Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-26T10:25:20.077Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

SEVEN - Rock Rheology

Donald L. Turcotte
Affiliation:
Cornell University, New York
Gerald Schubert
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

At atmospheric pressure and room temperature most rocks are brittle; that is, they behave nearly elastically until they fail by fracture. Cracks or fractures in rock along which there has been little or no relative displacement are known as joints. They occur on all scales in both sedimentary and igneous rocks. Joints are commonly found in sets defining parallel or intersecting patterns of failure related to local stress orientations. The breakdown of surface rocks by erosion and weathering is often controlled by systems of joints along which the rocks are particularly weak and susceptible to disintegration and removal. These processes in turn enhance the visibility of the jointing. Igneous rocks often develop joints as a result of the thermal stresses associated with cooling and contraction. Columnar jointing in basaltic lava flows (Figure 7–1) and parallel jointing in granitic rocks (Figure 7–2) are examples.

Faults are fractures along which there has been relative displacement. Faults also occur on all scales; examples of faults have already been given in Figures 1–58 and 4–34b and another example is given in Figure 7–3. The mechanical aspects of faulting are discussed in the next chapter.

Although fracture is important in shallow crustal rock at low temperatures and pressures, there are many circumstances in which rock behaves as a ductile material. In determining the transition from brittle to ductile behavior, pressure, temperature, and strain rate are important. If the confining pressure of rock is near the brittle strength of the rock, a transition from brittle to ductile behavior will occur.

Type
Chapter
Information
Geodynamics , pp. 292 - 338
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×