Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T17:26:10.724Z Has data issue: false hasContentIssue false

Part IV - Space Weather

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 207 - 264
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Akasofu, S. I. (1981). Space Science Reviews, 28(2), 121–90.CrossRefGoogle Scholar
Amari, T., Aly, J. J., Luciani, J. F., Mikic, Z. and Linker, J. (2011). The Astrophysical Journal Letters, 742(2), L2733.Google Scholar
Amari, T., Canou, A. and Aly, J. J. (2014). Nature, 514(7523), 465–9.CrossRefGoogle Scholar
Antiochos, S. K., DeVore, C. R. and Klimchuk, J. A. (1999). The Astrophysical Journal, 510(1), 485–93.Google Scholar
Antonucci, E., Dodero, M. A. and Giordano, S. (2000). Solar Physics, 197(1), 115–34.Google Scholar
Axford, W. I. and Hines, C. O. (1961). Canadian Journal of Physics, 39, 1433–64.Google Scholar
Bai, T. and Sturrock, P. A. (1991). Nature, 350(6314), 141–3.CrossRefGoogle Scholar
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W. and McPherron, R. L. (1996). Journal of Geophysical Research: Space Physics, 101(A6), 1297513010.Google Scholar
Balogh, A., Marsden, R. G. and Smith, E. J. (2001). The Heliosphere Near Solar Minimum: The Ulysses Perspective. Springer Science & Business Media.Google Scholar
Benz, A. O. (2017). Living Reviews in Solar Physics, 14, 2.Google Scholar
Bertello, L., Ulrich, R. K. and Boyden, J. E. (2010). Solar Physics, 264(1), 3144.Google Scholar
Boaghe, O. M., Balikhin, M. A., Billings, S. A. and Alleyne, H. (2001). Journal of Geophysical Research: Space Physics, 106(A12), 30047–66. doi:10.1029/2000ja900162.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I. and Bonani, G. (2001). Science, 294(5549), 2130–36.Google Scholar
Borovsky, J. E. (2010). Journal of Geophysical Research: Space Physics, 115, A09101, 133.Google Scholar
Borovsky, J. E. and Birn, J. (2014). Journal of Geophysical Research: Space Physics, 119(2), 751–60.Google Scholar
Borovsky, J. E., Hesse, M., Born, J. and Kuznetsova, M. M. (2008). Journal of Geophysical Research: Space Physics, 113, A08110.Google Scholar
Boynton, R. J., Balikhin, M. A., Billings, S. A. and Amariutei, O. A. (2013). Ann. Geophys., 31(9), 1579–89. doi:10.5194/angeo-31-1579-2013.Google Scholar
Boynton, R. J., Balikhin, M. A., Billings, S. A., Sharma, S. A. and Amariutei, O. A. (2011a). Ann. Geophys., 29(5), 965–71. doi:10.5194/angeo-29-965-2011.Google Scholar
Boynton, R. J., Balikhin, M. A., Billings, S. A., Wei, H. L. and Ganushkina, N. (2011b). Journal of Geophysical Research: Space Physics, 116. doi:10.1029/2010ja015505Google Scholar
Broomhall, A. M. and Nakariakov, V. M. (2015). Solar Physics, 290(11), 30953111.CrossRefGoogle Scholar
Brueckner, G. E., Edlow, K. L., Floyd, L. E., Lean, J. L. and VanHoosier, M. E. (1993). Journal of Geophysical Research: Atmospheres, 98(D6), 10695–711.Google Scholar
Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E. and Bavassano, B. (2001). Planetary and Space Science, 49(12), 1201–10.Google Scholar
Burch, J. L., Moore, T. E., Torbert, R. B. and Giles, B. L. (2016). Space Science Reviews, 199(1–4), 521.CrossRefGoogle Scholar
Burlaga, L. F. and Ness, N. F. (2012). The Astrophysical Journal, 749(1), 1318.Google Scholar
Burton, R. K., McPherron, R. L. and Russell, C. T. (1975). J. Geophys. Res., 80(31), 4204–14. doi:10.1029/JA080i031p04204.CrossRefGoogle Scholar
Cade, W. B. III, Sojka, J. J. and Zhu, L. (1995). J. Geophys. Res., 100(A1), 97105. doi:10.1029/94JA02347.Google Scholar
Cane, H. V., McGuire, R. E. and Von Rosenvinge, T. T. (1986). The Astrophysical Journal, 301, 448–59.Google Scholar
Carrington, R. C. (1859). Monthly Notices of the Royal Astronomical Society, 20, 1315. doi:10.1093/mnras/20.1.13.Google Scholar
Cassak, P. A. and Shay, M. A. (2007). Physics of Plasmas, 14(10), 102114. doi:10.1063/1.2795630.Google Scholar
Chapman, S. (1961). American Scientist, 49(3), 249.Google Scholar
Chapman, S. (1962). Journal of the Physical Society of Japan, 17(A-I), 6.Google Scholar
Chapman, S. and Bartels, J. (1962). Geomagnetism. Vol. 1, 2nd edn. Clarendon Press.Google Scholar
Chapman, S. and Ferraro, V. C. A. (1930). Nature, 126, 129–30. doi:10.1038/126129a0.Google Scholar
Chapman, S. and Ferraro, V. C. A. (1931). Terrestrial Magnetism and Atmospheric Electricity, 36(3), 171–86. doi:10.1029/TE036i003p00171.Google Scholar
Chaplin, W. J., Elsworth, Y., Miller, B. A., Verner, G. A. and New, R. (2007). The Astrophysical Journal, 659(2), 1749–60.Google Scholar
Chen, Y., Liu, L. and Wan, W. (2011). Journal of Geophysical Research: Space Physics, 116, A04304.Google Scholar
Cheng, X., Ding, M. D., Guo, Y., Zhang, J., Vourlidas, A., Liu, Y. D., Olmedo, O., Sun, J. Q. and Li, C. (2013). The Astrophysical Journal, 780(1), 19.Google Scholar
Cho, I. H., Hwang, J. and Park, Y. D. (2014). Solar Physics, 289(3), 707–19.Google Scholar
Chowdhury, P., Khan, M. and Ray, P. C. (2010). Planetary and Space Science, 58(7), 1045–9.CrossRefGoogle Scholar
Cliver, E. W. and Dietrich, W. F. (2013). Journal of Space Weather and Space Climate, 3(A31), 115.Google Scholar
Cliver, E. W., Svalgaard, L. and Ling, A. G. (2004). Annals of Geophysics, 22(1), 93100. doi:10.5194/angeo-22-93-2004.CrossRefGoogle Scholar
Connick, D. E., Smith, C. W. and Schwadron, N. A. (2010). The Astrophysical Journal, 727(1), 16.Google Scholar
Conscience, C., Meftah, M., Chevalier, A., Dewitte, S. and Crommelynck, D. (2011). Proc. SPIE 8146, UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts V, 814613. doi:10.1117/12.895447.Google Scholar
Cranmer, S. R., Asgari-Targhi, M., Miralles, M. P., Raymond, J. C., Strachan, L., Tian, H. and Woolsey, L. N. (2015). Philosophical Transactions of the Royal Society, Series A, 373(2041), 20140148.Google Scholar
Cranmer, S. R., Van Ballegooijen, A. A. and Edgar, R. J. (2007). The Astrophysical Journal Supplement Series, 171(2), 520–51.Google Scholar
Daglis, I. A., Thorne, R. M., Baumjohann, W. and Orsini, S. (1999). Reviews of Geophysics, 37, 407–38.CrossRefGoogle Scholar
Davis, L. Jr. and Williamson, J. M. (1963). Low energy trapped protons, paper presented at Space Research III, Proceedings of the Third International Space Science Symposium, North Holland Publishing Company Amsterdam/New York., Washington, DC, 2–8 May.Google Scholar
Davis, T. N. and Parthasarathy, R. (1967). Journal of Geophysical Research, 72(23), 5825–36. doi:10.1029/JZ072i023p05825.Google Scholar
Dayeh, M. A., Desai, M. I., Dwyer, J. R., Rassoul, H. K., Mason, G. M. and Mazur, J. E. (2009). The Astrophysical Journal, 693(2), 15881600.Google Scholar
Deng, L. H., Li, B., Xiang, Y. Y. and Dun, G. T. (2015). Journal of Atmospheric and Solar-Terrestrial Physics, 122, 1825.Google Scholar
Denton, M. H. and Borovsky, J. E. (2012). Journal of Geophysical Research: Space Physics, 117, A00L05.Google Scholar
Denton, M. H., Borovsky, J. E., Skoug, R. M., Thomsen, M. F., Lavraud, B., Henderson, M. G., McPherron, R. L., Zhang, J. C. and Liemohn, M. W. (2006). Journal of Geophysical Research: Space Physics, 111, A07S07.Google Scholar
Desai, M. and Giacalone, J. (2016). Living Reviews in Solar Physics, 13, 3.Google Scholar
Dessler, A. and Parker, E. (1959). Journal of Geophysical Research, 64(12), 2239–52. doi:10.1029/JZ064i012p02239.Google Scholar
Dewitte, S., Crommelynck, D., Mekaoui, S. and Joukoff, A. (2004). Solar Physics, 224(1–2), 209–16.Google Scholar
Didkovsky, L. and Wieman, S. (2014). Journal of Geophysical Research: Space Physics, 119(6), 4175–84.Google Scholar
Dungey, J. W. (1961). Physical Review Letters, 6(2), 47–8.Google Scholar
Ebert, R. W., Dayeh, M. A., Desai, M. I. and Mason, G. M. (2012). The Astrophysical Journal, 749(1), 113.Google Scholar
Emslie, A. G., Dennis, B. R., Holman, G. D. and Hudson, H. S. (2005). Journal of Geophysical Research: Space Physics, 110, A11103.Google Scholar
Ermolli, I., Matthes, K., de Wit, Dudok, Krivova, T., Tourpali, N. A., Weber, K., Unruh, M., Gray, Y. C., Langematz, L., Pilewskie, U., P. and Rozanov, E. (2013). Atmospheric Chemistry and Physics, 13(8), 3945–77.Google Scholar
Fairfield, D. H. and Cahill, L. J. Jr. (1966). J. Geophys. Res., 71(1), 155–69.CrossRefGoogle Scholar
Fang, T. W. and Forbes, J. M. (2012). Journal of Geophysical Research: Space Physics, 117, A01318.Google Scholar
Floyd, L., Tobiska, W. K. and Cebula, R. P. (2002). Advances in Space Research, 29(10), 1427–40.Google Scholar
Foukal, P. (2012). Solar Physics, 279(2), 365–81.Google Scholar
Fröhlich, C. (2012). Surveys in Geophysics, 33(3–4), 453–73.Google Scholar
Fuselier, S. A., Trattner, K. J., Petrinec, S. M. and Lavraud, B. (2012). Journal of Geophysical Research: Space Physics, 117, A08235.Google Scholar
Ganushkina, N. Y., Pulkkinen, T. I. and Fritz, T. (2005). Annals of Geophysics, 23, 579–91.Google Scholar
Giacalone, J., Jokipii, J. R. and Kóta, J. (2002). The Astrophysical Journal, 573(2), 845–50.Google Scholar
Gleisner, H., Lundstedt, H. and Wintoft, P. (1996). Annals of Geophysics, 14(7), 679–86. doi:10.1007/s00585-996-0679-1.Google Scholar
Gold, T. (1959). Journal of Geophysical Research, 64(9), 1219–24. doi:10.1029/JZ064i009p01219.Google Scholar
Gonzalez, W. D. and Mozer, F. S. (1974). Journal of Geophysical Research, 79(28), 4186–94.Google Scholar
Gopalswamy, N. (2010). Corona mass ejections: A summary of recent results, in 20th National Solar Physics Meeting, pp. 108–30, Slovak Central Observatory. http://adsabs.harvard.edu/abs/2010nspm.conf…..D.Google Scholar
Gosling, J. T. (2007). The Astrophysical Journal Letters, 671(1), L73–6.Google Scholar
Grandin, M., Aikio, A. T., Kozlovsky, A., Ulich, T. and Raita, T. (2015). Journal of Geophysical Research: Space Physics, 120(12), 10, 669–87.Google Scholar
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L. and Luterbacher, J. (2010). Reviews of Geophysics, 48, RG4001, 153.Google Scholar
Haigh, J. D. (2007). Living Reviews in Solar Physics, 4(1), 2.Google Scholar
Hathaway, D. H. and Rightmire, L. (2010). Science, 327(5971), 1350–52.Google Scholar
Hinteregger, H. E. (1981). Advances in Space Research, 1(12), 3952.Google Scholar
Hirshberg, J. and Colburn, D. S. (1969). Planetary and Space Science, 17, 11831206.Google Scholar
Hnat, B., Chapman, S. C. and Rowlands, G. (2003). Physical Review E, 67(5), 056404.Google Scholar
Hudson, M. K., Kress, B. T., Mazur, J. E., Perry, K. L. and Slocum, P. L. (2004). Journal of Atmospheric and Terrestrial Physics, 66, 1389–97.Google Scholar
Illing, R. M. E. and Hundhausen, A. J. (1985). Journal of Geophysical Research, 90, 275–82.Google Scholar
Iyemori, T., Araki, T., Kamei, T. and Takeda, M. (1994). Mid-latitude geomagnetic indices ASY and SYM (provisional). Rep. No. 1 (1989–1990), Data Analysis Center for Geomagnetism and Space Magnetism, Faculty of Science, Kyoto University, Kyoto, Japan.Google Scholar
Kamide, Y. (1992). Journal of Geomagnetism and Geoelectricity, 44(2), 109–17. doi:10.5636/jgg.44.109.Google Scholar
Kamide, Y. and Fukushima, N. (1971). Report of Ionosphere and Space Research in Japan, 26, 79.Google Scholar
Kamide, Y., et al.(1998). Journal of Geophysical Research, 103(A8), 17705–28. doi:10.1029/98JA01426.Google Scholar
Kauristie, K., Morschhauser, A., Olsen, N., Finlay, C. C., McPherron, R. L., Gjerloev, J. W. and Opgenoorth, H. J. (2017). Space Science Review, 206(1–4), 6190. doi:10.1007/s11214-016-0301-0.Google Scholar
Kepko, L., Viall, N. M., Antiochos, S. K., Lepri, S. T., Kasper, J. C. and Weberg, M. (2016). Geophysical Research Letters, 43(9), 4089–97.Google Scholar
Knaack, R. and Stenflo, J. O. (2005). Astronomy and Astrophysics, 438(1), 349–63.Google Scholar
Kohl, J. H., Noci, G., Antonucci, E., Tondello, G., Huber, M. C. E., Gardner, L. D., Nicolosi, P., Fineschi, S., Raymond, J. C., Romoli, M. and Spadaro, D. (1997). Advances in Space Research, 20(1), 314.CrossRefGoogle Scholar
Kohl, J. L., Noci, G., Cranmer, S. R. and Raymond, J. C. (2006). The Astronomy and Astrophysics Review, 13(1–2), 31157.Google Scholar
Kolotkov, D. Y., Broomhall, A. M. and Nakariakov, V. M. (2015). Monthly Notices of the Royal Astronomical Society, 451(4), 4360–67.Google Scholar
Krivolutsky, A. A. and Repnev, A. I. (2012). Geomagnetism and Aeronomy, 52(6), 685716.Google Scholar
Kumar, P. and Innes, D. E. (2013). Solar Physics, 288(1), 255–68.Google Scholar
Le, H., Liu, L., Ren, Z., Chen, Y., Zhang, H. and Wan, W. (2016). Journal of Geophysical Research: Space Physics, 121(1), 832–40.Google Scholar
Lean, J. L., Woods, T. N., Eparvier, F. G., Meier, R. R., Strickland, D. J., Correira, J. T. and Evans, J. S. (2011). Journal of Geophysical Research: Space Physics, 116, A01102.Google Scholar
Lin, R.C., Krucker, S., Hurford, G.J., Smith, D.M., Hudson, H.S., Holman, G.D., Schwartz, R.A., Dennis, B.R., Share, G.H., Murphy, R.J. and Emslie, A.G. (2003). The Astrophysical Journal Letters, 595, L69L76.Google Scholar
Linton, M.G. and Moldwin, M.B. (2009). Journal of Geophysical Research: Space Physics, 114, A00B09.Google Scholar
Lundstedt, H., Gleisner, H. and Wintoft, P. (2002). Geophysical Research Letters, 29(24), 31–4. doi:10.1029/2002gl016151.Google Scholar
Lundstedt, H. and Wintoft, P. (1994). Annals of Geophysics, 12(1), 1924. doi:10.1007/s005850050031.CrossRefGoogle Scholar
Lynch, B. J., Masson, S., Li, Y., DeVore, C. R., Luhmann, J. G., Antiochos, S. K. and Fisher, G. H. (2016). Journal of Geophysical Research: Space Physics, 121, 10677–97. doi:10.1002/2016JA023432.Google Scholar
Maia, D. J. F. and Pick, M. (2004). The Astrophysical Journal, 609(2), 1082–97.Google Scholar
Mann, G. (2015). Journal of Plasma Physics, 81, 475810601. doi:10.1017/S0022377815001166.Google Scholar
McComas, D. J., Velli, M., Lewis, W. S., Acton, L. W., Balat-Pichelin, M., Bothmer, V., Dirling, R. B., Feldman, W. C., Gloeckler, G., Habbal, S. R. and Hassler, D. M. (2007). Reviews of Geophysics, 45, RG1004. doi:10.1029/2006RG000195.Google Scholar
McComas, D. J., Ebert, R. W., Elliott, H. A., Goldstein, B. E., Gosling, J. T., Schwadron, N. A. and Skoug, R. M. (2008). Geophysical Research Letters, 35, L18103. doi:10.1029/2008GL034896.Google Scholar
McIntosh, D. H. (1959). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 251(1001), 525–52. doi:10.1098/rsta.1959.0010.Google Scholar
McPherron, R. L. (1979). Reviews of Geophysics, 17(4), 657–81.Google Scholar
McPherron, R. L. (1997). Role of substorms in the development of magnetic storms, in Magnetic Storms, edited by Tsurutani, B. T., Gonzalez, W. D., Kamide, Y. and J. K. Arballo, pp. 131–47, American Geophysical Union. doi:10.1029/GM098p0131.Google Scholar
McPherron, R. L. and O’Brien, T. P. (2001). Predicting geomagnetic activity: The Dst index, in Space Weather, edited by Song, P., Siscoe, G. L. and H. Singer, pp. 339–45, American Geophysical Union. doi:10.1029/GM125p0339.Google Scholar
Mead, G. D. (1964). Journal of Geophysical Research, 69(7), 1181–95. doi:10.1029/JZ069i007p01181.Google Scholar
Meftah, M., Dewitte, S., Irbah, A., Chevalier, A., Conscience, C., Crommelynck, D., Janssen, E. and Mekaoui, S. (2014). Solar Physics, 289(5), 1885–99.Google Scholar
Miroshnichenko, L. I., Klein, K. L., Trottet, G., Lantos, P., Vashenyuk, E. V., Balabin, Y. V. and Gvozdevsky, B. B. (2005). Journal of Geophysical Research: Space Physics, 110, A09S08. doi:10.1029/2004JA010936.Google Scholar
Moldwin, M. B., Zou, S. and Heine, T. (2016). Annales Geophysicae, 34(12), 1243–53.Google Scholar
Moos, N. A. F. (1910). Colaba Magnetic Data, 1846 to 1905, 2, The Phenomena and Its Discussion, Central Government Press.Google Scholar
Moore, T. E., Fok, M. C. and Chandler, M. O. (2002). Journal of Geophysical Research: Space Physics, 107, 1332, doi:10.1029/2002JA009381.Google Scholar
Moses, D., Droege, W., Meyer, P. and Evenson, P. (1989). The Astrophysical Journal, 346, 523–30.Google Scholar
Murayama, T. (1982). Review of Geophysics, 20(3), 623–9. doi:10.1029/RG020i003p00623.Google Scholar
Ness, N. F. (1965). Journal of Geophysical Research, 70(13), 2989. doi:10.1029/JZ070i013p02989.Google Scholar
Nwankwo, V. U., Chakrabarti, S. K. and Weigel, R. S. (2015). Advances in Space Research, 56(1), 4756.Google Scholar
O’Brien, T. P. and McPherron, R. L. (2000). Journal of Geophysical Research: Space Physics, 105(A4), 7707–19. doi:10.1029/1998ja000437.Google Scholar
O’Brien, T. P. and McPherron, R. L. (2002). Journal of Geophysical Research, 107(A11), 110. doi:10.1029/2002JA009435.Google Scholar
Ouellette, J. E., Lyon, J. G., Brambles, O. J., Zhang, B. and Lotko, W. (2016). Journal of Geophysical Research: Space Physics, 121(5), 4111–18.Google Scholar
Owens, M. J. and Forsyth, R. J. (2013). Living Reviews in Solar Physics, 10, 5.Google Scholar
Owens, M. J., Wicks, R. T. and Horbury, T. S. (2011). Solar Physics, 269, 411–20.Google Scholar
Parker, E. N. (1992). Journal of Geophysical Research: Space Physics, 97(A4), 4311–16.Google Scholar
Phan, T. D., Gosling, J. T., Davis, M. S., Skoug, R. M., Øieroset, M., Lin, R. P., Lepping, R. P., McComas, D. J., Smith, C. W., Reme, H. and Balogh, A. (2006). Nature, 439(7073), 175–78.Google Scholar
Pulkkinen, T. (2007). Living Reviews in Solar Physics, 4, 1.Google Scholar
Reid, G. C. (2000). Space Science Reviews, 94(1–2), 111.Google Scholar
Richardson, I. G. (2004). Space Science Reviews, 111(3–4), 267376.Google Scholar
Robbrecht, E., Patsourakos, S. and Vourlidas, A. (2009). The Astrophysical Journal, 701(1), 283–91.CrossRefGoogle Scholar
Rostoker, G. and Falthammar, C. G. (1967). Journal of Geophysical Research, 72(23), 5853–63. doi:10.1029/JZ072i023p05853.Google Scholar
Russell, C. and McPherron, R. L. (1973). Journal of Geophysical Research, 78(1), 92108. doi:10.1029/JA078i001p00092.Google Scholar
Schatten, K. H. and Wilcox, J. M. (1967). Journal of Geophysical Research, 72(21), 5185–91. doi:10.1029/JZ072i021p05185.Google Scholar
Schulz, M. (1973). Astrophysics and Space Science, 24(2), 371–83.Google Scholar
Schwadron, N. A. (2002). Geophysical Research Letters, 29(14), 1663. doi:10.1029/2002GL015028.Google Scholar
Schwenn, R. (2006). Living Reviews in Solar Physics, 3, 2.Google Scholar
Sckopke, N. (1966), Journal of Geophysical Research, 71(13), 3125–30. doi:10.1029/JZ071i013p03125.Google Scholar
Shapiro, A. I., Schmutz, W., Schoell, M., Haberreiter, M. and Rozanov, E. (2010). Astronomy and Astrophysics, 517, A48.Google Scholar
Siscoe, G. L. (1966). Planetary and Space Science, 14(10), 947. doi:10.1016/0032-0633(66)90132-2.Google Scholar
Siscoe, G. L., Formisano, V. and Lazarus, A. J. (1968). Journal of Geophysical Research, 73(15), 4869. doi:10.1029/JA073i015p04869.Google Scholar
Smith, E. J. (2001). Journal of Geophysical Research: Space Physics, 106(A8), 15819–31.Google Scholar
Snyder, C. W., Neugebauer, M. and Rao, U. R. (1963). Journal of Geophysical Research, 68(24), 6361–70.Google Scholar
Sojka, J. J., McPherron, R. L., van Eyken, A. P., Nicolls, M. J., Heinselman, C. J. and Kelly, J. D. (2009). Geophysical Research Letters, 36, L19105.Google Scholar
Solanki, S. K., Krivova, N. A. and Haigh, J. D. (2013). Annual Review of Astronomy and Astrophysics, 51, 311–51.Google Scholar
Solanki, S. K., Schüssler, M. and Fligge, M. (2002). Astronomy and Astrophysics, 383(2), 706–12.Google Scholar
Stern, D. P. (1989). Review of Geophysics, 27(1), 103–14. doi:10.1029/RG027i001p00103.CrossRefGoogle Scholar
Stern, D. P. (1996). Review of Geophysics, 34(1), 131. doi:10.1029/95RG03508.Google Scholar
Strachan, L., Suleiman, R., Panasyuk, A. V., Biesecker, D. A. and Kohl, J. L. (2002). The Astrophysical Journal, 57, 1008–14.Google Scholar
Suess, K., Snow, M., Viereck, R. and Machol, J. (2016). Journal of Space Weather and Space Climate, 6, A10.Google Scholar
Sugiura, M. (1964). Annals of the International Geophysical Year, 35, 945.Google Scholar
Sugiura, M. and Chapman, S. (1960). Akademie der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse, Sonderheft Nr., 4, 51–3.Google Scholar
Sugiura, M. and Kamei, T. (1991). Equatorial Dst index 1957–1986, Rep. IAGA Bulletin No 40, ISGI Publications Office, Saint-Maur-des-Fosses, France.Google Scholar
Svalgaard, L. (1977). Geomagnetic activity: Dependence on solar wind parameters, in Coronal Holes and High Speed Wind Streams, edited by Zirker, J. B., Colorado University Press.Google Scholar
Tapping, K. F. and DeTracey, B. (1990). Solar Physics, 127(2), 321–32.Google Scholar
Temerin, M. and Li, X. (2002). Journal of Geophysical Research: Space Physics, 107(A12), 1472. doi:1410.1029/2001JA007532.Google Scholar
Trattner, K. J., Burch, J. L., Ergun, R., Fuselier, S. A., Gomez, R. G., Grimes, E. W., Lewis, W. S., Mauk, B., Petrinec, S. M., Pollock, C. J. and Phan, T. D. (2016). Geophysical Research Letters, 43(10), 4673–82.Google Scholar
Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S. and Alex, S. (2003). Journal of Geophysical Research: Space Physics, 108(A7), 1268. doi:10.1029/2002JA009504.Google Scholar
Ukhorskiy, A. Y., Sitnov, M. I., Merkin, V. G., Gkioulidou, M. and Mitchell, D. G. (2017). Journal of Geophysical Research: Space Physics, 122(3), 3040–54.Google Scholar
Usoskin, I. G., Schüssler, M., Solanki, S. K. and Mursula, K. (2005). Journal of Geophysical Research: Space Physics, 110, A10102. doi:10.1029/2004JA010946.Google Scholar
Usoskin, I. G., Solanki, S. K. and Kovaltsov, G. A. (2007). Astronomy and Astrophysics, 471(1), 301–9.Google Scholar
Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T. and Linde, T. (2005). Astronomy and Astrophysics, 429(1), 335–51.Google Scholar
Vourlidas, A., Buzasi, D., Howard, R. A. and Esfandiari, E. (2002). Solar Variability: From Core to Outer Frontiers, 506, 91–4.Google Scholar
Wang, C. B., Chao, J. K. and Lin, C. H. (2003). Journal of Geophysical Research, 108(A9), SMP5-111.Google Scholar
Wang, Y. M., Lean, J. L. and Sheeley, N. R. Jr. (2005). The Astrophysical Journal, 625, 522–38.Google Scholar
Watanabe, S., Sagawa, E., Ohtaka, K. and Shimazu, H. (2014). Earth, Planets and Space, 54(12), e1263. doi:10.1186/bf03352454.Google Scholar
Webb, D. F. and Howard, T. A. (2012). Living Reviews in Solar Physics, 9, 3.Google Scholar
Wenzler, T., Solanki, S. K., Krivova, N. A. and Fröhlich, C. (2006). Astronomy and Astrophysics, 460(2), 583–95.Google Scholar
Wilcox, J. M. and Ness, N. F. (1965). Journal of Geophysical Research, 70(23), 57935805.Google Scholar
Wilcox, J. M., Schatten, K. H. and Ness, N. F. (1967). Journal of Geophysical Research, 72(1), 1926. doi:10.1029/JZ072i001p00019.Google Scholar
Woods, T. N., Tobiska, W. K., Rottman, G. J. and Worden, J. R. (2000). Journal of Geophysical Research: Space Physics, 105(A12), 27195–215.Google Scholar
Wu, J. G. and Lundstedt, H. (1996). Geophysical Research Letters, 23(4), 319–22. doi:10.1029/96GL00259.Google Scholar
Wu, J. G. and Lundstedt, H. (1997). Journal of Geophysical Research, 102(A7), 14255–68. doi:10.1029/97JA00975.Google Scholar
Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B. and Howard, R. A. (2004). Journal of Geophysical Research: Space Physics, 109, A07105. doi:10.1029/2003JA010282.Google Scholar
Yeo, K. L., Krivova, N. A., Solanki, S. K. and Glassmeier, K. H. (2014). Astronomy and Astrophysics, 570, A85.Google Scholar

References

Alekseev, D., Kuvshinov, A. and Palshin, N. (2015). Compilation of 3D global conductivity model of the Earth for space weather applications. Earth Planets Space, 67, 108, doi: 10.1186/s40623-015-0272-5.Google Scholar
Alfvén, H. (1942). Existence of electromagnetic-hydromagnetic waves, Nature, 150, 405.Google Scholar
Allan, W. and Wright, A. N. (2000). Magnetotail waveguide: Fast and Alfvén waves in the plasma sheet boundary layer and lobe. J. Geophys. Res., 105(A1), 317–28.Google Scholar
Anderson, B. J., Takahashi, K. and Toth, B. A. (2000). Sensing global Birkeland currents with Iridium engineering magnetometer data. Geophys Res Lett, 27(24), 4045–8.Google Scholar
Angelopoulos, V., Baumjohann, W., Kennel, C. F., et al. (1992). Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res., 97(A4), 4027–39.CrossRefGoogle Scholar
Angelopoulos, V., McFadden, J. P., Larson, D., et al. (2008). Tail reconnection triggering substorm onset. Science, 321(5891), 931–5.Google Scholar
Bedrosian, P. A. and Love, J. J. (2015). Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances. Geophys. Res. Lett., 42, doi: 10.1002/2015GL066636.Google Scholar
Beggan, C. D. (2015). Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models. Earth Planets Space, 67, 24, doi: 10.1186/s40623-014-0168-9.Google Scholar
Bonner, L. R. and Schultz, A. (2017). Rapid prediction of electric fields associated with geomagnetically induced currents in the presence of three-dimensional ground structure: Projection of remote magnetic observatory data through magnetotelluric impedance tensors. Space Weather, 14, doi: 10.1002/2016SW001535.Google Scholar
Bruinsma, S. L. and Forbes, J. M. (2007). Global observation of traveling atmospheric disturbances (TADs) in the thermosphere. Geophys. Res. Lett., 34, L14103, doi: 10.1029/2007GL030243.Google Scholar
Burke, W. J., Huang, C. Y., Marcos, F. A. and Wise, J. O. (2007). Interplanetary control of thermospheric densities during large magnetic storms. J. Atmos. Sol. Terr. Phys., 69, 279–87.Google Scholar
Burke, W. J., Lin, C. S., Hagan, M. P., Huang, C. Y., Weimer, D. R., Wise, J. O., Gentile, L. C. and Marcos, F. A. (2009). Storm time global thermosphere: A driven-dissipative thermodynamic system. J. Geophys. Res., 114, A06306, doi: 10.1029/2008JA013848.Google Scholar
Cagniard, L. (1953). Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18, 605–35, doi: 10.1190/1.1437915.Google Scholar
Campbell, W. H. (1973). Spectral composition of geomagnetic field variations in the period range of 5 min to 2 hr as observed at the Earth’s surface. Radio Sci., 8, 929–32.Google Scholar
Chi, P. J., Russell, C. T. and Ohtani, S. (2009). Substorm onset timing via travel time magnetoseismology. Geophys. Res. Lett., 36(8).Google Scholar
Cowley, S. W. H. (2000). Magnetosphere–ionosphere interactions: A tutorial review, in Magnetospheric Current Systems, ed. Ohtani, S.-I., Fujii, R., Hesse, M. and Lysak, R. L., American Geophysical Union, Washington, DC, doi: 10.1029/GM118p0091.Google Scholar
Coxon, J. C., Milan, S. E., Clausen, L. B. N., Anderson, B. J. and Korth, H. (2014), A superposed epoch analysis of the regions 1 and 2 Birkeland currents observed by AMPERE during substorms, J. Geophys. Res., 119(12), 9834–46.CrossRefGoogle Scholar
Donovan, E., Mende, S., Jackel, B., et al. (2006). The azimuthal evolution of the substorm expansive phase onset aurora. Proc. ICS, 8, 5560.Google Scholar
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2), 47.Google Scholar
Emmert, J. T., Lean, J. L. and Picone, J. M. (2010). Record‐low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett., 37, L12102, doi: 10.1029/2010GL043671.Google Scholar
Emmert, J. T. and Picone, J. M. (2010). Climatology of globally averaged thermospheric mass density. J. Geophys. Res., 115, A09326, doi: 10.1029/2010JA015298.CrossRefGoogle Scholar
Engels, M., Korja, T. and the BEAR Working Group (2002). Multisheet modelling of the electrical conductivity structure in the Fennoscandian Shield. Earth Planets Space, 54, 559–73, doi: 10.1186/BF03353045.Google Scholar
Forbes, J. M., Gonzalez, R., Marcos, F. A., Revelle, D. and Parish, H. (1996). Magnetic storm response of lower thermospheric density, J. Geophys. Res., 101, 2313–19.Google Scholar
Forbes, J. M., Lu, G., Bruinsma, S., Nerem, R. S. and Zhang, X. (2005). Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements, J. Geophys. Res., 110, A12S27, doi: 10.1029/2004JA010856.Google Scholar
Forsyth, C., Rae, I. J., Mann, I. R. and Pakhotin, I. P. (2017). Identifying intervals of temporally invariant field‐aligned currents from Swarm: Assessing the validity of single‐spacecraft methods. J. Geophys. Res., 122, 3411–19. doi: 10.1002/2016JA023708.Google Scholar
Fujiwara, H. and Miyoshi, Y. (2006). Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model, Geophys. Res. Lett., 33, L20108, doi: 10.1029/2006GL027103.Google Scholar
Friis‐Christensen, E., Lühr, H., Knudsen, D. and Haagmans, R. (2008). Swarm – an Earth observation mission investigating geospace. Adv. Space Res., 41, 210–16, doi: 10.1016/j.asr.2006.10.008.Google Scholar
Ganushkina, N. Y., Liemohn, M. W., Dubyagin, S., Daglis, I. A., Dandouras, I., De Zeeuw, D. L., Ebihara, Y., Ilie, R., Katus, R., Kubyshkina, M., Milan, S. E., Ohtani, S., Østgaard, N., Reistad, J. P., Tenfjord, P., Tofoletto, F., Zaharia, S. and Amariutei, O. (2015). Defining and resolving current systems in geospace. Ann. Geophys., 33, 13691402, doi: 10.5194/angeo-33-1369-2015.Google Scholar
Gjerloev, J. W. (2012). The SuperMAG data processing technique. J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.Google Scholar
Gjerloev, J. W., Ohtani, S., Iijima, T., Anderson, B., Slavin, J. and Le, G. (2011). Characteristics of the terrestrial field‐aligned current system. Ann. Geophys., 29, 1713–29, doi: 10.5194/angeo‐29‐1713‐2011.Google Scholar
Grzesiak, M. (2000). Ionospheric Alfvén resonator as seen by Freja satellite. Geophys. Res. Lett., 27, 923–6, doi: 10.1029/1999GL010747.Google Scholar
Guo, J., Wan, W., Forbes, J. M., Sutton, E., Nerem, R. S., Woods, T. N., Bruinsma, S. and Liu, L. (2007). Effects of solar variability on thermosphere density from CHAMP accelerometer data. J. Geophys. Res., 112, A10308, doi: 10.1029/2007JA012409.CrossRefGoogle Scholar
Iijima, T. and Potemra, T. A. (1976). The amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad. J. Geophys. Res., 81(13), 2165–74.Google Scholar
Jacobs, J. A., Kato, Y., Matsushita, S. and Troitskaya, V. A. (1964). Classification of geomagnetic micropulsations. J. Geophys. Res., 69(1), 180–81.Google Scholar
Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L., Facsko, G. and Pulkkinen, T. I. (2012). The GUMICS-4 global MHD magnetosphere–ionosphere coupling simulation. J. Atmos. Sol. Terr. Phys., 80, 4859, doi: 10.1016/j.jastp.2012.03.006.Google Scholar
Juusola, L., Kauristie, K., van de Kamp, M., Tanskanen, E. I., Mursula, K., Asikainen, T., Andreeova, K., Partamies, N., Vanhamäki, H. and Viljanen, A. (2015). Solar wind control of ionospheric equivalent currents and their time derivatives. J. Geophys. Res., 120, doi: 10.1002/2015JA021204.Google Scholar
Kalmoni, N. M. E., Rae, I. J., Murphy, K. R., et al. (2017). Statistical azimuthal structuring of the substorm onset arc: Implications for the onset mechanism. Geophys. Res. Lett., 44(5), 2078–87.Google Scholar
Kan, J. K. and Lee, L. C. (1979). Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett., 6(7), 577–80.Google Scholar
Kaufman, A. A. and Keller, G. V. (1981). The Magnetotelluric Sounding Method. Elsevier, New York.Google Scholar
Keiling, A. and Takahashi, K. (2011). Review of Pi2 models. Space Sci. Rev., 161(1–4), 63148.Google Scholar
Keiling, A., Wygant, J. R., Cattell, C. A., Mozer, F. S. and Russell, C. T. (2003). The global morphology of wave Poynting flux: Powering the aurora. Science, 299(5605), 383–6.Google Scholar
Kelbert, A., Balch, C. C., Pulkkinen, A., Egbert, G. D., Love, J. J., Rigler, E. J. and Fujii, I. (2017). Methodology for time-domain estimation of storm-time geoelectric fields using the 3D magnetotelluric response tensors. Space Weather, 15, doi: 10.1002/2017SW001594.Google Scholar
Kelbert, A., Kuvshinov, A., Velimsky, J., Koyama, T., Ribaudo, J., Sun, J., Martinec, Z. and Weiss, C. J. (2014). Global 3-D electromagnetic forward modelling: A benchmark study. Geophys. J. Int., 197, 785814, doi: 10.1093/gji/ggu028.Google Scholar
Kepko, L., Kivelson, M. G. and Yumoto, K. (2001). Flow bursts, braking, and Pi2 pulsations. J. Geophys. Res., 106(A2), 1903–15, doi: 10.1029/2000JA000158.Google Scholar
Kepko, L., McPherron, R. L., Amm, O., Apatenkov, S., Baumjohann, W., et al. (2015). Substorm current wedge revisited. Space Sci. Rev., 190(1–4), 146.Google Scholar
Knudsen, D. J., Kelley, M. C. and Vickrey, J. F. (1992).Alfvén waves in the auroral ionosphere: A numerical model compared with measurements. J. Geophys. Res., 97(A1), 7790, doi: 10.1029/91JA02300.Google Scholar
Knudsen, D. J., Burchill, J. K., Buchert, S. C., et al. (2017). Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res., 122, 2655–73, doi: 10.1002/2016JA022571.Google Scholar
Kwak, Y.-S., Richmond, A. D., Deng, Y., Forbes, J. M. and Kim, K.-H. (2009). Dependence of the high-latitude thermospheric densities on the interplanetary magnetic field. J. Geophys. Res., 114, A05304, doi: 10.1029/2008JA013882.Google Scholar
Lei, J., Thayer, J. P., Burns, A. G., Lu, G. and Deng, Y. (2010). Wind and temperature effects on thermosphere mass density response to the November 2002 Geomagnetic Storm. J. Geophys. Res., 115, A05303, doi: 10.1029/2009JA014754.Google Scholar
Lehtinen, M. and Pirjola, R. (1985). Currents produced in earthed conductor networks by geomagnetically-induced electric fields. Ann. Geophys., 3, 479–84.Google Scholar
Liu, H. and Lühr, H. (2005). Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res., 110, A09S29, doi: 10.1029/2004JA010908.Google Scholar
Liu, H., Lühr, H. and Watanabe, S. (2007). Climatology of the Equatorial Thermospheric Mass Density Anomaly. J. Geophys. Res., 112, A05305, doi: 10.1029/2006JA012199.Google Scholar
Liu, R., Lühr, H. and Ma, S. Y. (2010a). Storm-time related mass density anomalies in the polar cap as observed by CHAMP. Ann. Geophys., 28(1), 165–80.Google Scholar
Liu, R., Lühr, H., Doornbos, E. and Ma, S. Y. (2010b). Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field. Ann. Geophys., 28, 1633–45, doi: 10.5194/angeo-28-1633-2010.Google Scholar
Liu, R., Ma, S.-Y. and Lühr, H. (2011). Predicting storm-time thermospheric mass density variations at CHAMP and GRACE altitudes. Ann. Geophys., 29, 443–53, doi: 10.5194/angeo-29-443-2011.Google Scholar
Lockwood, M., Cowley, S. W. H. and Freeman, M. P. (1990). The excitation of plasma convection in the high‐latitude ionosphere. J. Geophys. Res., 95(A6), 7961–72.Google Scholar
Love, J. J., Pulkkinen, A., Bedrosian, P. A., Jonas, S., Kelbert, A., Rigler, E. J., Finn, C. A., Balch, C. C., Rutledge, R., Wagge, R. M., Sabata, A. T., Kozyra, J. U. and Black, C. E. (2016). Geoelectric hazard maps for the continental United States. Geophys. Res. Lett., 43, 9415–24, doi: 10.1002/2016GL070469.Google Scholar
Lu, G., Richmond, A. D., Lühr, H. and Paxton, L. (2016). High-latitude energy input and its impact on the thermosphere. J. Geophys. Res., 121, 7108–24, doi: 10.1002/2015JA022294.Google Scholar
Lühr, H., Park, J., Gjerloev, J. W., Rauberg, J., Michaelis, I., Merayo, J. M. G. and Brauer, P. (2015). Field‐aligned currents’ scale analysis performed with the Swarm constellation. Geophys. Res. Lett., 42, 18, doi: 10.1002/2014GL062453.Google Scholar
Lühr, H., Park, J., Ritter, P. and Liu, H. (2012). In-situ CHAMP observation of ionosphere-thermosphere coupling. Space Sci. Rev., 168, 237–60, doi: 10.1007/s11214-011-9798-4.Google Scholar
Lühr, H., Rother, M., Köhler, W., Ritter, P. and Grunwaldt, L. (2004). Thermospheric up-welling in the cusp region, evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi: 10.1029/2003GL019314.Google Scholar
Lyon, J. G., Fedder, J. A. and Mobarry, C. M. (2004). The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol. Terr. Phys., 66, 1333–50, doi: 10.1016/j.jastp.2004.03.020.Google Scholar
Lysak, R. L. (1991). Feedback instability of the ionospheric resonant cavity. J. Geophys. Res., 96, 1553–68, doi: 10.1029/90JA02154.Google Scholar
Mann, I. R., Milling, D. K., Rae, I. J., et al. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev., 141(1–4), 413–51.Google Scholar
Mann, I. R., Wright, A. N., Mills, K. J. and Nakariakov, V. M. (1999). Excitation of magnetospheric waveguide modes by magnetosheath flows. J. Geophys. Res., 104(A1), 333–53.Google Scholar
Marti, L., Yiu, C., Rezaei-Zare, A. and Boteler, D. (2014). Simulation of geomagnetically induced currents with piecewise layered-Earth models. IEEE Trans. Power Delivery, 29, 1886–93, doi: 10.1109/TPWRD.2014.2317851.Google Scholar
McPherron, R. L., Russell, C. T. and Aubry, M. P. (1973). Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res., 78(16), 3131–49.Google Scholar
Milan, S. E. (2013). Modeling Birkeland currents in the expanding/contracting polar cap paradigm, J. Geophys. Res., 118(9), 5532–42.Google Scholar
Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.-T., Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J., Snekvik, K., Korth, H. and Anderson, B. J. (2017). Overview of solar wind-magnetosphere–ionosphere-atmosphere coupling and the generation of magnetospheric currents. Space Sci. Rev., doi: 10.1007/s11214-017-0333-0.Google Scholar
Miles, D. M., Mann, I. R., Pakhotin, I. P., et al. (2018). Alfvénic dynamics and fine structuring of discrete auroral arcs: Swarm and e‐POP observations. Geophys. Res. Lett., 45(2), 545–55.Google Scholar
Milling, D. K., Rae, I. J., Mann, I. R., et al. (2008). Ionospheric localisation and expansion of long‐period Pi1 pulsations at substorm onset. Geophys. Res. Lett., 35(17).Google Scholar
Müller, S., Lühr, H. and Rentz, S. (2009). Solar and magnetospheric forcing of the low latitude thermospheric mass density, as observed by CHAMP. Ann. Geophys., 27, 2087–99.Google Scholar
Murphy, K. R., Rae, I. J., Mann, I. R., et al. (2009). Wavelet‐based ULF wave diagnosis of substorm expansion phase onset. J. Geophys. Res., 114(A1).Google Scholar
Nakamura, R., Baumjohann, W., Schödel, R., Brittnacher, M., Sergeev, V. A., Kubyshkina, M., Mukai, T. and Liou, K. (2001). Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res., 106(A6), 10791–802, doi: 10.1029/2000JA000306.Google Scholar
Newell, P. T., Sotirelis, T., Liou, K., Meng, C. I. and Rich, F. J. (2007). A nearly universal solar wind-magnetosphere coupling function inferred from magnetospheric state variables. J. Geophys. Res., 112, A01206, doi: 10.1029/2006JA012015.CrossRefGoogle Scholar
Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A. and Crowley, G. (2015). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophys. Res. Lett., 42, 6916–21, doi: 10.1002/2015GL065061.Google Scholar
Ngwira, C. M., Pulkkinen, A., Kuznetsova, M. M. and Glocer, A. (2014). Modeling extreme ‘Carrington-type’ space weather events using three-dimensional global MHD simulations. J. Geophys. Res., 119, 4456–74, doi: 10.1002/2013JA019661.Google Scholar
Nikitina, L., Trichtchenko, L. and Boteler, D. H. (2016). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, doi: 10.1002/2016SW001386.Google Scholar
Ogino, T., Walker, R. J. and Ashour-Abdalla, M. (1994). A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field. J. Geophys. Res., 99, 11027–42, doi: 10.1029/93JA03313.Google Scholar
Ohtani, S. I. (2004). Flow bursts in the plasma sheet and auroral substorm onset: Observational constraints on connection between midtail and near-Earth substorm processes. Space Sci. Rev., 113(1–2), 7796.Google Scholar
Pakhotin, I. P., Mann, I. R., Lysak, R. L., et al. (2018). Diagnosing the role of Alfvén waves in magnetosphere‐ionosphere coupling: Swarm observations of large amplitude nonstationary magnetic perturbations during an interval of northward IMF. J. Geophys. Res., 123(1), 326–40.Google Scholar
Peticolas, L. M., Craig, N., Odenwald, S. F., et al. (2009). The Time History of Events and Macroscale Interactions during Substorms (THEMIS) education and outreach (E/PO) program, in The THEMIS Mission, pp. 557–83, Springer, New York.Google Scholar
Pirjola, R. (2010). Derivation of characteristics of the relation between geomagnetic and geoelectric variation fields from the surface impedance for a two-layer Earth. Earth Planets Space, 62, 287–95.Google Scholar
Pirjola, R. and Lehtinen, M. (1985). Currents produced in the Finnish 400 kV power transmission grid and in the Finnish natural gas pipeline by geomagnetically-induced electric fields. Ann. Geophys., 3, 485–91.Google Scholar
Prölss, G. W. (1987). Storm-induced changes in the thermospheric composition at middle latitudes, Planet. Space Sci., 35, 807–11.Google Scholar
Prölss, G. W. (1997). Magnetic storm associated perturbations of the upper atmosphere, in Magnetic Storms, ed. Tsurutani, B. T., Gonzalez, W. D., Kamide, Y. and Arballo, J. K., pp. 227–41, Geophys. Monogr. 98, AGU, Washington, DC.Google Scholar
Prölss, G. W. (2005). Physics of the Earth’s Space Environment, Springer, Berlin.Google Scholar
Prölss, G. W. (2011). Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy, Surv. Geophys., 32, 101–95, doi: 10.1007/s10712-010-9104-0.Google Scholar
Pulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A. and Ngwira, C. (2015). Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth Planets Space, 67, 93, doi: 10.1186/s40623-015-0255-6.Google Scholar
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., Eichner, J., Cilliers, P. J., Welling, D., Savani, N. P., Weigel, R. S., Love, J. J., Balch, C., Ngwira, C. M., Crowley, G., Schultz, A., Kataoka, R., Anderson, B., Fugate, D., Simpson, J. J. and MacAlester, M. (2017). Geomagnetically induced currents: Science, engineering and applications readiness. Space Weather, 15, doi: 10.1002/2016SW001501.Google Scholar
Pulkkinen, A., Kataoka, R., Watari, S. and Ichiki, M. (2010). Modeling geomagnetically induced currents in Hokkaido, Japan. Adv. Space Res., 46, 1087–93, doi: 10.1016/j.asr.2010.05.024.Google Scholar
Pulkkinen, A., Klimas, A., Vassiliadis, D., Uritsky, V. and Tanskanen, E. (2006). Spatiotemporal scaling properties of the ground geomagnetic field variations. J. Geophys. Res., 111(A3), A03305, doi: 10.1029/2005JA011294.Google Scholar
Püthe, C. and Kuvshinov, A. (2013). Towards quantitative assessment of the hazard from space weather: Global 3-D modellings of the electric field induced by a realistic geomagnetic storm. Earth Planets Space, 65, 1017–25, doi: 10.5047/eps.2013.03.003.Google Scholar
Püthe, C., Manoj, C. and Kuvshinov, A. (2014). Reproducing electric field observations during magnetic storms by means of rigorous 3-D modelling and distortion matrix co-estimation. Earth Planets Space, 66, 162, doi: 10.1186/s40623-014-0162-2.Google Scholar
Rae, I. J., Mann, I. R., Murphy, K. R., et al. (2009a). Timing and localization of ionospheric signatures associated with substorm expansion phase onset. J. Geophys. Res., 114(A1).Google Scholar
Rae, I. J., Mann, I. R., Angelopoulos, V., et al. (2009b). Near‐Earth initiation of a terrestrial substorm. J. Geophys. Res., 114(A7).Google Scholar
Rae, I. J., Murphy, K. R., Watt, C. E., et al. (2017). Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset. Geosci. Lett., 4(1), 23.Google Scholar
Raeder, J., Larson, D., Li, W., Kepko, E. L. and Fuller-Rowell, T. (2008). OpenGGCM simulations for the THEMIS mission. Space Sci. Rev., 141, 535, doi: 10.1007/s11214-008-9421-5.Google Scholar
Ritter, P., Lühr, H. and Doornbos, E. (2010). Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Ann. Geophys., 28, 1207–20, doi: 10.5194/angeo-28-1207-2010.Google Scholar
Ritter, P., Lühr, H. and Rauberg, J. (2013). Determining field‐aligned currents with the Swarm constellation mission. Earth Planet Space, 65(11), 1285–94, doi: 10.5047/eps.2013.09.006.Google Scholar
Russell, C. T., Chi, P. J., Dearborn, D. J., Ge, Y. S., Kuo-Tiong, B., Means, J. D., Pierce, D. R., Rowe, K. M. and Snare, R. C. (2008). THEMIS ground-based magnetometers. Space Sci. Rev., 141(1–4), 389412.Google Scholar
Scholer, M. (1970). On the motion of artificial ion clouds in the magnetosphere. Planet. Space Sci., 18, 977.Google Scholar
Song, Y. and Lysak, R. L. (2001). Towards a new paradigm: From a quasi-steady description to a dynamical description of the magnetosphere. Space Sci. Rev., 95(1–2), 273–92.Google Scholar
Strangeway, R. J. (2012). The relationship between magnetospheric processes and auroral field-aligned current morphology. Auror. Phenomenol. Magnetos. Process. Earth Planets, 197, 355–64.Google Scholar
Takahashi, K., Lee, D.-H., Nosé, M., Anderson, R. R. and Hughes, W. J. (2003). CRRES electric field study of the radial mode structure of Pi2 pulsations. J. Geophys. Res., 108, 1210, doi: 10.1029/2002JA009761, A5.Google Scholar
Tamao, T. (1964). The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J. Geomagn. Geoelectr., 18, 89114.Google Scholar
Tanskanen, E. I., Viljanen, A., Pulkkinen, T. I., Pirjola, R., Häkkinen, L., Pulkkinen, A. and Amm, O. (2001). At substorm onset, 40 % of AL comes from underground. J. Geophys. Res., 106, 13119–34.Google Scholar
Thomson, A., Dawson, E. and Reay, S. (2011). Quantifying extreme behaviour in geomagnetic activity. Space Weather, 9, S10001, doi: 10.1029/2011SW000696.Google Scholar
Toth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., DeZeeuw, C. D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., Oehmke, R. C., Powell, K. G., Ridley, A. R., Roussev, I. I., Stout, Q. F., Volberg, O., Wolf, R. A., Sazykin, S., Chan, A., Yu, B. and Kota, J. (2005). Space weather modeling framework: A new tool for the space science community. J. Geophys. Res., 110. doi: 10.1029/2005JA011126.Google Scholar
Untiedt, J. and Baumjohann, W. (1993). Studies of polar current systems using the IMS Scandinavian magnetometer array. Space Sci. Rev., 63, 245390, doi: 10.1007/BF00750770.Google Scholar
Vasseur, G. and Weidelt, P. (1977). Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly. Geophys. J. R. Astron. Soc., 51, 669–90, doi: 10.1111/j.1365-246X.1977.tb04213.x.Google Scholar
Viljanen, A., Amm, O. and Pirjola, R. (1999). Modelling geomagnetically induced currents during different ionospheric situations. J. Geophys. Res., 104, 28059–72, doi: 10.1029/1999JA900337.Google Scholar
Viljanen, A., Pirjola, R., Wik, M., Adam, A., Pracser, E., Sakharov, Ya. and Katkalov, Yu. (2012). Continental scale modelling of geomagnetically induced currents. J. Space Weather Space Clim., 2, A17, doi: 10.1051/swsc/2012017.Google Scholar
Viljanen, A., Pulkkinen, A., Pirjola, R., Pajunpää, K., Posio, P. and Koistinen, A. (2006). Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system. Space Weather, 4, S10004, doi: 10.1029/2006SW000234.Google Scholar
Viljanen, A., Wintoft, P. and Wik, M. (2015). Regional estimation of geomagnetically induced currents based on the local magnetic or electric field. J. Space Weather Space Clim., 5, A24, doi: 10.1051/swsc/2015022.Google Scholar
Watari, S., Kunitake, M., Kitamura, K., Hori, T., Kikuchi, T., Shiokawa, K., Nishitani, N., Kataoka, R., Kamide, Y., Aso, T., Watanabe, Y. and Tsuneta, Y. (2009). Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather, 7, S03002, doi: 10.1029/2008SW000417.Google Scholar
Weaver, J. T. (1964). On the separation of local geomagnetic fields into external and internal parts. Z. Geophys., 30, 2936.Google Scholar
Wei, L. H., Homeier, N. and Gannon, J. L. (2013). Surface electric fields for North America during historical geomagnetic storms. Space Weather, 11, 451–62, doi: 10.1002/swe.20073.Google Scholar
Weigel, R. S. (2017). A comparison of methods for estimating the geoelectric field. Space Weather, 15, 430–40, doi: 10.1002/2016SW001504.Google Scholar
Weigel, R. S., Klimas, A. J. and Vassiliadis, D. (2003). Solar wind coupling to and predictability of ground magnetic fields and their time derivatives, J. Geophys. Res., 108(A7), 1298, doi: 10.1029/2002JA009627.Google Scholar
Weimer, D. R. (2001). Maps of ionospheric field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. J. Geophys. Res., 106(A7), 12889–902.Google Scholar
Weimer, D. R. (2013). An empirical model of ground-level geomagnetic perturbations. Space Weather, 11, 107–20, doi: 10.1002/swe.20030.Google Scholar
Wintoft, P., Wik, M. and Viljanen, A. (2015). Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. J. Space Weather Space Clim., 5, A7, doi: 10.1051/swsc/2015008.Google Scholar
Wright, A. N. (1996). Transfer of magnetosheath momentum and energy to the ionosphere along open field lines. J. Geophys. Res., 101(A6), 13169–78.Google Scholar
Wright, A. N. and Mann, I. R. (2006). Global MHD eigenmodes of the outer magnetosphere, in Magnetospheric ULF Waves: Synthesis and New Directions, ed. Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., pp. 5172, American Geophysical Union, Washington, DC.Google Scholar
Wygant, J. R., Keiling, A., Cattell, C. A., et al. (2002). Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 RE altitudes in the plasma sheet boundary layer. J. Geophys. Res., 105(A8), doi: 10.1029/2001JA900113.Google Scholar
Wygant, J. R., Keiling, A., Cattell, C. A., et al. (2000). Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora. J. Geophys. Res., 105(A8), 18675–92.Google Scholar
Zhang, J. J., Wang, C. and Tang, B. B. (2012). Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one-dimensional method. Space Weather, 10, S05005, doi: 10.1029/2012SW000772.Google Scholar
Zhou, Y. L., Ma, S. Y., Lühr, H., Xiong, C. and Reigber, C. (2009). An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data, Adv. Space Res., 43, 819–28.Google Scholar

References

Anderson, C. N. (1928). Correlation of long wave transatlantic radio transmission with other factors affected by solar activity. Proc. Inst. Radio Eng. 16, 297347. doi: 10.1109/JRPROC.1928.221400Google Scholar
ATSB (Australian Transport Safety Bureau) (2011). In-flight upset, 154 km west of Learmonth, Western Australia, 7 October 2008, VH-QPA, Airbus A330-303. Report AO-2008–070.Google Scholar
Baker, D. N., et al. (2013). A major solar eruptive event in July 2012: Defining extreme space weather scenarios. Space Weather 11, 585–91. doi: 10.1002/swe.20097.Google Scholar
Barlow, W. H. (1849). On the spontaneous electrical currents observed in wires of the electric telegraph. Philos. Trans. R. Soc. London, 139, 6172. doi: 10.1098/rstl.1849.0006Google Scholar
BIRA-IASB (2016). The eccentric dipole model. www.spenvis.oma.be/help/background/magfield/cd.html#ED.Google Scholar
Bolduc, L. (2002). GIC observations and studies in the Hydro-Québec power system. J. Atmos. Sol. Terr. Phys. 64, 17931802. doi: 10.1016/S1364-6826(02)00128-1.Google Scholar
Boynton, R. J., et al. (2015). Online NARMAX model for electron fluxes at GEO. Ann. Geophys. 33, 405–11. doi: 10.5194/angeo-33-405-2015.Google Scholar
Cannon, P., et al. (2013). Extreme Space Weather: Impacts on Engineered Systems and Infrastructure. UK Royal Academy of Engineering, London.Google Scholar
Carrington, R. C. (1859). Description of a singular appearance seen in the Sun on September 1. Mon. Not. Roy. Astron. Soc. 20, 1315. doi: 10.1093/mnras/20.1.13Google Scholar
Carter, B. A., et al. (2015). Interplanetary shocks and the resulting geomagnetically induced currents at the equator. Geophys. Res. Lett. 42, 6554–9. doi: 10.1002/2015GL065060.Google Scholar
Clauer, C. R. and Siscoe, G.. (2006). The great historical geomagnetic storm of 1859: A modern look. Adv. Space Res. 38, 115388.Google Scholar
Davis, T. N. and Sugiura, M. (1966). Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71(3), 785801, doi: 10.1029/JZ071i003p00785.Google Scholar
Dyer, C. S., et al. (2007). Solar particle events in the QinetiQ atmospheric radiation model. IEEE Trans. Nucl. Sci. 54, 1071–5. doi: 10/1109/TNS.2007.893537.Google Scholar
Dyer, C., et al. (2018). Extreme atmospheric radiation environments & single event effects. IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2017.2761258.Google Scholar
Eastwood, J. P., et al. (2018). Quantifying the economic value of space weather forecasting for power grids: An exploratory study. Space Weather 16, 2052–67. doi: 10.1029/2018SW002003.Google Scholar
Erinmez, I. A., et al. (2002). Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J. Atmos. Sol. Terr. Phys. 64, 743–56. doi: 10.1016/S1364-6826(02)00036-6.Google Scholar
Eroshenko, E. A., et al. (2010). Effects of strong geomagnetic storms on Northern railways in Russia. Adv. Space Res. 46, 1102–10. doi: 10.1016/j.asr.2010.05.017.Google Scholar
Gaunt, C. T. (2014). Reducing uncertainty – responses for electricity utilities to severe solar storms. J. Space Weather Space Clim. 4, A01. doi: 10.1051/swsc/2013058Google Scholar
Gaunt, C. T. and Coetzee, G. (2007). Transformer failures in regions incorrectly considered to have low GIC-risk, presented at the IEEE Powertech Conference, Lausanne, Switzerland, July. doi: 10.1109/PCT.2007.4538419.Google Scholar
Gauthier, L., et al. (2001). EGNOS: The first step in Europe’s contribution to the global navigation satellite system. ESA Bull. 105, 3542. http://esamultimedia.esa.int/multimedia/publications/ESA-Bulletin-105/.Google Scholar
Gold, T. and Palmer, D. R. (1956). The solar outburst, 23 February 1956 – Observations by the Royal Greenwich Observatory. J. Atmos. Terr. Phys. 8, 287–90.Google Scholar
Guillon, S., Toner, P., Gibson, L. and Boteler, D. (2016). A colorful blackout: The havoc caused by auroral electrojet generated magnetic field variations in 1989. IEEE Power Energy Mag. 14(6), 5971. doi: 10.1109/MPE.2016.259176.Google Scholar
Hambling, D. (2014). Burnout. New Scientist 223, 42–5. doi: 10.1016/S0262-4079(14)61863-7.Google Scholar
Hapgood, M. (2017a). Space Weather. IOP Publishing, Bristol. doi: 10.1088/978-0-7503-1372-8.Google Scholar
Hapgood, M. (2017b). Satellite navigation – Amazing technology but insidious risk: Why everyone needs to understand space weather. Space Weather 15, 545–8. doi: 10.1002/2017SW001638.Google Scholar
Hapgood, M. (2019). The Great Storm of May 1921: an Exemplar of a Dangerous Space Weather Event. Space Weather 17. https://doi.org/10.1029/2019SW002195.Google Scholar
Hapgood, M., et al. (2016). Summary of space weather worst-case environments. Revised edition. RAL Technical Report RAL-TR-2016-06. http://purl.org/net/epubs/work/25015281.Google Scholar
Hodgson, R. (1859). On a curious appearance seen in the Sun. Mon. Not. Roy. Astron. Soc. 20, 1516. doi: 10.1093/mnras/20.1.15.Google Scholar
Horne, R. B., et al. (2013). Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 11, 169–86. doi: 10.1002/swe.20023.Google Scholar
HSE (Health and Safety Executive) (1992). The tolerability of risk from nuclear power stations. www.onr.org.uk/documents/tolerability.pdf.Google Scholar
Jakowski, N., et al. (2008). Large-scale ionospheric gradients over Europe observed in October 2003, J. Atmos. Sol. Terr. Phys. 70, 18941903. doi: 10.1016/j.jastp.2008.03.020.Google Scholar
Karsberg, A., et al. (1959). The Influences of Earth Magnetic Currents on Telecommunication Lines. English edn. Televerket, Stockholm.Google Scholar
Kintner, P. M., Ledvina, B. M. and de Paula, E. R. (2007). GPS and ionospheric scintillations. Space Weather 5, S09003. doi: 10.1029/2006SW000260.Google Scholar
Klobuchar, J. A. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. AES-23, 325–31. doi: 10.1109/TAES.1987.310829Google Scholar
Knipp, D. J., et al. (2016). The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses. Space Weather 14, 614–33. doi: 10.1002/2016SW001423.Google Scholar
Kosik, J. C. (1994). Maglib User’s Guide. Version 2. CNES, Toulouse.Google Scholar
Krausmann, E., et al. (2015). Space weather and rail: Findings and outlook. EU Joint Research Centre report 98155. doi: 10.2788/211456Google Scholar
Liu, L., et al. (2016). Analysis of the monitoring data of geomagnetic storm interference in the electrification system of a high-speed railway. Space Weather 14, 754–63. doi: 10.1002/2016SW001411.Google Scholar
Loh, R., et al. (1995). The U.S. Wide-Area Augmentation System (WAAS). Navigation 42, 435–65. doi: 10.1002/j.2161-4296.1995.tb01900.xGoogle Scholar
Luntama, J., et al. 2017. Report on the ESA Space-Weather Socio-Economic Study. www.ukssdc.ac.uk/meetings/L5InTandemWithL1/talks/session01/04_SSA%20SWE%20CBA%20Study.pptx.Google Scholar
Marsden, P.L., et al. (1956). Variation of cosmic-ray nucleon intensity during the disturbance of 23 February 1956. J. Atmos. Terr. Phys. 8, 278–81.Google Scholar
Maunder, E. W. (1900). The Royal Observatory Greenwich: A Glance at Its History and Work. Reprinted by Cambridge University Press, Cambridge, 2013.Google Scholar
McIlwain, C. E. (1961). Coordinates for mapping the distribution of magnetically trapped particles. J. Geophys. Res. 66, 3681–91. doi: 10.1029/JZ066i011p03681.Google Scholar
McNish, A. G. (1940). The magnetic storm of March 24, 1940. Terr. Magn. Atmos. Electr. 45, 359–64. doi: 10.1029/TE045i003p00359.Google Scholar
Meredith, N. P., Horne, R. B., Isles, J. D. and Rodriguez, J. V. (2015), Extreme relativistic electron fluxes at geosynchronous orbit: Analysis of GOES E >2 MeV electrons. Space Weather 13. doi: 10.1002/2014SW001143.Google Scholar
Miyake, F., et al. (2012). A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240–42. doi: 10.1038/nature11123.Google Scholar
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics 38, 114–17.Google Scholar
Nava, B., Coisson, P. and Radicella, S. M. (2008). A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol. Terr. Phys. 70(15), 1856–62. doi: 10.1016/j.jastp.2008.01.015.Google Scholar
NERC (North American Electrical Reliability Corporation) (2012). GMD Task Force Report: Effects of GMD on the bulk power system. www.nerc.com/pa/Stand/Geomagnetic%20Disturbance%20Resources%20DL/2012_GMD_Report_112012.pdf.Google Scholar
New York Times (1921a). Sunspot credited with rail tie-up, 16 May, p. 2. http://query.nytimes.com/mem/archive-free/pdf?res=9E05E7D61E3FEE3ABC4E52DFB366838A639EDE.Google Scholar
Ngwira, C. M., et al. (2015). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophys. Res. Lett. 42, 6916–21. doi: 10.1002/2015GL065061.Google Scholar
Normand, E. (1997). Neutron-induced single event burnout in high voltage electronics. IEEE Trans. Nucl. Sci. 44, 2358–66. doi: 10.1109/23.659062.Google Scholar
Ott, E. (1978). Theory of Rayleigh–Taylor bubbles in the equatorial ionosphere. J. Geophys. Res. 83, 2066–70. doi: 10.1029/JA083iA05p02066.Google Scholar
Oughton, E., et al. (2018). A risk assessment framework for the socio-economic impacts of electricity transmission infrastructure failure due to space weather: An application to the UK. Risk Analy.. doi: 10.1111/risa.13229.Google Scholar
Pisacane, V. L. (2016). The Space Environment and Its Effects on Space Systems. 2nd edn. AIAA, Reston, VA. doi: 10.2514/4.103537.Google Scholar
PourEVA (2003). Le Ministre DEWAEL reconnait la faillibilité du vote électronique grâce à un rayon cosmique complice! www.poureva.be/article.php3?id_article=36.Google Scholar
Preece, W. H. (1894). Earth currents. Nature 49, 554. doi: 10.1038/049554b0.Google Scholar
Pulkkinen, A., et al. (2015). Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth Planets Space 67, 93. doi: 10.1186/s40623-015-0255-6.Google Scholar
Rao, K. N. (2007). GAGAN – The Indian satellite based augmentation system. Ind. J. Radio Space Phys. 36, 293302. http://nopr.niscair.res.in/handle/123456789/4707.Google Scholar
Russell, C. T., et al. (2013). The very unusual interplanetary coronal mass ejection of 2012 July 23: A blast wave mediated by solar energetic particles. Astrophys. J. 770, 38. doi: 10.1088/0004-637X/770/1/38.Google Scholar
Smith, P. M. (1990). Effects of geomagnetic disturbances on the national grid system. Presented at the Universities Power Engineering Conference (UPEC).Google Scholar
Space Studies Board and National Research Council (2009). Severe Space Weather Events – Understanding Societal and Economic Impacts: A Workshop Report. National Academies Press, Washington, DC.Google Scholar
STFC (2017). ChipIR: Instrument for rapid testing of effects of high energy neutrons. www.isis.stfc.ac.uk/instruments/chipir/chipir8471.html.Google Scholar
Stilgoe, J. (2017). Tesla crash report blames human error – this is a missed opportunity. The Guardian, 21 January. www.theguardian.com/science/political-science/2017/jan/21/tesla-crash-report-blames-human-error-this-is-a-missed-opportunity.Google Scholar
Thomson, A. and Wild, J. (2010). When the lights go out … Astron. Geophys. 51, 5.23–4. doi: 10.1111/j.1468-4004.2010.51523.x.Google Scholar
Trinity House (2016). Satellite navigation ground based augmentations. www.trinityhouse.co.uk/dgps.Google Scholar
Usoskin, I. G., et al. (2013). The AD775 cosmic event revisited: The Sun is to blame. Astronomy and Astrophysics 552, L3.Google Scholar
van den IJssel, J., Forte, B. & Montenbruck, O. (2016). Impact of Swarm GPS receiver updates on POD performance. Earth Planet and Space 68, 85. doi: 10.1186/s40623-016-0459-4.Google Scholar
Viljanen, A., et al. (2006a). Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system. Space Weather 4, S10004. doi: 10.1029/2006SW000234.Google Scholar
Viljanen, A., et al. (2006b). Relation between substorm characteristics and rapid temporal variations of the ground magnetic field. Ann Geophys 24, 725–33. doi: 10.5194/angeo-24-725-2006.Google Scholar
Wik, M., et al. (2009). Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann. Geophys. 27, 1775–87. doi: 10.5194/angeo-27-1775-2009.Google Scholar
Wood, J. and Caustin, E. (2006). Timely testing avoids cosmic ray damage to critical auto electronics. www.eetimes.com/document.asp?doc_id=1272752.Google Scholar
Wrubel, J. N. (1992). Monitoring program protects transformers from geomagnetic effects. IEEE Comput. Appl. Power 5, 1014. doi: 10.1109/67.111465.Google Scholar
Zhang, J. J., et al. (2015). GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation. Space Weather 13, 643–55. doi: 10.1002/2015SW001263.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×