H., Lewandowski, Z.. “Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.” Sci. Tech. vol. 39, pp. 4666–4671, 2005.CrossRefGoogle ScholarPubMed
Schaetzle, O., Barriere, F., Schroder, U.. “An improved microbial fuel cell with laccase as the oxygen reduction catalyst.” Energy Environ. Sci. vol. 2, pp. 96–99, 2009.CrossRefGoogle Scholar
Tran, H.T., Kim, D.H., Oh, S.J.. et al. “Nitrifying biocathode enables effective electricity generation and sustainable wastewater treatment with microbial fuel cell.” Water Sci. Technol. vol. 59, pp. 1803–1808, 2009.CrossRefGoogle ScholarPubMed
Kumlaghan, A., Liu, J., Thavarungkul, P., Kanatharana, P., Mattiasson, B.. “Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter.” Biosens. Bioelec. vol. 22, pp. 2939–2944, 2007.CrossRefGoogle Scholar
Chang, I.S., Jang, J.K., Gil, G.C. et al. “Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor.” Biosens. Bioelec. vol. 19, pp. 607–613, 2004.CrossRefGoogle ScholarPubMed
Chang, I.S., Moon, H., Jang, J.K., Kim, B.H.. “Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors.” Biosens. Bioelec. vol. 20, pp. 1856–1859, 2005.CrossRefGoogle ScholarPubMed
Kim, H.J., Hyun, M.S., Chang, I.S., Kim, B.H.. “A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. ” J. Microbiol. Biotechnol. vol. 9, pp. 365–367, 1999.Google Scholar
Ringeisen, B.R., Henderson, E., Wu, P.K.. et al. “High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.” Environ. Sci. Technol. vol. 40, pp. 2629–2634, 2006.CrossRefGoogle ScholarPubMed
Fan, Y.Z., Hu, H.Q., Liu, H.. “Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration.” J. Power Sources, vol. 171, pp. 348–354, 2007.CrossRefGoogle Scholar
Chiao, M., Lam, K.B., Lin, L.W.. “Micromachined microbial and photosynthetic fuel cells.” J. Micromech. Microeng. vol. 16, pp. 2547– 2553, 2006.CrossRefGoogle Scholar
Siu, C.P.B., Chiao, M.. “A microfabricated PDMS microbial fuel cell.” J. Microelectromech. Syst. vol. 17, pp. 1329–1341, 2008.CrossRefGoogle Scholar
Hou, H.J., Li, L., Cho, Y., de Figueiredo, P., Han, A.. “Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.” Plos One, 4 (8), e6570, 2009.CrossRefGoogle ScholarPubMed
Qian, F., Baum, M., Gu, Q., Morse, D.E.. “A 1.5 µL microbial fuel cell for on-chip bioelectricity generation.” Lab on a Chip, vol. 9, pp. 3076–3081, 2009.CrossRefGoogle ScholarPubMed
Shukla, A.K., Avery, N.R., Muddle, B.C.. “Future cars: The electric option.” Curr. Sci. vol. 77, pp. 1141–1146, 1999.Google Scholar
Gellett, W., Kesmez, M., Schumacher, J., Akers, N., Minteer, S.D.. “Biofuel cells for portable power.” Electroanalysis. vol. 22, pp. 727–731, 2010.CrossRefGoogle Scholar
Liu, H., Logan, B.E.. “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.” Environ. Sci. Technol. vol. 38, pp. 4040–4046, 2004.CrossRefGoogle ScholarPubMed
Feng, Y., Wang, X., Logan, B.E., Lee, H.. “Brewery wastewater treatment using air-cathode microbial fuel cells.” Appl. Microbiol. Tech. vol. 78, pp. 873–880, 2008.CrossRefGoogle ScholarPubMed
Behera, M., Jana, P.S., Ghangrekar, M.M.. “Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode.” Bioresour. Technol. vol. 101, pp. 1183–1189, 2009.CrossRefGoogle ScholarPubMed
Logan, B.E.. “Simultaneous wastewater treatment and biological electricity generation.” Water. Sci. Technol. vol. 52, pp. 31–37, 2005.CrossRefGoogle ScholarPubMed
Wilkinson, S.. “Gastrobots – benefits and challenges of microbial fuel cells in food powered robot applications.” Autonomous Robots, vol. 9, pp. 99–111, 2000.CrossRefGoogle Scholar
Kelly, I.. “The design of a robotic predator: The SlugBot.” Robotica, vol. 21, pp. 399–406, 2003.CrossRefGoogle Scholar
Melhuish, C., Ieropoulos, I., Greenman, J., Horsfield, I. “Energetically autonomous robots: Food for thought.” Autonomous Robots, vol. 21, pp. 187–198, 2006.CrossRefGoogle Scholar
Graham-Rowe, D.. “Ecobot III – the power and the poop.” New Scientist, vol. 207, pp. 18–19, 2010.CrossRefGoogle Scholar
Halámková, L., Halámek, J., Bocharova, V. et al. “Implanted biofuel cell operating in a living snail.” J. Am. Chem. Soc. vol. 134, pp 5040–5043, 2012.CrossRefGoogle Scholar
Rasmussen, M., Ritzmann, R.E., Lee, I., Pollack, A.J., Scherson, D.. “An implantable biofuel cell for a live insect.” J. Am. Chem. Soc. vol. 134, pp. 1458–1460, 2012.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×