Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T19:26:34.234Z Has data issue: false hasContentIssue false

20 - Pharmaco-genomics of antiretroviral drugs

from Part IV - Next-generation sequencing technology and pharmaco-genomics

Published online by Cambridge University Press:  18 December 2015

Chonlaphat Sukasem
Affiliation:
Mahidol University Faculty of Medicine
Apichaya Puangpetch
Affiliation:
Mahidol University Faculty of Medicine
Sadeep Medhasi
Affiliation:
Mahidol University Faculty of Medicine
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Stephen W. Scherer
Affiliation:
University of Toronto
Peter M. Visscher
Affiliation:
University of Queensland
Get access

Summary

Introduction

Currently several million people take chronic combination antiretroviral (ARV) therapy to suppress human immunodeficiency virus (HIV) infection. There are around 34 million people living with the HIV infection, most of whom reside in developing or under-developed nations. The combined antiretroviral therapy (cART) has prolonged life and prevented the progression of the disease. The cART has lessened the burden of the disease worldwide (Verma et al., 2014). Because of the long-term and multi-drug therapy, several complexities may arise which might affect adherence and tolerability in patients. Serious efforts must be made in order to make the pharmacotherapy of HIV infection efficacious with minimal adverse events. The use of ARV drugs has been associated with different types of toxicities including hypersensitivity reactions, metabolic disturbances, peripheral neuropathy, hyperbilirubinemia, neuropsychiatry disorders, and myelosupression (Subbaraman et al., 2007). Among several variables, such as age, sex, disease state, and drug–drug interactions influencing inter-patient variability in the spectrum of effectiveness and toxic effects of ARV drugs, host genetic factors may have a significant role in predisposing the patient to the variation in treatment outcome (Vidal et al., 2010). Polymorphisms in genes encoding drug-metabolizing enzymes, drug transporters, and other targets make the patient susceptible to variation in drug response. It is imperative to predict the genetic markers to optimize the therapy and select the best combination of drugs to avoid toxicity. The application of pharmacogenomics in clinical practice might help us to develop the notion of personalized medicine. Pharmacogenetic tests can provide the data on genetically determined inter-individual differences in pharmacokinetics and genotype–phenotype associations (Shah and Shah, 2012).

This chapter reviews the pharmaco-genetic aspects of variation in ARV drug response in HIV-infected patients. The most overlapping examples of the heterogeneity in the efficacy and toxic effects of ARV drugs as found between populations will be discussed here.

Antiretroviral drugs

ARV drugs are commonly used to prevent transmission or acquisition of HIV-1 infection. Current practice uses a combination of at least three drugs referred to as “highly active antiretroviral therapy” (HAART) in the standard-of-care therapy for HIV infection. Zidovudine was the first drug to be approved by Food and Drug Administration (FDA) to treat HIV infection in 1987. There has been remarkable improvement in the prognosis of HIV infection since 1995 with the use of HAART (Pirmohamed and Back, 2001).

Type
Chapter
Information
Genome-Wide Association Studies
From Polymorphism to Personalized Medicine
, pp. 297 - 312
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, C.S. and Freed, E.O. (2008). Recent progress in antiretrovirals-lessons from resistance. Drug Discov. Today, 13(9–10), 424–432.CrossRefGoogle ScholarPubMed
Aragones, G., Alonso-Villaverde, C., Pardo-Reche, P., et al. (2011). Antiretroviral treatment-induced dyslipidemia in HIV-infected patients is influenced by the APOC3-related rs10892151 polymorphism. BMC Med. Genet., 12, 120.CrossRefGoogle ScholarPubMed
Bazzoli, C., Jullien, V., Tiec, C.L., et al. (2010). Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin. Pharmacokinet., 49(1), 17–45.CrossRefGoogle ScholarPubMed
Boyd, M.A., Srasuebkul, P., Ruxrungtham, K., et al. (2006). Relationship between hyperbilirubinaemia and UDPglucuronosyltransferase 1A1 (UGT1A1) polymorphism in adult HIV-infected Thai patients treated with indinavir. Pharmacogenet. Genom., 16, 321–329.CrossRefGoogle Scholar
Canter, J.A., Haas, D.W., Kallianpur, A.R., et al. (2008). The mitochondrial pharmacogenomics of haplogroup T: MTND2*LHON4917G and antiretroviral therapy-associated peripheral neuropathy. Pharmacogenom. J., 8(1), 71–77.CrossRefGoogle Scholar
Chang, S.-Y., Ko, W.-S., Kao, J.-T., et al. (2009). Association of single-nucleotide polymorphism 3 and c.553G1T of APOA5 with hypertriglyceridemia after treatment with highly active antiretroviral therapy containing protease Inhibitors in HIV-infected individuals in Taiwan. Clin. Infect. Dis., 48, 832–835.CrossRefGoogle ScholarPubMed
Chantarangsu, S., Mushiroda, T., Mahasirimongkol, S., et al. (2009). HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharmacogenet. Genom., 19(2), 139–146.CrossRefGoogle ScholarPubMed
Chantarangsu, S., Mushiroda, T., Mahasirimongkol, S., et al. (2011). Genome-wide association study identifies variations in 6p21.3 associated with nevirapine-induced rash. Clin. Infect. Dis., 53(4), 341–348.CrossRefGoogle ScholarPubMed
Chaponda, M. and Pirmohamed, M. (2011). Hypersensitivity reactions to HIV therapy. Br. J. Clin. Pharmacol., 71(5), 659–671.CrossRefGoogle ScholarPubMed
Chen, H., Clifford, D.B., Deng, L., et al. (2013). Peripheral neuropathy in ART-experienced patients: prevalence and risk factors. J. NeuroVirol., 19(6), 557–564.CrossRefGoogle ScholarPubMed
Cholewinska, G. (2007). Pharmacogenetics in HIV clinical practice. HIV AIDS Rev., 7(2), 9–14.Google Scholar
Clercq, E.D. (2009). Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents, 33, 307–320.CrossRefGoogle ScholarPubMed
Cressey, T.R. and Lallemant, M. (2007). Pharmacogenetics of antiretroviral drugs for the treatment of HIV-infected patients: an update. Infect. Genet. Evol., 7(2), 333–342.CrossRefGoogle ScholarPubMed
Cropp, C., Yee, S. and Giacomini, K. (2008). Genetic variation in drug transporters in ethnic populations. Clin. Pharmacol. Therapeut., 84(3), 412–416.CrossRefGoogle ScholarPubMed
Dalakas, M.C. (2001). Peripheral neuropathy and antiretroviral drugs. J. Periph. Nerv. Syst., 6(1), 14–20.CrossRefGoogle ScholarPubMed
Desta, Z., Zhao, X., Shin, J.G., et al. (2002). Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet., 41(12), 913–958.CrossRefGoogle ScholarPubMed
Fiorenza, C.G., Chou, S.H. and Mantzoros, C.S. (2011). Lipodystrophy: pathophysiology and advances in treatment. Nature Rev. Endocrinol., 7, 137–150.CrossRefGoogle ScholarPubMed
Foulkes, A.S., Wohl, D.A., Frank, I., et al. (2006). Associations among race/ethnicity, ApoC-III genotypes, and lipids in HIV-1-infected individuals on antiretroviral therapy. PLoS Med., 3(3), 337–347.CrossRefGoogle Scholar
Gabbai, A.A., Castelo, A. and Oliveira, A.S. (2013). HIV peripheral neuropathy. Handbk Clin. Neurol., 115, 515–529.Google ScholarPubMed
Gallant, J.E. (2005). Antiretroviral drug resistance and resistance testing. Top. HIV Med., 13(5), 138–142.Google ScholarPubMed
Gotte, M. and Wainberg, M.A. (2000). Biochemical mechanisms involved in overcoming HIV resistance to nucleoside inhibitors of reverse transcriptase. Drug Resist. Updates, 3, 30–38.CrossRefGoogle ScholarPubMed
Gounden, V., Niekerk, C. v., Snyman, T., et al. (2010). Presence of the CYP2B6 516 G>T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Res. Ther., 7, 32.CrossRefGoogle Scholar
Guan, S., Huang, M., Li, X., et al. (2006). Intra- and inter-ethnic differences in the allele frequencies of cytochrome P450 2B6 gene in Chinese. Pharmaceut. Res., 23(9), 1983–1990.CrossRefGoogle ScholarPubMed
Haas, D.W., Smeaton, L.M., Shafer, R.W., et al. (2005). Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir. An Adult AIDS Clinical Trials Group Study. J. Infect. Dis., 192, 1931–1942.CrossRefGoogle ScholarPubMed
Hanna, G.J. and D'Aquila, R.T. (2001). Clinical use of genotypic and phenotypic drug resistance testing to monitor antiretroviral chemotherapy. Clin. Infect. Dis., 32, 774–782.Google ScholarPubMed
Hartkoorn, R.C., Kwan, W.S., Shallcross, V., et al. (2010). HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet. Genom., 20(2), 112–120.CrossRefGoogle ScholarPubMed
Hetherington, S., Hughes, A.R., Mosteller, M., et al. (2002). Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet, 359(9312), 1121–1122.CrossRefGoogle ScholarPubMed
Holzinger, E.R., Grady, B., Ritchie, M.D., et al. (2012). Genome-wide association study of plasma efavirenz pharmacokinetics in AIDS Clinical Trials Group protocols implicates several CYP2B6 variants. Pharmacogenet. Genom., 22(12), 858–867.CrossRefGoogle Scholar
Huang, C.S., Huang, M.J., Lin, M.S., et al. (2005). Genetic factors related to unconjugated hyperbilirubinemia amongst adults. Pharmacogenet. Genom., 15(1), 43–50.CrossRefGoogle ScholarPubMed
Huang, M.J., Yang, Y.C., Yang, S.S., et al. (2002). Coinheritance of variant UDP-glucuronosyl transferase 1A1 gene and glucose-6-phosphate dehydrogenase deficiency in adults with hyperbilirubinemia. Pharmacogenetics, 12(8), 663–666.CrossRefGoogle ScholarPubMed
Hulgan, T., Haas, D.W., Haines, J.L., et al. (2005). Mitochondrial haplogroups and peripheral neuropathy during antiretroviral therapy: an adult AIDS clinical trials group study. AIDS, 19(13), 1341–1349.CrossRefGoogle ScholarPubMed
Ingelman-Sundberg, M., Sim, S.C., Gomez, A., et al. (2007). Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Therapeut., 116(3), 496–526.CrossRefGoogle ScholarPubMed
Justina, L.B., Luiz, M.C., Maurici, R., et al. (2014). Prevalence and factors associated with lipodystrophy in AIDS patients. Rev. Soc. Bras. Med. Trop., 47(1), 30–37.Google ScholarPubMed
Kallianpura, A.R., Hulgan, T., Canter, J.A., et al. (2006). Hemochromatosis (HFE) gene mutations and peripheral neuropathy during antiretroviral therapy. AIDS, 20, 1503–1513.Google Scholar
Kaniwa, N., Kurose, K., Jinno, H., et al. (2005). Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686 C>T (P229L) found in an African-American. Drug Metab. Dispos., 33(3), 458–465.Google Scholar
Kiertiburanakul, S., Wiboonchutikul, S., Sukasem, C., et al. (2010). Using of nevirapine is associated with intermediate and reduced response to etravirine among HIV-infected patients who experienced virologic failure in a resource-limited setting. J. Clin. Virol., 47, 330–334.CrossRefGoogle Scholar
Kohlrausch, F. B., Estrela, R. d. C., Barroso, P.F., et al. (2010). The impact of SLCO1B1 polymorphisms on the plasma concentration of lopinavir and ritonavir in HIV-infected men. Br. J. Clin. Pharmacol., 69(1), 95–98.CrossRefGoogle ScholarPubMed
Lana, L.G.C., Junqueira, D.R.G., Perini, E., et al. (2014). Lipodystrophy among patients with HIV infection on antiretroviral therapy: a systematic review protocol. BMJ Open, 4, e004088.CrossRefGoogle ScholarPubMed
Lang, T., Klein, K., Fischer, J., et al. (2001). Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics, 11(5), 399–415.CrossRefGoogle ScholarPubMed
Lazzaretti, R.K., Gasparotto, A.S., Sassi, M.G., et al. (2013). Genetic markers associated to dyslipidemia in HIV-infected individuals on HAART. Sci. World J., 2013, 608415.CrossRef
Lee, K.-Y., Lin, S.-W., Sun, H.-Y., et al. (2014). Therapeutic drug monitoring and pharmacogenetic study of HIV-infected ethnic chinese receiving efavirenz-containing antiretroviral therapy with or without rifampicin-based anti-uberculous therapy. PLoS ONE, 9(2), e88497.CrossRefGoogle ScholarPubMed
Likanonsakul, S., Rattanatham, T., Feangvad, S., et al. (2009). HLA-Cw*04 allele associated with nevirapine-induced rash in HIV-infected Thai patients. AIDS Res. Ther., 6, 22.CrossRefGoogle ScholarPubMed
Maher, B., Alfirevic, A., Vilar, F.J., et al. (2002). TNF-α promoter region gene polymorphisms in HIV-positive patients with lipodystrophy. AIDS, 16, 2013–2018.CrossRefGoogle ScholarPubMed
Mallal, S., Nolan, D., Witt, C., et al. (2002). Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet, 359, 727–732.CrossRefGoogle ScholarPubMed
Mallal, S., Phillips, E., Carosi, G., et al. (2008). HLA-B*5701 screening for hypersensitivity to abacavir. New Engl. J. Med., 358(6), 568–579.CrossRefGoogle ScholarPubMed
Mallon, P.W.G. (2006). Antiretroviral therapy and dyslipidaemia: unlocking the code. PLoS Med., 3(3), e85.CrossRefGoogle ScholarPubMed
Manosuthi, W., Sukasem, C., Lueangniyomkul, A., et al. (2013). Impact of pharmacogenetic markers of CYP2B6, clinical factors, and drug–drug interaction on efavirenz concentrations in HIV/tuberculosis-coinfected patients. Antimicrob. Agents Chemother., 57(2), 1019–1024.CrossRefGoogle ScholarPubMed
Manosuthi, W., Sukasem, C., Lueangniyomkul, A., et al. (2014a). CYP2B6 haplotype and biological factors responsible for hepatotoxicity in HIV-infected patients receiving efavirenz-based antiretroviral therapy. Int. J. Antimicrob. Agents, 43(3), 292–296.CrossRefGoogle ScholarPubMed
Manosuthi, W., Sukasem, C., Thongyen, S., et al. (2014b). CYP2B6 18492 T→C polymorphism compromises efavirenz concentration in coinfected HIV and tuberculosis patients carrying CYP2B6 haplotype *1/*1. Antimicrob. Agents Chemother., 58(4), 2268–2273.CrossRefGoogle Scholar
Manosuthi, W., Sukasem, C., Thongyen, S., et al. (2014c). ABCC2*1C and plasma tenofovir concentration are correlated to decreased glomerular filtration rate in patients receiving a tenofovir-containing antiretroviral regimen. J. Antimicrob. Chemother., 69(8), 2195–2201.CrossRefGoogle ScholarPubMed
Mata-Munguia, C., Escoto-Delgadillo, M., Torres-Mendoza, B., et al. (2014). Natural polymorphisms and unusual mutations in HIV-1 protease with potential antiretroviral resistance: a bioinformatic analysis. BMC Bioinform., 15, 72.CrossRefGoogle ScholarPubMed
Mehlotra, R.K., Ziats, M.N., Bockarie, M.J., et al. (2006). Prevalence of CYP2B6 alleles in malaria-endemic populations of West Africa and Papua New Guinea. Eur. J. Clin. Pharmacol., 62(4), 267–275.CrossRefGoogle ScholarPubMed
Michaud, V., Bar-Magen, T., Turgeon, J., et al. (2012). The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol. Rev., 64(3), 803–833.CrossRefGoogle ScholarPubMed
Mukonzo, J.K., Röshammar, D., Waako, P., et al. (2009). A novel polymorphism in ABCB1 gene, CYP2B6*6 and sex predict single-dose efavirenz population pharmacokinetics in Ugandans. Br. J. Clin. Pharmacol., 68(5), 690–699.CrossRefGoogle ScholarPubMed
Ngaimisi, E., Habtewold, A., Minzi, O., et al. (2013). Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: a parallel-group prospective cohort study in two sub-Saharan Africa populations. PLoS ONE, 8(7), e67946.CrossRefGoogle ScholarPubMed
Nicholaou, M.J., Martinson, J.J., Abraham, A.G., et al. (2013). HAART-associated dyslipidemia varies by biogeographical ancestry in the multileft AIDS cohort study. AIDS Res. Hum. Retrovir., 29(6), 871–879.CrossRefGoogle ScholarPubMed
Nolan, D., Moore, C., Castley, A., et al. (2003). Tumour necrosis factor-alpha gene -238 G/A promoter polymorphism associated with a more rapid onset of lipodystrophy. AIDS, 17(1), 121–123.CrossRefGoogle Scholar
Park, W.B., Choe, P G., Song, K.-H., et al. (2010). Genetic factors influencing severe atazanavir-associated hyperbilirubinemia in a population with low UDP-glucuronosyltransferase 1A1*28 allele frequency. Clin. Infect. Dis., 51(1), 101–106.CrossRefGoogle Scholar
Pavlos, R. and Phillips, E.J. (2012). Individualization of antiretroviral therapy. J. Pharmacogenom. Person. Med., 5, 1–17.Google ScholarPubMed
Pirmohamed, M. and Back, D.J. (2001). The pharmacogenomics of HIV therapy. Pharmacogenom. J., 1, 243–253.CrossRefGoogle ScholarPubMed
Rakhmanina, N.Y., Neely, M.N., Van Schaik, R.H., et al. (2011). CYP3A5, ABCB1, and SLCO1B1 polymorphisms and pharmacokinetics and virologic outcome of lopinavir/ritonavir in HIV-infected children. Therapeut. Drug Monit., 33(4), 417–424.Google ScholarPubMed
Ribaudo, H.J., Liu, H., Schwab, M., et al. (2010). Impact of CYP2B6, ABCB1 and CYP3A5 polymorphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group study. J. Infect. Dis., 202(5), 717–722.CrossRefGoogle Scholar
Rodriguez-Novoa, S., Martin-Carbonero, L., Barreiro, P., et al. (2007). Genetic factors influencing atazanavir plasma concentrations and the risk of severe hyperbilirubinemia. AIDS, 21, 41–46.CrossRefGoogle ScholarPubMed
Rotger, M., Colombo, S., Furrer, H., et al. (2005a). Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet. Genom., 15(1), 1–5.CrossRefGoogle ScholarPubMed
Rotger, M., Taffe, P., Bleiber, G., et al. (2005b). Gilbert syndrome and the development of antiretroviral therapy-associated hyperbilirubinemia. J. Infect. Dis., 192(8), 1381–1386.CrossRefGoogle ScholarPubMed
Rotger, M., Tegude, H., Colombo, S., et al. (2007). Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin. Pharmacol. Therapeut., 81(4), 557–566.CrossRefGoogle ScholarPubMed
Saag, M., Balu, R., Phillips, E., et al. (2008). High sensitivity of human leukocyte antigen–B*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin. Infect. Dis., 46, 1111–1118.CrossRefGoogle ScholarPubMed
Saitoh, A., Capparelli, E., Aweeka, F., et al. (2010). CYP2C19 genetic variants affect nelfinavir pharmacokinetics and virologic response in HIV-1-infected children receiving highly active antiretroviral therapy. J. AIDS, 54(3), 285–289.Google ScholarPubMed
Saskova, K.G., Kozisek, M., Rezacova, P., et al. (2009). Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir. J. Virol., 83(17), 8810–8818.CrossRefGoogle ScholarPubMed
Shafer, R.W., Kantor, R. and Gonzales, M.J. (2000). The genetic basis of HIV-1 resistance to reverse transcriptase and protease inhibitors. AIDS Rev., 2(4), 211–228.Google ScholarPubMed
Shah, R.R. and Shah, D.R. (2012). Personalized medicine: is it a pharmacogenetic mirage?Br. J. Clin. Pharmacol., 74(4), 698–721.CrossRefGoogle ScholarPubMed
Singh, K., Marchand, B., Kirby, K.A., et al. (2010). Structural aspects of drug resistance and inhibition of HIV-1 reverse transcriptase. Viruses, 2(2), 606–638.CrossRefGoogle ScholarPubMed
Srisawasdi, P., Suwalak, T., Sukasem, C., et al. (2013). Small-dense LDL cholesterol/large-buoyant LDL cholesterol ratio as an excellent marker for indicating lipodystrophy in HIV-infected patients. Am. J. Clin. Pathol., 140(4), 506–515.CrossRefGoogle ScholarPubMed
Subbaraman, R., Chaguturu, S.K., Mayer, K.H., et al. (2007). Adverse effects of highly active antiretroviral therapy in developing countries. Clin. Infect. Dis., 45, 1093–1101.CrossRefGoogle ScholarPubMed
Sukasem, C. and Sungkanuparph, S. (2013). Would a CYP2B6 test help HIV patients being treated with efavirenz?Pharmacogenomics, 14(9), 999–1001.CrossRefGoogle ScholarPubMed
Sukasem, C., Churdboonchart, V., Chasombat, S., et al. (2007). Surveillance of genotypic resistance mutations in chronic HIV-1 treated individuals after completion of the National Access to Antiretroviral Program in Thailand. Infection, 35(2), 81–88.CrossRefGoogle ScholarPubMed
Sukasem, C., Churdboonchart, V., Sukeepaisarncharoen, W., et al. (2008). Genotypic resistance profiles in antiretroviral-naive HIV-1 infections before and after initiation of first-line HAART: impact of polymorphism on resistance to therapy. International Journal of Antimicrobial Agents, 31(3), 277–281.CrossRefGoogle ScholarPubMed
Sukasem, C., Cressey, T.R., Prapaithong, P., et al. (2012). Pharmacogenetic markers of CYP2B6 associated with efavirenz plasma concentrations in HIV-1 infected Thai adults. Br. J. Clin. Pharmacol., 74(6), 1005–1012.CrossRefGoogle ScholarPubMed
Sukasem, C., Chamnanphon, M., Koomdee, N., et al. (2013). High plasma efavirenz concentration and CYP2B6 polymorphisms in Thai HIV-1 infections. Drug Metab. Pharmacokinet., 28(5), 391–397.CrossRefGoogle ScholarPubMed
Sukasem, C., Chamnanphon, M., Koomdee, N., et al. (2014a). Pharmacogenetics and clinical biomarkers for subtherapeutic plasma efavirenz concentration in HIV-1 infected Thai adults. Drug Metab. Pharmacokinet., 29(4), 289–295.CrossRefGoogle ScholarPubMed
Sukasem, C., Gatrungsei, M., Promso, S., et al. (2014b). Evaluation of a pharmacogenetic test in Thailand for abacavir hypersensitivity screening in human immunodeficiency virus infection. Curr. Pharmacogenom. Person. Med., 11(3), 231–236.Google Scholar
Sukasem, C., Manosuthi, W., Koomdee, N., et al. (2014c). Low level of efavirenz in HIV-1-infected Thai adults is associated with the CYP2B6 polymorphism. Infection, 42(3), 469–474.CrossRefGoogle ScholarPubMed
Suwalak, T., Srisawasdi, P., Puangpetch, A., et al. (2013). The distribution of apolipoprotein E gene polymorphism and their influences in dyslipidemias in HIV-1 infections. 15th International Workshop on Co-morbidities and Adverse Drug Reactions in HIV. Brussels, Belgium.
Swart, M., Ren, Y., Smith, P., et al. (2012). ABCB1 4036A>G and 1236C>T polymorphisms affect plasma efavirenz levels in South African HIV/AIDS patients. Front. Genet., 3, 236.CrossRefGoogle ScholarPubMed
Takeuchi, K., Kobayashi, Y., Tamaki, S., et al. (2004). Genetic polymorphisms of bilirubin uridine diphosphate-glucuronosyltransferase gene in Japanese patients with Crigler–Najjar syndrome or Gilbert's syndrome as well as in healthy Japanese subjects. J. Gastroenterol. Hepatol., 19, 1023–1028.CrossRefGoogle ScholarPubMed
Telenti, A. and Zanger, U.M. (2008). Pharmacogenetics of anti-HIV drugs. Annu. Rev. Pharmacol. Toxicol., 48, 227–256.CrossRefGoogle ScholarPubMed
Tozzi, V. (2010). Pharmacogenetics of antiretrovirals. Antiviral Res., 85, 190–200.CrossRefGoogle ScholarPubMed
Uttayamakul, S., Likanonsakul, S., Manosuthi, W., et al. (2010). Effects of CYP2B6 G516T polymorphisms on plasma efavirenz and nevirapine levels when co-administered with rifampicin in HIV/TB co-infected Thai adults. AIDS Res. Ther., 7, 8.CrossRefGoogle ScholarPubMed
Verma, A.S., Singh, I.G., Bansal, R., et al. (2014). HIV and antiretroviral drugs. Animal Biotechnology. New York, NY: Elsevier Inc.Google Scholar
Vidal, F., Gutierrez, F., Gutierrez, M., et al. (2010). Pharmacogenetics of adverse effects due to antiretroviral drugs. AIDS Rev., 12(1), 15–30.Google ScholarPubMed
Villarroya, F., Domingo, P. and Giralt, M. (2005). Lipodystrophy associated with highly active anti-retroviral therapy for HIV infection: the adipocyte as a target of anti-retroviral-induced mitochondrial toxicity. Trends Pharmacol. Sci., 26(2), 88–93.CrossRefGoogle ScholarPubMed
Vitezicaa, Z.G., Milpied, B., Lonjoua, C., et al. (2008). HLA-DRB1*01 associated with cutaneous hypersensitivity induced by nevirapine and efavirenz. AIDS, 22(4), 540–541.CrossRefGoogle Scholar
Wangsomboonsiri, W., Mahasirimongkol, S., Chantarangsu, S., et al. (2010). Association between HLA-B*4001 and lipodystrophy among HIV-infected patients from Thailand who received a stavudine-containing antiretroviral regimen. Clin. Infect. Dis., 50, 597–604.CrossRefGoogle ScholarPubMed
Wyen, C., Hendra, H., Vogel, M., et al. (2008). Impact of CYP2B6 983 T>C polymorphism on non-nucleoside reverse transcriptase inhibitor plasma concentrations in HIV-infected patients. J. Antimicrob. Chemother., 61(4), 914–918.CrossRefGoogle Scholar
Zhou, S.F., Liu, J.P. and Chowbay, B. (2009). Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev., 41(2), 89–95.CrossRefGoogle ScholarPubMed
Zhu, P., Zhu, Q., Zhang, Y., et al. (2013). ABCB1 variation and treatment response in AIDS patients: initial results of the Henan cohort. PLoS ONE, 8(1), e55197.CrossRefGoogle ScholarPubMed
Zucker, S.D., Qin, X., Rouster, S.D., et al. (2001). Mechanism of indinavir-induced hyperbilirubinemia. Proc. Natl Acad. Sci. USA, 98(22), 12671–12676.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×