Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T21:08:40.546Z Has data issue: false hasContentIssue false

15 - The Core and the Earth's Dynamo

from PART II - EARTH DEFORMATION

Published online by Cambridge University Press:  17 March 2011

B. L. N. Kennett
Affiliation:
Australian National University, Canberra
H.-P. Bunge
Affiliation:
Universität Munchen
Get access

Summary

Passage from the Earth's mantle to the core marks a transition from a silicate mineralogy to a liquid metallic region dominated by iron. The principal evidence for composition comes from shock-wave equation of state measurements (Section 9.4), reinforced by studies of meteorites. Some lighter component than iron is required in the outer core to match seismological estimates of density. The density deficit is of the order of 10% compared with a liquid iron–nickel alloy. O'Neill & Palme (1998) provide a careful discussion of the merits of the main candidates for a light element component: oxygen, silicon and sulphur. No single element is able to produce the desired density variation and meet geochemical constraints, but a mixture of several elements (Si, O, S, C) might be appropriate. The seismological results are compatible with an adiabatic state through most of the outer core with a change of density of about 10% from the top of the core to the inner core boundary.

The outer core contains 30% of the mass of the Earth and behaves as a fluid on seismic time scales, preventing the passage of seismic shear waves. Slower motions in the liquid core are inferred to be the origin of the Earth's magnetic field through some class of dynamo action.

Type
Chapter
Information
Geophysical Continua
Deformation in the Earth's Interior
, pp. 379 - 406
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×