Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-15T19:41:58.530Z Has data issue: false hasContentIssue false

10 - Genetic studies of western gorillas

Published online by Cambridge University Press:  11 August 2009

Stephen L. Clifford
Affiliation:
Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon
Kate A. Abernethy
Affiliation:
Department of Molecular and Biological Sciences, University of Stirling, Stirling FK9 4LA, U.K.
Lee J. T. White
Affiliation:
Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, U.S.A.
Caroline E. G. Tutin
Affiliation:
Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon
Mike W. Bruford
Affiliation:
Cardiff School of Biosciences, Cardiff University, Cardiff CF1 3TL, U.K.
E. Jean Wickings
Affiliation:
Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon
Andrea B. Taylor
Affiliation:
Duke University, North Carolina
Michele L. Goldsmith
Affiliation:
Tufts University, Massachusetts
Get access

Summary

Introduction

Classification

The science of systematics is used to establish evolutionary relationships among species and until the 1960s was based almost entirely on morphological data (Moritz, 1995). The morphological evidence for separating the gorilla into the three subspecies currently recognized, Gorilla gorilla gorilla (western lowland gorilla), Gorilla gorilla graueri (eastern lowland gorilla), and Gorilla gorilla beringei (mountain gorilla), was compiled in the 1960s and recognizes significant differences in cranial and postcranial features (Schaller, 1963; Groves, 1970; Groves and Stott, 1979). At the present time, these three subspecies have distinct geographical distributions, with the western subspecies separated from the eastern and mountain subspecies by more than 1000 km. The western lowland gorilla is found in Gabon, Cameroon, Nigeria, Equatorial Guinea, Congo and the Central African Republic (Lee et al., 1988). Groves (1967) proposed four “demes” within the western lowland gorilla range based on clinal variations in skull size. These roughly correspond to: (1) gorillas from the valley of the Sangha River in Central African Republic, Cameroon, and northern Congo, (2) gorillas from Nigeria, (3) gorillas from the southern Cameroon including populations from Dja, and (4) gorillas from coastal and central Gabon and southern Congo. Fig. 10.1 illustrates the current distribution of gorilla populations. More recently Oates et al. (1999) have suggested that gorilla populations north of the Sanaga River are morphologically distinct, in accordance to Groves's observations.

Type
Chapter
Information
Gorilla Biology
A Multidisciplinary Perspective
, pp. 269 - 292
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J. C. (1994). Molecular Markers, Natural History and Evolution. New York: Chapman & Hall
Brookfield, J. F. Y. (1996). A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology, 5, 453–455CrossRefGoogle ScholarPubMed
Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences U.S.A., 76, 1967–1971CrossRefGoogle ScholarPubMed
Bruford, M. W. and Wayne, R. K. (1993). Microsatellites and their application to population genetics. Current Opinion in Genetics and Development, 3, 939–943CrossRefGoogle Scholar
Clifford, S. L., Jeffery, K., Bruford, M. W., and Wickings, E. J. (1999). Identification of polymorphic microsatellite loci in the gorilla (Gorilla gorilla gorilla) using human primers: Application to noninvasively collected hair samples. Molecular Ecology, 8, 1556–1558CrossRefGoogle ScholarPubMed
Collura, R. V. and Stewart, C.-B. (1995). Insertions and duplications of mtDNA in the nuclear genomes of old world monkeys and hominoids. Nature, 378, 485–489CrossRefGoogle ScholarPubMed
Colyn, M. (1991). L'importance zoogéographic du bassin du fleuve Zaïre pour la speciation. Annales des Sciences Zoologiques, 264, 180–185Google Scholar
Coote, T. and Bruford, M. W. (1996). Human microsatellites applicable for analysis of genetic variation in apes and old world monkeys. Journal of Heredity, 87, 406–410CrossRefGoogle ScholarPubMed
Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M., and Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution, 15, 290–295CrossRefGoogle ScholarPubMed
Edwards, A., Civitello, A., Hammond, H. A., and Caskey, C. T. (1991). DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. American Journal of Human Genetics, 49, 746–756Google ScholarPubMed
Field, D., Chemick, L., Robbins, M., Garner, K., and Ryder, O. (1998). Paternity determination in captive lowland gorillas and orangutans and wild mountain gorillas by microsatellite analysis. Primates, 3, 199–209CrossRefGoogle Scholar
Gagneux, P., Boesch, C., and Woodruff, D. S. (1997). Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Molecular Ecology, 6, 861–868CrossRefGoogle ScholarPubMed
Gagneux, P., Wills, C., Gerloff, U., Tautz, D., Morin, P. A., Boesch, C., Fruth, B., Hohmann, G., Ryder, O. A., and Woodruff, D. S. (1999). Mitochondrial sequences show diverse evolutionary histories of African hominoids. Proceedings of the National Academy of Sciences U.S.A., 96, 5077–5082CrossRefGoogle ScholarPubMed
Garner, K. J. and Ryder, O. A. (1996). Mitochondrial DNA diversity in gorillas. Molecular Phylogenetics and Evolution, 6, 39–48CrossRefGoogle ScholarPubMed
Gerloff, U., Schlötterer, C., Rassmann, K., Rambold, I., Hohmann, G., Fruth, B., and Tautz, D. (1995). Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild bonobos (Pan paniscus). Molecular Ecology, 4, 515–518CrossRefGoogle Scholar
Gerloff, U., Hartung, B., Fruth, B., Hohmann, G., and Tautz, D. (1999). Intracommunity relationships, dispersal pattern and paternity success in a wild living community of bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proceedings of the Royal Society of London, Series B, 266, 1189–1195CrossRefGoogle Scholar
Gonder, M. K., Oates, J. F., Disotell, T. R., Forstner, M. R. J., Morales, J. C., and Melnick, D. J. (1997). A new West African chimpanzee subspecies?Nature, 388, 337CrossRefGoogle ScholarPubMed
Goossens, B., Latour, S., Vidal, C., Jamart, A., Ancrenaz, M., and Bruford, M. W. (2000). Twenty new microsatellite loci for use with hair and fecal samples in the chimpanzee (Pan troglodytes troglodytes). Folia Primatologica, 71, 177–180CrossRefGoogle Scholar
Greenwood, A. D., and Pääbo, S. (1999). Nuclear insertion sequences of mitochondrial DNA predominate in hair but not in blood of elephants. Molecular Ecology, 8, 133–137CrossRefGoogle Scholar
Groves, C. P. (1967). Ecology and taxonomy of the gorilla. Nature, 213, 890–893CrossRefGoogle ScholarPubMed
Groves, C. P. (1970). Population systematics for the gorilla. Journal of Zoology, London, 161, 287–300CrossRefGoogle Scholar
Groves, C. P. (2001). Gorilla Taxonomy. Washington, D.C.: Smithsonian Institution Press
Groves, C. P. and Stott, K. W. Jr. (1979). Systematic relationships of gorillas from Kahuzi, Tshiaberimu and Kayonza. Folia Primatologica, 32, 161–179CrossRefGoogle ScholarPubMed
Grubb, P. (1990). Primate geography in the Afro-tropical forest biome. In Vertebrates in the Tropics, eds. G. Peters and R. Hutterer, pp. 187–214. Bonn: Museum Albert Koenig
Harcourt, A. H., Stewart, K. J., and Inahoro, I. M. (1989). Nigeria's gorillas: A survey and recommendations. Primate Conservation, 10, 73–76Google Scholar
Harris, E. E. and Disotell, T. R. (1998). Nuclear gene trees and the phylogenetic relationships of the mangabeys (Primates, Papionini). Molecular Biology and Evolution, 15, 892–900CrossRefGoogle Scholar
Higuchi, R., Beroldingen, C. H., Senasbaugh, G. F., and Erlich, H. A. (1988). DNA typing from single hairs. Nature, 332, 543–546CrossRefGoogle ScholarPubMed
Hillis, D. M., Moritz, C., and Maple, B. K. (1996). Molecular Systematics. Sunderland, MA: Sinauer Associates
Jensen-Seaman, M. J., and Kidd, K. K. (2001). Mitochondrial DNA variation and biogeography of eastern gorillas, Molecular Evolution, 10, 2241–2247Google ScholarPubMed
Kaessmann, H., Wiebe, V., and Pääbo, S. (2000). Extensive nuclear DNA sequence diversity among chimpanzees. Science, 286, 1159–1162CrossRefGoogle Scholar
Kingdon, J. (1990). Island Africa. London: Collins
Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences U.S.A., 86, 6196–6200CrossRefGoogle ScholarPubMed
Kohn, M. H., York, E. C., Kamradt, D. A., Haught, G., Sauvajot, R. M., and Wayne, R. K. (1999). Estimating population size by genotyping feces. Proceedings of the Royal Society of London, Series B, 266, 657–663CrossRefGoogle Scholar
Lanfranchi, R. and Schwartz, D. (1990). Paysages Quaternaires de l'Afrique Centrale Atlantique. Paris: ORSTOM
Lee, P. C., Thornback J., and Bennett, E. L. (1988). Threatened Primates of Africa: The IUCN Data Book. Gland, Switzerland: IUCN
Maley, J. (1996). The African rainforest: Main characteristics of changes in vegetation and climate change from the Upper Cretaceous to the Quaternary. Proceedings of the Royal Society, Edinburgh, 104B, 31–73Google Scholar
Morin, P. A., Moore, J. J., and Woodruff, D. S. (1992). Identification of chimpanzee subspecies with DNA from hair and allele-specific probes. Proceedings of the Royal Society of London, Series B, 24, 293–297CrossRefGoogle Scholar
Morin, P. A., Wallis, J., Moore, J. J., Chakraborthy, R., and Woodruff, D. S. (1993). Noninvasive sampling and DNA amplification for paternity exclusion, community structure and phylogeography in wild chimpanzees. Primates, 34, 347–356CrossRefGoogle Scholar
Morin, P. A., Moore, J. J., Chakraborthy, R., Jin, L., Goodall, J., and Woodruff, D. S. (1994). Kin selection, social structure, gene flow, and the evolution of chimpanzees. Science, 265, 1193–1201CrossRefGoogle ScholarPubMed
Moritz, C. (1995). Uses of molecular phylogenies for conservation. Philosophical Transactions of the Royal Society of London, Series B, 349, 113–118CrossRefGoogle Scholar
Oates, J. F., McFarland, K. L., Stumpf, R. M., Fleagle, J. G., and Disotell, T. R. (1999). New findings on the distinctive gorillas of the Nigerian–Cameroon border region. American Journal of Physical Anthropology, 28, 213–214Google Scholar
O'Brien, S. J. (1994). A role for molecular genetics in biological conservation. Proceedings of the National Academy of Sciences U.S.A., 91, 5748–5755CrossRefGoogle ScholarPubMed
Ruvolo, M., Disotell, T. R., Allard, M. W., Brown, W. M., and Honeycutt, R. L. (1991). Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence. Proceedings of the National Academy of Sciences U.S.A., 88, 1570–1574CrossRefGoogle ScholarPubMed
Ruvolo, M., Pan, D., Zehr, S., Goldberg, T., Disotell, T. R., and Dornum, M. (1994). Gene trees and hominoid phylogeny. Proceedings of the National Academy of Sciences U.S.A., 91, 8900–8904CrossRefGoogle ScholarPubMed
Ryder, O. A. (1986). Species conservation and systematics: The dilemma of subspecies. Trends in Ecology and Evolution, 1, 9–10CrossRefGoogle Scholar
Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350–1354CrossRefGoogle ScholarPubMed
Saltonstall, K. G., Amato, G., and Powell, J. (1998). Mitochondrial DNA variability in Grauer's gorillas of Kahuzi-Biega National Park. Journal of Heredity, 69, 129–135CrossRefGoogle Scholar
Santiago, M.l., Rodenburg, C. M., Kamenya, S., Bibollet-Ruche, F., Gao, F., Bailes, E., Meleth, S., Soong, S. J., Kilby, J. M., Moldoveanu, Z., Fahey, B., Muller, M. N., Ayouba, A., Nerrienet, E., McClure, H. M., Heeney, J. L., Pusey, A. E., Collins, D. A., Boesch, C., Wrangham, R. W., Goodall, J., Sharp, P. M., Shaw, G. M., and Hahn, B. H. (2002). SIV cpz in wild chimpanzees. science, 295, 465CrossRefGoogle Scholar
Sarich, V. M. (1977). Rates, sample sizes and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature, 265, 24–28CrossRefGoogle ScholarPubMed
Sarmiento, E. E. and Butynski, T. (1996). Present problems in gorilla taxonomy. Gorilla Journal, 12, 5–7Google Scholar
Schaller, G. B. (1963). The Mountain Gorilla: Ecology and Behavior. Chicago, IL: University of Chicago Press
Seaman, M. L., Deinard, A. S., and Kidd, K. K., (1999). Incongruence between mitochondrial and nuclear DNA estimated of divergence between gorilla subspecies. American Journal of Physical Anthropology, Supplement 28, 259Google Scholar
Smith, K. L., Alberts, S. C., Bayes, M. K., Bruford, M. W., Altmann, J., & Ober, C. (2000). Cross-species amplification, non-invasive genotyping, and non-Mendelian inheritence of human STRPs in Savannah baboons. American Journal of Primatology, 51, 249–2273.0.CO;2-G>CrossRefGoogle Scholar
Stumpf, R. M., Fleagle, J. G., Jungers, W. L., Oates, J. F., and Groves, C. P. (1998). Morphological distinctiveness of Nigerian gorilla crania. American Journal of Physical Anthropology, Supplement 26, 213Google Scholar
Swofford, D. L. (1998). PAUP*. Phylogenetic Analysis using Parsimony (* and Other Methods), v.4. Sunderland, MA: Sinauer Associates
Taberlet, P., Griffin, S., Goossens, B., Questiau, S., Manceau, V., Escaravage, N., Waits, L. P., and Bouvet, J. (1996). Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acid Research, 24, 3189–3194CrossRefGoogle ScholarPubMed
Tautz, T. (1993). Notes on the definition and nomenclature of tandemly repetitive DNA sequences. In DNA Fingerprinting: State of the Science, eds. S. D. J. Pena, R. Chakraborty, J. T. Epplen, and A. J. Jeffreys, pp. 21–28. Berlin: BirkhaüserCrossRef
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680CrossRefGoogle ScholarPubMed
Tutin, C. E. G., Parnell, R. J., White, L. J. T., and Fernandez, M. (1995). Nest building by lowland gorillas in the Lopé Reserve, Gabon: Environmental influences and implications for censusing. International Journal of Primatology, 16, 53–76CrossRefGoogle Scholar
Waits, S. L., Taberlet, P., Swenson, J. E., Sandegren, F., and Franzen, R. (2000). Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Molecular Ecology, 9, 421–431CrossRefGoogle Scholar
Walsh, P. S., Metzger, D. A., and Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10, 506–513Google ScholarPubMed
Weber, J. L. and May, P. E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics, 44, 388–396Google ScholarPubMed
Woodruff, D. S. (1993). Noninvasive genotyping of primates. Primates, 34, 333–346CrossRefGoogle Scholar
Zischler, H., Geisert, H., Haeseler, A., and Pääbo, S. (1995). A nuclear “fossil” of the mitochondrial D-loop and the origin of modern humans. Nature, 378CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Genetic studies of western gorillas
    • By Stephen L. Clifford, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon, Kate A. Abernethy, Department of Molecular and Biological Sciences, University of Stirling, Stirling FK9 4LA, U.K., Lee J. T. White, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, U.S.A., Caroline E. G. Tutin, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon, Mike W. Bruford, Cardiff School of Biosciences, Cardiff University, Cardiff CF1 3TL, U.K., E. Jean Wickings, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon
  • Edited by Andrea B. Taylor, Duke University, North Carolina, Michele L. Goldsmith, Tufts University, Massachusetts
  • Book: Gorilla Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542558.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Genetic studies of western gorillas
    • By Stephen L. Clifford, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon, Kate A. Abernethy, Department of Molecular and Biological Sciences, University of Stirling, Stirling FK9 4LA, U.K., Lee J. T. White, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, U.S.A., Caroline E. G. Tutin, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon, Mike W. Bruford, Cardiff School of Biosciences, Cardiff University, Cardiff CF1 3TL, U.K., E. Jean Wickings, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon
  • Edited by Andrea B. Taylor, Duke University, North Carolina, Michele L. Goldsmith, Tufts University, Massachusetts
  • Book: Gorilla Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542558.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Genetic studies of western gorillas
    • By Stephen L. Clifford, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon, Kate A. Abernethy, Department of Molecular and Biological Sciences, University of Stirling, Stirling FK9 4LA, U.K., Lee J. T. White, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, U.S.A., Caroline E. G. Tutin, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon, Mike W. Bruford, Cardiff School of Biosciences, Cardiff University, Cardiff CF1 3TL, U.K., E. Jean Wickings, Centre International de Recherches Médicales Franceville (CIRMF), BP 769 Franceville, Gabon
  • Edited by Andrea B. Taylor, Duke University, North Carolina, Michele L. Goldsmith, Tufts University, Massachusetts
  • Book: Gorilla Biology
  • Online publication: 11 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511542558.012
Available formats
×