Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T02:53:03.329Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  25 January 2010

K. J. Falconer
Affiliation:
University of Bristol
Get access

Summary

The geometric measure theory of sets of integral and fractional dimension has been developed by pure mathematicians from early in this century. Recently there has been a meteoric increase in the importance of fractal sets in the sciences. Mandelbrot (1975,1977,1982) pioneered their use to model a wide variety of scientific phenomena from the molecular to the astronomical, for example: the Brownian motion of particles, turbulence in fluids, the growth of plants, geographical coastlines and surfaces, the distribution of galaxies in the universe, and even fluctuations of price on the stock exchange. Sets of fractional dimension also occur in diverse branches of pure mathematics such as the theory of numbers and non-linear differential equations. Many further examples are described in the scientific, philosophical and pictorial essays of Mandelbrot. Thus what originated as a concept in pure mathematics has found many applications in the sciences. These in turn are a fruitful source of further problems for the mathematician. This tract is concerned primarily with the geometric theory of such sets rather than with applications.

The word ‘fractal’ was derived from the latin fractus, meaning broken, by Mandelbrot (1975), who gave a ‘tentative definition’ of a fractal as a set with its Hausdorff dimension strictly greater than its topological dimension, but he pointed out that the definition is unsatisfactory as it excludes certain highly irregular sets which clearly ought to be thought of in the spirit of fractals. Hitherto mathematicians had referred to such sets in a variety of ways – ‘sets of fractional dimension’, ‘sets of Hausdorff measure’, ‘sets with a fine structure’ or ‘irregular sets’.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • K. J. Falconer, University of Bristol
  • Book: The Geometry of Fractal Sets
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511623738.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • K. J. Falconer, University of Bristol
  • Book: The Geometry of Fractal Sets
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511623738.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • K. J. Falconer, University of Bristol
  • Book: The Geometry of Fractal Sets
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511623738.002
Available formats
×