Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T04:10:31.744Z Has data issue: false hasContentIssue false

12 - Copy number variation in monozygous twins

from Part III - Single nucleotide polymorphisms, copy number variants, haplotypes and eQTLs

Published online by Cambridge University Press:  18 December 2015

Erwin Brosens
Affiliation:
PhD student Pediatric Surgery & Clinical Genetics
K.G. Snoek
Affiliation:
Department of Pediatric Surgery
D. Veenma
Affiliation:
Department of Pediatric Surgery & Clinical Genetics
H. Eussen
Affiliation:
Department of Clinical Genetics
D. Tibboel
Affiliation:
Department of Pediatric Surgery
A. de Klein
Affiliation:
Department of Clinical Genetics
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Stephen W. Scherer
Affiliation:
University of Toronto
Peter M. Visscher
Affiliation:
University of Queensland
Get access

Summary

Introduction

Microarray technology in GWAS and copy number variations

Genome-wide association studies (GWAS) are used to associate human disease and traits with a certain chromosomal locus or loci. This is done by whole-genome genotyping of many cases and controls using so-called tag-SNP probes containing a relative common SNP associated with a region in linkage disequilibrium (LD). If a certain tag-SNP has a statistically significant higher frequency in cases compared to controls, the studied trait or disease is said to be associated with that specific locus. This method has proven to be successful in many occasions (Hindorff et al., 2009; Manolio 2013) and has increased our knowledge of disease etiology and human development significantly. Genotyping has mainly been done using microarrays with up to several million allele-specific oligo-probes. These microarrays contain information on the relative amount of DNA at a given locus. Using both genotype and quantitative information, these SNP-based GWAS studies can be extended to include DNA gains or losses. These segmental variations in DNA copy number can arise de novo or be inherited in a Mendelian matter. Many of the characteristics of other types of genomic variation are shared: they can be ancestry-specific, are driven by selection pressure, and can influence the expression of genes by altering their copy number or affecting gene regulatory regions (Zhang et al., 2009; Schlattl et al., 2011). Losses can result in haploinsufficiency of one or several genes or truncated proteins, while gains can increase gene expression or can also lead to altered protein structure, reduced protein levels or function.

Copy number variation; common, rare, and de novo

Many gains and losses are rather common and most likely represent the normal population variance (Zhang et al., 2009; Stankiewicz and Lupski, 2010). These recurrent DNA variations have an allele frequency of over 1% and are called common copy number polymorphisms (CNPs). CNPs account for a significant proportion of the healthy human genome (Iafrate et al., 2004; Sebat et al., 2004). They often arise after non-allelic homologous recombination of misaligned DNA segments due to the presence of low copy repeats (Stankiewicz and Lupski, 2010). In general, common copy number variations (CNVs) are not associated with severe congenital anomalies, but could influence human traits such as height (van Duyvenvoorde et al., 2014), or aging (Iakoubov et al., 2013).

Type
Chapter
Information
Genome-Wide Association Studies
From Polymorphism to Personalized Medicine
, pp. 168 - 192
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basso, O., Nohr, E.A., Christensen, K. and Olsen, J. (2004). Risk of twinning as a function of maternal height and body mass index. J. Am. Med. Assoc., 291(13), 1564–1566.CrossRefGoogle ScholarPubMed
Baudisch, F., Draaken, M., Bartels, E., et al. (2013). CNV analysis in monozygotic twin pairs discordant for urorectal malformations. Twin Res. Hum. Genet., 16(4), 802–807.CrossRefGoogle ScholarPubMed
Bell, J.T. and Spector, T.D. (2011). A twin approach to unraveling epigenetics. Trends Genet., 27(3), 116–125.CrossRefGoogle ScholarPubMed
Bergen, S.E., O'Dushlaine, C.T., Ripke, S., et al. (2012). Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Molec. Psych., 17(9), 880–886.CrossRefGoogle Scholar
Bloom, R.J., Kahler, A.K., Collins, A.L., et al. (2013). Comprehensive analysis of copy number variation in monozygotic twins discordant for bipolar disorder or schizophrenia. Schizophr. Res., 146(1–3), 289–290.CrossRefGoogle ScholarPubMed
Bonasio, R., Tu, S. and Reinberg, D. (2010). Molecular signals of epigenetic states. Science, 330(6004), 612–616.CrossRefGoogle ScholarPubMed
Breckpot, J., Thienpont, B., Gewillig, M., et al. (2012). Differences in copy number variation between discordant monozygotic twins as a model for exploring chromosomal mosaicism in congenital heart defects. Molec. Syndromol., 2(2), 81–87.Google ScholarPubMed
Bruder, C.E., Piotrowski, A., Gijsbers, A.A., et al. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am. J. Hum. Genet., 82(3), 763–771.CrossRefGoogle ScholarPubMed
Cantsilieris, S., White, S.J., Richardson, A.J., Guymer, R.H. and Baird, P.N. (2012). Comprehensive analysis of copy number variation of genes at chromosome 1 and 10 loci associated with late age related macular degeneration. PLoS ONE, 7(4), e35255.CrossRefGoogle ScholarPubMed
Craddock, N., Hurles, M.E., Cardin, N., et al. (2010). Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 464(7289), 713–720.Google ScholarPubMed
Czyz, W., Morahan, J.M., Ebers, G.C. and Ramagopalan, S.V. (2012). Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med, 10, 93.CrossRefGoogle ScholarPubMed
de Ligt, J., Boone, P.M., Pfundt, R., et al. (2013). Detection of clinically relevant copy number variants with whole-exome sequencing. Hum. Mutat., 34(10), 1439–1448.CrossRefGoogle ScholarPubMed
Dixit, A., Tanteles, G., Ocraft, K., McEwan, A. and Sarkar, A. (2012). Monozygotic twins discordant for trisomy 13: counselling and management issues. J. Perinatol., 32(8), 639–641.CrossRefGoogle ScholarPubMed
Duan, J., Zhang, J.G., Deng, H.W. and Wang, Y.P. (2013). Comparative studies of copy number variation detection methods for next-generation sequencing technologies. PLoS ONE, 8(3), e59128.CrossRefGoogle ScholarPubMed
Egan, E., Reidy, K., O'Brien, L., Erwin, R. and Umstad, M. (2014). The outcome of twin pregnancies discordant for trisomy 21. Twin Res. Hum. Genet., 17(1), 38–44.CrossRefGoogle ScholarPubMed
Ehli, E.A., Abdellaoui, A., Hu, Y., et al. (2012). De novo and inherited CNVs in MZ twin pairs selected for discordance and concordance on Attention Problems. Eur. J. Hum. Genet., 20(10), 1037–1043.CrossRefGoogle ScholarPubMed
Erlich, Y. (2011). Blood ties: chimerism can mask twin discordance in high-throughput sequencing. Twin Res. Hum. Genet., 14(2), 137–143.CrossRefGoogle ScholarPubMed
Essaoui, M., Nizon, M., Beaujard, M.P., et al. (2013). Monozygotic twins discordant for 18q21.2qter deletion detected by array CGH in amniotic fluid. Eur. J. Med. Genet., 56(9), 502–505.CrossRefGoogle ScholarPubMed
Fernandez-Rozadilla, C., Cazier, J.B., Tomlinson, I., et al. (2014). A genome-wide association study on copy-number variation identifies a 11q11 loss as a candidate susceptibility variant for colorectal cancer. Hum. Genet., 133(5), 525–534.CrossRefGoogle ScholarPubMed
Fischer, H.G., Morawski, M., Bruckner, M.K., et al. (2012). Changes in neuronal DNA content variation in the human brain during aging. Aging Cell, 11(4), 628–633.CrossRefGoogle ScholarPubMed
Forsberg, L.A., Rasi, C., Razzaghian, H.R., et al. (2012). Age-related somatic structural changes in the nuclear genome of human blood cells. Am. J. Hum. Genet., 90(2), 217–228.CrossRefGoogle ScholarPubMed
Friedman, J.H., Trieschmann, M.E., Myers, R.H. and Fernandez, H.H. (2005). Monozygotic twins discordant for Huntington disease after 7 years. Arch. Neurol., 62(6), 995–997.CrossRefGoogle ScholarPubMed
Friedrichsen, M., Poulsen, P., Wojtaszewski, J., et al. (2013). Carboxylesterase 1 gene duplication and mRNA expression in adipose tissue are linked to obesity and metabolic function. PLoS ONE, 8(2), e56861.CrossRefGoogle ScholarPubMed
Gentilin, B., Guerneri, S., Bianchi, V., et al. (2008). Discordant prenatal phenotype and karyotype of monozygotic twins characterized by the unequal distribution of two cell lines investigated by different methods: a review. Twin Res. Hum. Genet., 11(3), 352–356.CrossRefGoogle ScholarPubMed
Gibson, G. (2011). Rare and common variants: twenty arguments. Nature Rev. Genet., 13(2), 135–145.Google Scholar
Grayson, B.L., Smith, M.E., Thomas, J.W., et al. (2010). Genome-wide analysis of copy number variation in type 1 diabetes. PLoS ONE, 5(11), e15393.CrossRefGoogle ScholarPubMed
Gu, J., Ajani, J.A., Hawk, E.T., et al. (2010). Genome-wide catalogue of chromosomal aberrations in barrett's esophagus and esophageal adenocarcinoma: a high-density single nucleotide polymorphism array analysis. Cancer Prev. Res. (Phila.), 3(9), 1176–1186.CrossRefGoogle ScholarPubMed
Guo, Y., Sheng, Q., Samuels, D.C., et al. (2013). Comparative study of exome copy number variation estimation tools using array comparative genomic hybridization as control. Biomed. Res. Int., 2013, 915636.CrossRefGoogle ScholarPubMed
Halder, A., Jain, M., Chaudhary, I. and Varma, B. (2012). Chromosome 22q11.2 microdeletion in monozygotic twins with discordant phenotype and deletion size. Molec. Cytogenet., 5(1), 13.CrossRefGoogle ScholarPubMed
Hall, J.G. (2003). Twinning. Lancet, 362(9385), 735–743.CrossRefGoogle ScholarPubMed
Haraksingh, R.R., Abyzov, A., Gerstein, M., Urban, A.E.and Snyder, M. (2011). Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS ONE, 6(11), e27859.CrossRefGoogle ScholarPubMed
Hehir-Kwa, J.Y., Rodriguez-Santiago, B., Vissers, L.E., et al. (2011). De novo copy number variants associated with intellectual disability have a paternal origin and age bias. J. Med. Genet., 48(11), 776–778.CrossRefGoogle ScholarPubMed
Hindorff, L.A., Sethupathy, P., Junkins, H.A., et al. (2009). Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA, 106(23), 9362–9367.CrossRefGoogle ScholarPubMed
Hitz, M.P., Lemieux-Perreault, L.P., Marshall, C., et al. (2012). Rare copy number variants contribute to congenital left-sided heart disease. PLoS Genet., 8(9), e1002903.CrossRefGoogle ScholarPubMed
Huss, M. (2010). Introduction into the analysis of high-throughput-sequencing based epigenome data. Brief Bioinform., 11(5), 512–523.CrossRefGoogle ScholarPubMed
Iafrate, A.J., Feuk, L., Rivera, M.N., et al. (2004). Detection of large-scale variation in the human genome. Nature Genet., 36(9), 949–951.CrossRefGoogle ScholarPubMed
Iakoubov, L., Mossakowska, M., Szwed, M., et al. (2013). A common copy number variation (CNV) polymorphism in the CNTNAP4 gene: association with aging in females. PLoS ONE, 8(11), e79790.CrossRefGoogle ScholarPubMed
Javierre, B.M., Fernandez, A.F., Richter, J., et al. (2010). Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res., 20(2), 170–179.CrossRefGoogle ScholarPubMed
Jensen, H., Kjeldsen, E. and Hjortdal, V.E. (2012). Could submicroscopical chromosomal imbalances cause cono-truncal malformations in twins?Congenit. Heart Dis., 7(2), 170–177.CrossRefGoogle ScholarPubMed
Kimani, J.W., Yoshiura, K., Shi, M., et al. (2009). Search for genomic alterations in monozygotic twins discordant for cleft lip and/or palate. Twin Res. Hum. Genet., 12(5), 462–468.CrossRefGoogle ScholarPubMed
Lee, Y.M., Cleary-Goldman, J., Thaker, H.M. and Simpson, L. L. (2006). Antenatal sonographic prediction of twin chorionicity. Am. J. Obstet. Gynecol., 195(3), 863–867.CrossRefGoogle ScholarPubMed
Liang, Q., Conte, N., Skarnes, W.C. and Bradley, A. (2008). Extensive genomic copy number variation in embryonic stem cells. Proc. Natl Acad. Sci. USA, 105(45), 17453–17456.CrossRefGoogle ScholarPubMed
Lin, P., Hartz, S.M., Wang, J.C., et al. (2012). Copy number variations in 6q14.1 and 5q13.2 are associated with alcohol dependence. Alcohol. Clin. Exp. Res., 36(9), 1512–1518.CrossRefGoogle ScholarPubMed
Machin, G. (2009). Non-identical monozygotic twins, intermediate twin types, zygosity testing, and the non-random nature of monozygotic twinning: a review. Am. J. Med. Genet. C Semin. Med. Genet., 151c(2), 110–127.CrossRefGoogle ScholarPubMed
Maiti, S., Kumar, K.H., Castellani, C.A., O'Reilly, R.and Singh, S.M. (2011). Ontogenetic de novo copy number variations (CNVs) as a source of genetic individuality: studies on two families with MZD twins for schizophrenia. PLoS ONE, 6(3), e17125.CrossRefGoogle Scholar
Manolio, T.A. (2013). Bringing genome-wide association findings into clinical use. Nature Rev. Genet., 14(8), 549–558.CrossRefGoogle ScholarPubMed
McCarroll, S.A. (2008). Extending genome-wide association studies to copy-number variation. Hum. Molec. Genet., 17(R2), R135–142.CrossRefGoogle ScholarPubMed
McCarroll, S.A. and Altshuler, D.M. (2007). Copy-number variation and association studies of human disease. Nature Genet., 39(7 Suppl), S37–42.CrossRefGoogle ScholarPubMed
McCarroll, S.A., Huett, A., Kuballa, P., et al. (2008). Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nature Genet., 40(9), 1107–1112.CrossRefGoogle ScholarPubMed
McConnell, M.J., Lindberg, M.R., Brennand, K.J., et al. (2013). Mosaic copy number variation in human neurons. Science, 342(6158), 632–637.CrossRefGoogle ScholarPubMed
Miyake, K., Yang, C., Minakuchi, Y., et al. (2013). Comparison of genomic and epigenomic expression in monozygotic twins discordant for Rett syndrome. PLoS ONE, 8(6), e66729.Google ScholarPubMed
Munar-Ques, M., Pedrosa, J.L., Coelho, T., et al. (1999). Two pairs of proven monozygotic twins discordant for familial amyloid neuropathy (FAP) TTR Met 30. J. Med. Genet., 36(8), 629–632.Google ScholarPubMed
Nag, A., Venturini, C., Hysi, P.G., et al. (2013). Copy number variation at chromosome 5q21.2 is associated with intraocular pressure. Invest. Ophthalmol. Vis. Sci., 54(5), 3607–3612.CrossRefGoogle ScholarPubMed
Nelson, M.R., Wegmann, D., Ehm, M.G., et al. (2012). An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science, 337(6090), 100–104.CrossRefGoogle ScholarPubMed
Nieuwint, A., Van Zalen-Sprock, R., Hummel, P., et al. (1999). “Identical” twins with discordant karyotypes. Prenat. Diagn., 19(1), 72–76.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
O'Reilly, R., Torrey, E.F., Rao, J. and Singh, S. (2013). Monozygotic twins with early-onset schizophrenia and late-onset bipolar disorder: a case report. J. Med. Case Rep., 7(1), 134.CrossRefGoogle ScholarPubMed
Oei, L., Hsu, Y.H., Styrkarsdottir, U., et al. (2014). A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus. J. Med. Genet., 51(2), 122–131.CrossRefGoogle ScholarPubMed
Ono, S., Imamura, A., Tasaki, S., et al. (2010). Failure to confirm CNVs as of aetiological significance in twin pairs discordant for schizophrenia. Twin Res. Hum. Genet., 13(5), 455–460.CrossRefGoogle Scholar
Pamphlett, R. and Morahan, J.M. (2011). Copy number imbalances in blood and hair in monozygotic twins discordant for amyotrophic lateral sclerosis. J. Clin. Neurosci., 18(9), 1231–1234.CrossRefGoogle ScholarPubMed
Pharoah, P.O. (2005). Causal hypothesis for some congenital anomalies. Twin Res. Hum. Genet., 8(6), 543–550.CrossRefGoogle ScholarPubMed
Pharoah, P.O., Glinianaia, S.V. and Rankin, J. (2009). Congenital anomalies in multiple births after early loss of a conceptus. Hum. Reprod., 24(3), 726–731.Google ScholarPubMed
Pinto, D., Darvishi, K., Shi, X., et al. (2011). Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nature Biotechnol., 29(6), 512–520.CrossRefGoogle ScholarPubMed
Piotrowski, A., Bruder, C.E., Andersson, R., et al. (2008). Somatic mosaicism for copy number variation in differentiated human tissues. Hum. Mutat., 29(9), 1118–1124.CrossRefGoogle ScholarPubMed
Razzaghian, H.R., Forsberg, L.A., Prakash, K.R., et al. (2013). Post-zygotic and inter-individual structural genetic variation in a presumptive enhancer element of the locus between the IL10Rbeta and IFNAR1 genes. PLoS ONE, 8(9), e67752.CrossRefGoogle Scholar
Reddy, U.M., Branum, A.M. and Klebanoff, M.A. (2005). Relationship of maternal body mass index and height to twinning. Obstet. Gynecol., 105(3), 593–597.CrossRefGoogle ScholarPubMed
Reuss, A., Gerlach, H., Bedow, W., et al. (2011). Monozygotic twins discordant for trisomy 18. Ultrasound Obstet. Gynecol., 38(6), 727–728.CrossRefGoogle ScholarPubMed
Rio, M., Royer, G., Gobin, S., et al. (2013). Monozygotic twins discordant for submicroscopic chromosomal anomalies in 2p25.3 region detected by array CGH. Clin. Genet., 84(1), 31–36.CrossRefGoogle ScholarPubMed
Russell, R.B., Petrini, J.R., Damus, K., Mattison, D.R.and Schwarz, R.H. (2003). The changing epidemiology of multiple births in the United States. Obstet. Gynecol., 101(1), 129–135.Google ScholarPubMed
Sasaki, H., Emi, M., Iijima, H., et al. (2011). Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Molec. Brain, 4, 24.CrossRefGoogle ScholarPubMed
Schlattl, A., Anders, S., Waszak, S.M., Huber, W. and Korbel, J.O. (2011). Relating CNVs to transcriptome data at fine resolution: assessment of the effect of variant size, type, and overlap with functional regions. Genome Res., 21(12), 2004–2013.CrossRefGoogle ScholarPubMed
Scott, D.A., Klaassens, M., Holder, A.M., et al. (2007). Genome-wide oligonucleotide-based array comparative genome hybridization analysis of non-isolated congenital diaphragmatic hernia. Hum. Molec. Genet., 16(4), 424–430.CrossRefGoogle ScholarPubMed
Sebat, J., Lakshmi, B., Troge, J., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–528.CrossRefGoogle ScholarPubMed
Sebat, J., Lakshmi, B., Malhotra, D., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316(5823), 445–449.CrossRefGoogle ScholarPubMed
Sebire, N.J., Talbert, D. and Fisk, N.M. (2001). Twin-to-twin transfusion syndrome results from dynamic asymmetrical reduction in placental anastomoses: a hypothesis. Placenta, 22(5), 383–391.CrossRefGoogle ScholarPubMed
Shetty, A. and Smith, A.P. (2005). The sonographic diagnosis of chorionicity. Prenat. Diagn., 25(9), 735–739.CrossRefGoogle ScholarPubMed
Smeets, D., van Vugt, J.M., Gomes, I., et al. (2013). Monochorionic dizygous twins presenting with blood chimerism and discordant sex. Twin Res. Hum. Genet., 16(4), 799–801.CrossRefGoogle ScholarPubMed
Soemedi, R., Wilson, I.J., Bentham, J., et al. (2012). Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am. J. Hum. Genet., 91(3), 489–501.CrossRefGoogle ScholarPubMed
Souter, V.L., Parisi, M.A., Nyholt, D.R., et al. (2007). A case of true hermaphroditism reveals an unusual mechanism of twinning. Hum. Genet., 121(2), 179–185.CrossRefGoogle ScholarPubMed
Stadler, Z.K., Esposito, D., Shah, S., et al. (2012). Rare de novo germline copy-number variation in testicular cancer. Am. J. Hum. Genet., 91(2), 379–383.CrossRefGoogle ScholarPubMed
Stankiewicz, P. and Lupski, J.R. (2010). Structural variation in the human genome and its role in disease. Annu. Rev. Med., 61, 437–455.CrossRefGoogle Scholar
Tabet, A.C., Pilorge, M., Delorme, R., et al. (2012). Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother. Eur. J. Hum. Genet., 20(5), 540–546.Google ScholarPubMed
Tan, Q., Ohm Kyvik, K., Kruse, T.A.and Christensen, K. (2010). Dissecting complex phenotypes using the genomics of twins. Funct. Integr. Genomics, 10(3), 321–327.CrossRefGoogle Scholar
Tennessen, J.A., Bigham, A.W., O'Connor, T.D., et al. (2012). Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science, 337(6090), 64–69.CrossRefGoogle ScholarPubMed
Teo, S.M., Pawitan, Y., Ku, C. S., Chia, K.S. and Salim, A. (2012). Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics, 28(21), 2711–2718.CrossRefGoogle ScholarPubMed
Tucker, T., Montpetit, A., Chai, D., et al. (2011). Comparison of genome-wide array genomic hybridization platforms for the detection of copy number variants in idiopathic mental retardation. BMC Med. Genomics., 4, 25.CrossRefGoogle ScholarPubMed
van Dongen, J., Slagboom, P.E., Draisma, H.H., Martin, N.G. and Boomsma, D.I. (2012). The continuing value of twin studies in the omics era. Nature Rev. Genet., 13(9), 640–653.CrossRefGoogle ScholarPubMed
van Duyvenvoorde, H.A., Lui, J.C., Kant, S.G., et al. (2014). Copy number variants in patients with short stature. Eur. J. Hum. Genet., 22(5), 602–609.CrossRefGoogle ScholarPubMed
Veenma, D., Brosens, E., de Jong, E., et al. (2012). Copy number detection in discordant monozygotic twins of Congenital Diaphragmatic Hernia (CDH) and Esophageal Atresia (EA) cohorts. Eur. J. Hum. Genet., 20(3), 298–304.CrossRefGoogle ScholarPubMed
Vincent, M.C., Heitz, F., Tricoire, J., et al. (1999). 22q11 deletion in DGS/VCFS monozygotic twins with discordant phenotypes. Genet. Couns., 10(1), 43–49.Google ScholarPubMed
Visser, R., Gijsbers, A., Ruivenkamp, C., et al. (2010). Genome-wide SNP array analysis in patients with features of sotos syndrome. Horm. Res. Paediatr., 73(4), 265–274.CrossRefGoogle ScholarPubMed
Wat, M.J., Veenma, D., Hogue, J., et al. (2011). Genomic alterations that contribute to the development of isolated and non-isolated congenital diaphragmatic hernia. J. Med. Genet., 48(5), 299–307.CrossRefGoogle ScholarPubMed
Weber, M.A. and Sebire, N.J. (2010). Genetics and developmental pathology of twinning. Semin. Fetal Neonatal Med., 15(6), 313–318.CrossRefGoogle ScholarPubMed
Weksberg, R., Shuman, C., Caluseriu, O., et al. (2002). Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith–Wiedemann syndrome. Hum. Molec. Genet., 11(11), 1317–1325.CrossRefGoogle ScholarPubMed
Wheeler, E., Huang, N., Bochukova, E.G., et al. (2013). Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nature Genet., 45(5), 513–517.CrossRefGoogle ScholarPubMed
Wong, C.C., Caspi, A., Williams, B., et al. (2010). A longitudinal study of epigenetic variation in twins. Epigenetics, 5(6), 516–526.CrossRefGoogle ScholarPubMed
Yamagishi, H., Ishii, C., Maeda, J., et al. (1998). Phenotypic discordance in monozygotic twins with 22q11.2 deletion. Am. J. Med. Genet., 78(4), 319–321.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Yang, R., Chen, B., Pfutze, K., et al. (2014). Genome-wide analysis associates familial colorectal cancer with increases in copy number variations and a rare structural variation at 12p12.3. Carcinogenesis, 35(2), 315–323.CrossRefGoogle Scholar
Zhang, D., Li, S., Tan, Q. and Pang, Z. (2012). Twin-based DNA methylation analysis takes the center stage of studies of human complex diseases. J. Genet. Genom., 39(11), 581–586.CrossRefGoogle ScholarPubMed
Zhang, F., Gu, W., Hurles, M.E. and Lupski, J.R. (2009). Copy number variation in human health, disease, and evolution. Annu. Rev. Genom. Hum. Genet., 10, 451–481.CrossRefGoogle ScholarPubMed
Zwijnenburg, P.J., Meijers-Heijboer, H. and Boomsma, D.I. (2010). Identical but not the same: the value of discordant monozygotic twins in genetic research. Am. J. Med. Genet. B Neuropsychiatr. Genet., 153b(6), 1134–1149.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×