Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: October 2019

15 - Space Weather Effects in the Ionosphere, in the Thermosphere and at Earth’s Surface

from Part IV - Space Weather


In the context of space weather effects, magnetosphere-ionosphere coupling is one of the fundamental processes controlling energy transfer and dissipation in geospace. Alfvén waves appear to play a key role in this coupling, specifically in coupling the dynamics of magnetospheric convection to the ionosphere and in generating the region 1 and region 2 global field-aligned current systems. The momentum transport from the magnetosphere to the ionosphere can be described as the result of the generation and propagation of Alfvén waves, for example as arising along newly reconnected magnetic field-lines, and in general in terms of their incidence on and reflection from the ionosphere. The thermosphere experiences dramatic changes in density and composition during magnetic storms. Intense Joule heating and particle precipitation at auroral latitudes cause intense thermal expansion, air upwelling and strong wind circulations. The Joule heating at E-layer altitudes can cause both density enhancements and depletions at higher altitudes, and complicate the interpretation of mass density anomalies at high latitudes. The thermospheric response to storms at middle and low latitudes is less complicated, where the averaged density enhancement is linearly proportional to the solar wind input. Magnetic substorms during active periods also cause mass density perturbations. Magnetic storms and substorms can cause disturbances up to thousands of nT at the Earth’s surface. The time derivative of the magnetic field provides a proxy for the associated geoelectric field, which can drive geomagnetically induced currents in Earthed conductors. The geoelectric field is thus a key quantity for space weather effects on technological systems such as power grids, and it can be obtained by modelling the magnetic field using ionospheric currents and model ground conductivity as inputs.

Related content

Powered by UNSILO
Alekseev, D., Kuvshinov, A. and Palshin, N. (2015). Compilation of 3D global conductivity model of the Earth for space weather applications. Earth Planets Space, 67, 108, doi: 10.1186/s40623-015-0272-5.
Alfvén, H. (1942). Existence of electromagnetic-hydromagnetic waves, Nature, 150, 405.
Allan, W. and Wright, A. N. (2000). Magnetotail waveguide: Fast and Alfvén waves in the plasma sheet boundary layer and lobe. J. Geophys. Res., 105(A1), 317–28.
Anderson, B. J., Takahashi, K. and Toth, B. A. (2000). Sensing global Birkeland currents with Iridium engineering magnetometer data. Geophys Res Lett, 27(24), 4045–8.
Angelopoulos, V., Baumjohann, W., Kennel, C. F., et al. (1992). Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res., 97(A4), 4027–39.
Angelopoulos, V., McFadden, J. P., Larson, D., et al. (2008). Tail reconnection triggering substorm onset. Science, 321(5891), 931–5.
Bedrosian, P. A. and Love, J. J. (2015). Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances. Geophys. Res. Lett., 42, doi: 10.1002/2015GL066636.
Beggan, C. D. (2015). Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models. Earth Planets Space, 67, 24, doi: 10.1186/s40623-014-0168-9.
Bonner, L. R. and Schultz, A. (2017). Rapid prediction of electric fields associated with geomagnetically induced currents in the presence of three-dimensional ground structure: Projection of remote magnetic observatory data through magnetotelluric impedance tensors. Space Weather, 14, doi: 10.1002/2016SW001535.
Bruinsma, S. L. and Forbes, J. M. (2007). Global observation of traveling atmospheric disturbances (TADs) in the thermosphere. Geophys. Res. Lett., 34, L14103, doi: 10.1029/2007GL030243.
Burke, W. J., Huang, C. Y., Marcos, F. A. and Wise, J. O. (2007). Interplanetary control of thermospheric densities during large magnetic storms. J. Atmos. Sol. Terr. Phys., 69, 279–87.
Burke, W. J., Lin, C. S., Hagan, M. P., Huang, C. Y., Weimer, D. R., Wise, J. O., Gentile, L. C. and Marcos, F. A. (2009). Storm time global thermosphere: A driven-dissipative thermodynamic system. J. Geophys. Res., 114, A06306, doi: 10.1029/2008JA013848.
Cagniard, L. (1953). Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18, 605–35, doi: 10.1190/1.1437915.
Campbell, W. H. (1973). Spectral composition of geomagnetic field variations in the period range of 5 min to 2 hr as observed at the Earth’s surface. Radio Sci., 8, 929–32.
Chi, P. J., Russell, C. T. and Ohtani, S. (2009). Substorm onset timing via travel time magnetoseismology. Geophys. Res. Lett., 36(8).
Cowley, S. W. H. (2000). Magnetosphere–ionosphere interactions: A tutorial review, in Magnetospheric Current Systems, ed. Ohtani, S.-I., Fujii, R., Hesse, M. and Lysak, R. L., American Geophysical Union, Washington, DC, doi: 10.1029/GM118p0091.
Coxon, J. C., Milan, S. E., Clausen, L. B. N., Anderson, B. J. and Korth, H. (2014), A superposed epoch analysis of the regions 1 and 2 Birkeland currents observed by AMPERE during substorms, J. Geophys. Res., 119(12), 9834–46.
Donovan, E., Mende, S., Jackel, B., et al. (2006). The azimuthal evolution of the substorm expansive phase onset aurora. Proc. ICS, 8, 5560.
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2), 47.
Emmert, J. T., Lean, J. L. and Picone, J. M. (2010). Record‐low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett., 37, L12102, doi: 10.1029/2010GL043671.
Emmert, J. T. and Picone, J. M. (2010). Climatology of globally averaged thermospheric mass density. J. Geophys. Res., 115, A09326, doi: 10.1029/2010JA015298.
Engels, M., Korja, T. and the BEAR Working Group (2002). Multisheet modelling of the electrical conductivity structure in the Fennoscandian Shield. Earth Planets Space, 54, 559–73, doi: 10.1186/BF03353045.
Forbes, J. M., Gonzalez, R., Marcos, F. A., Revelle, D. and Parish, H. (1996). Magnetic storm response of lower thermospheric density, J. Geophys. Res., 101, 2313–19.
Forbes, J. M., Lu, G., Bruinsma, S., Nerem, R. S. and Zhang, X. (2005). Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements, J. Geophys. Res., 110, A12S27, doi: 10.1029/2004JA010856.
Forsyth, C., Rae, I. J., Mann, I. R. and Pakhotin, I. P. (2017). Identifying intervals of temporally invariant field‐aligned currents from Swarm: Assessing the validity of single‐spacecraft methods. J. Geophys. Res., 122, 3411–19. doi: 10.1002/2016JA023708.
Fujiwara, H. and Miyoshi, Y. (2006). Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model, Geophys. Res. Lett., 33, L20108, doi: 10.1029/2006GL027103.
Friis‐Christensen, E., Lühr, H., Knudsen, D. and Haagmans, R. (2008). Swarm – an Earth observation mission investigating geospace. Adv. Space Res., 41, 210–16, doi: 10.1016/j.asr.2006.10.008.
Ganushkina, N. Y., Liemohn, M. W., Dubyagin, S., Daglis, I. A., Dandouras, I., De Zeeuw, D. L., Ebihara, Y., Ilie, R., Katus, R., Kubyshkina, M., Milan, S. E., Ohtani, S., Østgaard, N., Reistad, J. P., Tenfjord, P., Tofoletto, F., Zaharia, S. and Amariutei, O. (2015). Defining and resolving current systems in geospace. Ann. Geophys., 33, 13691402, doi: 10.5194/angeo-33-1369-2015.
Gjerloev, J. W. (2012). The SuperMAG data processing technique. J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.
Gjerloev, J. W., Ohtani, S., Iijima, T., Anderson, B., Slavin, J. and Le, G. (2011). Characteristics of the terrestrial field‐aligned current system. Ann. Geophys., 29, 1713–29, doi: 10.5194/angeo‐29‐1713‐2011.
Grzesiak, M. (2000). Ionospheric Alfvén resonator as seen by Freja satellite. Geophys. Res. Lett., 27, 923–6, doi: 10.1029/1999GL010747.
Guo, J., Wan, W., Forbes, J. M., Sutton, E., Nerem, R. S., Woods, T. N., Bruinsma, S. and Liu, L. (2007). Effects of solar variability on thermosphere density from CHAMP accelerometer data. J. Geophys. Res., 112, A10308, doi: 10.1029/2007JA012409.
Iijima, T. and Potemra, T. A. (1976). The amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad. J. Geophys. Res., 81(13), 2165–74.
Jacobs, J. A., Kato, Y., Matsushita, S. and Troitskaya, V. A. (1964). Classification of geomagnetic micropulsations. J. Geophys. Res., 69(1), 180–81.
Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L., Facsko, G. and Pulkkinen, T. I. (2012). The GUMICS-4 global MHD magnetosphere–ionosphere coupling simulation. J. Atmos. Sol. Terr. Phys., 80, 4859, doi: 10.1016/j.jastp.2012.03.006.
Juusola, L., Kauristie, K., van de Kamp, M., Tanskanen, E. I., Mursula, K., Asikainen, T., Andreeova, K., Partamies, N., Vanhamäki, H. and Viljanen, A. (2015). Solar wind control of ionospheric equivalent currents and their time derivatives. J. Geophys. Res., 120, doi: 10.1002/2015JA021204.
Kalmoni, N. M. E., Rae, I. J., Murphy, K. R., et al. (2017). Statistical azimuthal structuring of the substorm onset arc: Implications for the onset mechanism. Geophys. Res. Lett., 44(5), 2078–87.
Kan, J. K. and Lee, L. C. (1979). Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett., 6(7), 577–80.
Kaufman, A. A. and Keller, G. V. (1981). The Magnetotelluric Sounding Method. Elsevier, New York.
Keiling, A. and Takahashi, K. (2011). Review of Pi2 models. Space Sci. Rev., 161(1–4), 63148.
Keiling, A., Wygant, J. R., Cattell, C. A., Mozer, F. S. and Russell, C. T. (2003). The global morphology of wave Poynting flux: Powering the aurora. Science, 299(5605), 383–6.
Kelbert, A., Balch, C. C., Pulkkinen, A., Egbert, G. D., Love, J. J., Rigler, E. J. and Fujii, I. (2017). Methodology for time-domain estimation of storm-time geoelectric fields using the 3D magnetotelluric response tensors. Space Weather, 15, doi: 10.1002/2017SW001594.
Kelbert, A., Kuvshinov, A., Velimsky, J., Koyama, T., Ribaudo, J., Sun, J., Martinec, Z. and Weiss, C. J. (2014). Global 3-D electromagnetic forward modelling: A benchmark study. Geophys. J. Int., 197, 785814, doi: 10.1093/gji/ggu028.
Kepko, L., Kivelson, M. G. and Yumoto, K. (2001). Flow bursts, braking, and Pi2 pulsations. J. Geophys. Res., 106(A2), 1903–15, doi: 10.1029/2000JA000158.
Kepko, L., McPherron, R. L., Amm, O., Apatenkov, S., Baumjohann, W., et al. (2015). Substorm current wedge revisited. Space Sci. Rev., 190(1–4), 146.
Knudsen, D. J., Kelley, M. C. and Vickrey, J. F. (1992).Alfvén waves in the auroral ionosphere: A numerical model compared with measurements. J. Geophys. Res., 97(A1), 7790, doi: 10.1029/91JA02300.
Knudsen, D. J., Burchill, J. K., Buchert, S. C., et al. (2017). Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res., 122, 2655–73, doi: 10.1002/2016JA022571.
Kwak, Y.-S., Richmond, A. D., Deng, Y., Forbes, J. M. and Kim, K.-H. (2009). Dependence of the high-latitude thermospheric densities on the interplanetary magnetic field. J. Geophys. Res., 114, A05304, doi: 10.1029/2008JA013882.
Lei, J., Thayer, J. P., Burns, A. G., Lu, G. and Deng, Y. (2010). Wind and temperature effects on thermosphere mass density response to the November 2002 Geomagnetic Storm. J. Geophys. Res., 115, A05303, doi: 10.1029/2009JA014754.
Lehtinen, M. and Pirjola, R. (1985). Currents produced in earthed conductor networks by geomagnetically-induced electric fields. Ann. Geophys., 3, 479–84.
Liu, H. and Lühr, H. (2005). Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J. Geophys. Res., 110, A09S29, doi: 10.1029/2004JA010908.
Liu, H., Lühr, H. and Watanabe, S. (2007). Climatology of the Equatorial Thermospheric Mass Density Anomaly. J. Geophys. Res., 112, A05305, doi: 10.1029/2006JA012199.
Liu, R., Lühr, H. and Ma, S. Y. (2010a). Storm-time related mass density anomalies in the polar cap as observed by CHAMP. Ann. Geophys., 28(1), 165–80.
Liu, R., Lühr, H., Doornbos, E. and Ma, S. Y. (2010b). Thermospheric mass density variations during geomagnetic storms and a prediction model based on the merging electric field. Ann. Geophys., 28, 1633–45, doi: 10.5194/angeo-28-1633-2010.
Liu, R., Ma, S.-Y. and Lühr, H. (2011). Predicting storm-time thermospheric mass density variations at CHAMP and GRACE altitudes. Ann. Geophys., 29, 443–53, doi: 10.5194/angeo-29-443-2011.
Lockwood, M., Cowley, S. W. H. and Freeman, M. P. (1990). The excitation of plasma convection in the high‐latitude ionosphere. J. Geophys. Res., 95(A6), 7961–72.
Love, J. J., Pulkkinen, A., Bedrosian, P. A., Jonas, S., Kelbert, A., Rigler, E. J., Finn, C. A., Balch, C. C., Rutledge, R., Wagge, R. M., Sabata, A. T., Kozyra, J. U. and Black, C. E. (2016). Geoelectric hazard maps for the continental United States. Geophys. Res. Lett., 43, 9415–24, doi: 10.1002/2016GL070469.
Lu, G., Richmond, A. D., Lühr, H. and Paxton, L. (2016). High-latitude energy input and its impact on the thermosphere. J. Geophys. Res., 121, 7108–24, doi: 10.1002/2015JA022294.
Lühr, H., Park, J., Gjerloev, J. W., Rauberg, J., Michaelis, I., Merayo, J. M. G. and Brauer, P. (2015). Field‐aligned currents’ scale analysis performed with the Swarm constellation. Geophys. Res. Lett., 42, 18, doi: 10.1002/2014GL062453.
Lühr, H., Park, J., Ritter, P. and Liu, H. (2012). In-situ CHAMP observation of ionosphere-thermosphere coupling. Space Sci. Rev., 168, 237–60, doi: 10.1007/s11214-011-9798-4.
Lühr, H., Rother, M., Köhler, W., Ritter, P. and Grunwaldt, L. (2004). Thermospheric up-welling in the cusp region, evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi: 10.1029/2003GL019314.
Lyon, J. G., Fedder, J. A. and Mobarry, C. M. (2004). The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol. Terr. Phys., 66, 1333–50, doi: 10.1016/j.jastp.2004.03.020.
Lysak, R. L. (1991). Feedback instability of the ionospheric resonant cavity. J. Geophys. Res., 96, 1553–68, doi: 10.1029/90JA02154.
Mann, I. R., Milling, D. K., Rae, I. J., et al. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Sci. Rev., 141(1–4), 413–51.
Mann, I. R., Wright, A. N., Mills, K. J. and Nakariakov, V. M. (1999). Excitation of magnetospheric waveguide modes by magnetosheath flows. J. Geophys. Res., 104(A1), 333–53.
Marti, L., Yiu, C., Rezaei-Zare, A. and Boteler, D. (2014). Simulation of geomagnetically induced currents with piecewise layered-Earth models. IEEE Trans. Power Delivery, 29, 1886–93, doi: 10.1109/TPWRD.2014.2317851.
McPherron, R. L., Russell, C. T. and Aubry, M. P. (1973). Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res., 78(16), 3131–49.
Milan, S. E. (2013). Modeling Birkeland currents in the expanding/contracting polar cap paradigm, J. Geophys. Res., 118(9), 5532–42.
Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M.-T., Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J., Snekvik, K., Korth, H. and Anderson, B. J. (2017). Overview of solar wind-magnetosphere–ionosphere-atmosphere coupling and the generation of magnetospheric currents. Space Sci. Rev., doi: 10.1007/s11214-017-0333-0.
Miles, D. M., Mann, I. R., Pakhotin, I. P., et al. (2018). Alfvénic dynamics and fine structuring of discrete auroral arcs: Swarm and e‐POP observations. Geophys. Res. Lett., 45(2), 545–55.
Milling, D. K., Rae, I. J., Mann, I. R., et al. (2008). Ionospheric localisation and expansion of long‐period Pi1 pulsations at substorm onset. Geophys. Res. Lett., 35(17).
Müller, S., Lühr, H. and Rentz, S. (2009). Solar and magnetospheric forcing of the low latitude thermospheric mass density, as observed by CHAMP. Ann. Geophys., 27, 2087–99.
Murphy, K. R., Rae, I. J., Mann, I. R., et al. (2009). Wavelet‐based ULF wave diagnosis of substorm expansion phase onset. J. Geophys. Res., 114(A1).
Nakamura, R., Baumjohann, W., Schödel, R., Brittnacher, M., Sergeev, V. A., Kubyshkina, M., Mukai, T. and Liou, K. (2001). Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res., 106(A6), 10791–802, doi: 10.1029/2000JA000306.
Newell, P. T., Sotirelis, T., Liou, K., Meng, C. I. and Rich, F. J. (2007). A nearly universal solar wind-magnetosphere coupling function inferred from magnetospheric state variables. J. Geophys. Res., 112, A01206, doi: 10.1029/2006JA012015.
Ngwira, C. M., Pulkkinen, A. A., Bernabeu, E., Eichner, J., Viljanen, A. and Crowley, G. (2015). Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements. Geophys. Res. Lett., 42, 6916–21, doi: 10.1002/2015GL065061.
Ngwira, C. M., Pulkkinen, A., Kuznetsova, M. M. and Glocer, A. (2014). Modeling extreme ‘Carrington-type’ space weather events using three-dimensional global MHD simulations. J. Geophys. Res., 119, 4456–74, doi: 10.1002/2013JA019661.
Nikitina, L., Trichtchenko, L. and Boteler, D. H. (2016). Assessment of extreme values in geomagnetic and geoelectric field variations for Canada. Space Weather, 14, doi: 10.1002/2016SW001386.
Ogino, T., Walker, R. J. and Ashour-Abdalla, M. (1994). A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field. J. Geophys. Res., 99, 11027–42, doi: 10.1029/93JA03313.
Ohtani, S. I. (2004). Flow bursts in the plasma sheet and auroral substorm onset: Observational constraints on connection between midtail and near-Earth substorm processes. Space Sci. Rev., 113(1–2), 7796.
Pakhotin, I. P., Mann, I. R., Lysak, R. L., et al. (2018). Diagnosing the role of Alfvén waves in magnetosphere‐ionosphere coupling: Swarm observations of large amplitude nonstationary magnetic perturbations during an interval of northward IMF. J. Geophys. Res., 123(1), 326–40.
Peticolas, L. M., Craig, N., Odenwald, S. F., et al. (2009). The Time History of Events and Macroscale Interactions during Substorms (THEMIS) education and outreach (E/PO) program, in The THEMIS Mission, pp. 557–83, Springer, New York.
Pirjola, R. (2010). Derivation of characteristics of the relation between geomagnetic and geoelectric variation fields from the surface impedance for a two-layer Earth. Earth Planets Space, 62, 287–95.
Pirjola, R. and Lehtinen, M. (1985). Currents produced in the Finnish 400 kV power transmission grid and in the Finnish natural gas pipeline by geomagnetically-induced electric fields. Ann. Geophys., 3, 485–91.
Prölss, G. W. (1987). Storm-induced changes in the thermospheric composition at middle latitudes, Planet. Space Sci., 35, 807–11.
Prölss, G. W. (1997). Magnetic storm associated perturbations of the upper atmosphere, in Magnetic Storms, ed. Tsurutani, B. T., Gonzalez, W. D., Kamide, Y. and Arballo, J. K., pp. 227–41, Geophys. Monogr. 98, AGU, Washington, DC.
Prölss, G. W. (2005). Physics of the Earth’s Space Environment, Springer, Berlin.
Prölss, G. W. (2011). Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy, Surv. Geophys., 32, 101–95, doi: 10.1007/s10712-010-9104-0.
Pulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A. and Ngwira, C. (2015). Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth Planets Space, 67, 93, doi: 10.1186/s40623-015-0255-6.
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., Eichner, J., Cilliers, P. J., Welling, D., Savani, N. P., Weigel, R. S., Love, J. J., Balch, C., Ngwira, C. M., Crowley, G., Schultz, A., Kataoka, R., Anderson, B., Fugate, D., Simpson, J. J. and MacAlester, M. (2017). Geomagnetically induced currents: Science, engineering and applications readiness. Space Weather, 15, doi: 10.1002/2016SW001501.
Pulkkinen, A., Kataoka, R., Watari, S. and Ichiki, M. (2010). Modeling geomagnetically induced currents in Hokkaido, Japan. Adv. Space Res., 46, 1087–93, doi: 10.1016/j.asr.2010.05.024.
Pulkkinen, A., Klimas, A., Vassiliadis, D., Uritsky, V. and Tanskanen, E. (2006). Spatiotemporal scaling properties of the ground geomagnetic field variations. J. Geophys. Res., 111(A3), A03305, doi: 10.1029/2005JA011294.
Püthe, C. and Kuvshinov, A. (2013). Towards quantitative assessment of the hazard from space weather: Global 3-D modellings of the electric field induced by a realistic geomagnetic storm. Earth Planets Space, 65, 1017–25, doi: 10.5047/eps.2013.03.003.
Püthe, C., Manoj, C. and Kuvshinov, A. (2014). Reproducing electric field observations during magnetic storms by means of rigorous 3-D modelling and distortion matrix co-estimation. Earth Planets Space, 66, 162, doi: 10.1186/s40623-014-0162-2.
Rae, I. J., Mann, I. R., Murphy, K. R., et al. (2009a). Timing and localization of ionospheric signatures associated with substorm expansion phase onset. J. Geophys. Res., 114(A1).
Rae, I. J., Mann, I. R., Angelopoulos, V., et al. (2009b). Near‐Earth initiation of a terrestrial substorm. J. Geophys. Res., 114(A7).
Rae, I. J., Murphy, K. R., Watt, C. E., et al. (2017). Using ultra-low frequency waves and their characteristics to diagnose key physics of substorm onset. Geosci. Lett., 4(1), 23.
Raeder, J., Larson, D., Li, W., Kepko, E. L. and Fuller-Rowell, T. (2008). OpenGGCM simulations for the THEMIS mission. Space Sci. Rev., 141, 535, doi: 10.1007/s11214-008-9421-5.
Ritter, P., Lühr, H. and Doornbos, E. (2010). Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Ann. Geophys., 28, 1207–20, doi: 10.5194/angeo-28-1207-2010.
Ritter, P., Lühr, H. and Rauberg, J. (2013). Determining field‐aligned currents with the Swarm constellation mission. Earth Planet Space, 65(11), 1285–94, doi: 10.5047/eps.2013.09.006.
Russell, C. T., Chi, P. J., Dearborn, D. J., Ge, Y. S., Kuo-Tiong, B., Means, J. D., Pierce, D. R., Rowe, K. M. and Snare, R. C. (2008). THEMIS ground-based magnetometers. Space Sci. Rev., 141(1–4), 389412.
Scholer, M. (1970). On the motion of artificial ion clouds in the magnetosphere. Planet. Space Sci., 18, 977.
Song, Y. and Lysak, R. L. (2001). Towards a new paradigm: From a quasi-steady description to a dynamical description of the magnetosphere. Space Sci. Rev., 95(1–2), 273–92.
Strangeway, R. J. (2012). The relationship between magnetospheric processes and auroral field-aligned current morphology. Auror. Phenomenol. Magnetos. Process. Earth Planets, 197, 355–64.
Takahashi, K., Lee, D.-H., Nosé, M., Anderson, R. R. and Hughes, W. J. (2003). CRRES electric field study of the radial mode structure of Pi2 pulsations. J. Geophys. Res., 108, 1210, doi: 10.1029/2002JA009761, A5.
Tamao, T. (1964). The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J. Geomagn. Geoelectr., 18, 89114.
Tanskanen, E. I., Viljanen, A., Pulkkinen, T. I., Pirjola, R., Häkkinen, L., Pulkkinen, A. and Amm, O. (2001). At substorm onset, 40 % of AL comes from underground. J. Geophys. Res., 106, 13119–34.
Thomson, A., Dawson, E. and Reay, S. (2011). Quantifying extreme behaviour in geomagnetic activity. Space Weather, 9, S10001, doi: 10.1029/2011SW000696.
Toth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., DeZeeuw, C. D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., Oehmke, R. C., Powell, K. G., Ridley, A. R., Roussev, I. I., Stout, Q. F., Volberg, O., Wolf, R. A., Sazykin, S., Chan, A., Yu, B. and Kota, J. (2005). Space weather modeling framework: A new tool for the space science community. J. Geophys. Res., 110. doi: 10.1029/2005JA011126.
Untiedt, J. and Baumjohann, W. (1993). Studies of polar current systems using the IMS Scandinavian magnetometer array. Space Sci. Rev., 63, 245390, doi: 10.1007/BF00750770.
Vasseur, G. and Weidelt, P. (1977). Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly. Geophys. J. R. Astron. Soc., 51, 669–90, doi: 10.1111/j.1365-246X.1977.tb04213.x.
Viljanen, A., Amm, O. and Pirjola, R. (1999). Modelling geomagnetically induced currents during different ionospheric situations. J. Geophys. Res., 104, 28059–72, doi: 10.1029/1999JA900337.
Viljanen, A., Pirjola, R., Wik, M., Adam, A., Pracser, E., Sakharov, Ya. and Katkalov, Yu. (2012). Continental scale modelling of geomagnetically induced currents. J. Space Weather Space Clim., 2, A17, doi: 10.1051/swsc/2012017.
Viljanen, A., Pulkkinen, A., Pirjola, R., Pajunpää, K., Posio, P. and Koistinen, A. (2006). Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system. Space Weather, 4, S10004, doi: 10.1029/2006SW000234.
Viljanen, A., Wintoft, P. and Wik, M. (2015). Regional estimation of geomagnetically induced currents based on the local magnetic or electric field. J. Space Weather Space Clim., 5, A24, doi: 10.1051/swsc/2015022.
Watari, S., Kunitake, M., Kitamura, K., Hori, T., Kikuchi, T., Shiokawa, K., Nishitani, N., Kataoka, R., Kamide, Y., Aso, T., Watanabe, Y. and Tsuneta, Y. (2009). Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan. Space Weather, 7, S03002, doi: 10.1029/2008SW000417.
Weaver, J. T. (1964). On the separation of local geomagnetic fields into external and internal parts. Z. Geophys., 30, 2936.
Wei, L. H., Homeier, N. and Gannon, J. L. (2013). Surface electric fields for North America during historical geomagnetic storms. Space Weather, 11, 451–62, doi: 10.1002/swe.20073.
Weigel, R. S. (2017). A comparison of methods for estimating the geoelectric field. Space Weather, 15, 430–40, doi: 10.1002/2016SW001504.
Weigel, R. S., Klimas, A. J. and Vassiliadis, D. (2003). Solar wind coupling to and predictability of ground magnetic fields and their time derivatives, J. Geophys. Res., 108(A7), 1298, doi: 10.1029/2002JA009627.
Weimer, D. R. (2001). Maps of ionospheric field‐aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. J. Geophys. Res., 106(A7), 12889–902.
Weimer, D. R. (2013). An empirical model of ground-level geomagnetic perturbations. Space Weather, 11, 107–20, doi: 10.1002/swe.20030.
Wintoft, P., Wik, M. and Viljanen, A. (2015). Solar wind driven empirical forecast models of the time derivative of the ground magnetic field. J. Space Weather Space Clim., 5, A7, doi: 10.1051/swsc/2015008.
Wright, A. N. (1996). Transfer of magnetosheath momentum and energy to the ionosphere along open field lines. J. Geophys. Res., 101(A6), 13169–78.
Wright, A. N. and Mann, I. R. (2006). Global MHD eigenmodes of the outer magnetosphere, in Magnetospheric ULF Waves: Synthesis and New Directions, ed. Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., pp. 5172, American Geophysical Union, Washington, DC.
Wygant, J. R., Keiling, A., Cattell, C. A., et al. (2002). Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 RE altitudes in the plasma sheet boundary layer. J. Geophys. Res., 105(A8), doi: 10.1029/2001JA900113.
Wygant, J. R., Keiling, A., Cattell, C. A., et al. (2000). Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: An energy source for the aurora. J. Geophys. Res., 105(A8), 18675–92.
Zhang, J. J., Wang, C. and Tang, B. B. (2012). Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one-dimensional method. Space Weather, 10, S05005, doi: 10.1029/2012SW000772.
Zhou, Y. L., Ma, S. Y., Lühr, H., Xiong, C. and Reigber, C. (2009). An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data, Adv. Space Res., 43, 819–28.