Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T15:02:52.978Z Has data issue: false hasContentIssue false

2 - Genetic science and technology

Published online by Cambridge University Press:  19 January 2010

Alison Stewart
Affiliation:
Public Health Genetics Unit, Cambridge
Philippa Brice
Affiliation:
Public Health Genetics Unit, Cambridge
Hilary Burton
Affiliation:
Public Health Genetics Unit, Cambridge
Paul Pharoah
Affiliation:
University of Cambridge
Simon Sanderson
Affiliation:
Public Health Genetics Unit, Cambridge
Ron Zimmern
Affiliation:
Public Health Genetics Unit, Cambridge
Get access

Summary

Practitioners of public health genetics need a working knowledge of the basic principles of genetic science, including not just the classical rules of inheritance but also how the genetic ‘programme’ is played out in the functions of cells, tissues and whole organisms. They also need an understanding of how genetic changes may be related to the development and progression of disease. The first part of this chapter is devoted to laying the groundwork in genetic science and medical genetics.

In this chapter we also introduce some of the basic features of deoxyribonucleic acid (DNA) technology, which has enabled scientists to study and manipulate the genetic material. The development of this technology has been the driving force behind the human genome project, which has now delivered a complete ‘reference sequence’ for the human genome and is rapidly moving forward in the task of assigning functions to genes and their products. It is the explosion of information arising from the human genome project, and from the ‘post-genomic’ sciences such as proteomics, functional genomics, comparative genomics and bioinformatics, that is providing the raw material and the impetus for the development of new approaches to the diagnosis, treatment and prevention of disease. These new opportunities for genetics in medicine will be discussed in Chapter 4.

Basic molecular genetics

In most organisms, the genetic material in each cell is the chemical DNA. The DNA molecule acts as a code to specify the synthesis of different proteins, which are responsible for carrying out the functions of the cell.

Type
Chapter
Information
Genetics, Health Care and Public Policy
An Introduction to Public Health Genetics
, pp. 23 - 64
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×