Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T15:52:44.073Z Has data issue: false hasContentIssue false

5 - Intelligence: The Ongoing Quest for Its Etiology

Published online by Cambridge University Press:  06 October 2017

Susan Bouregy
Affiliation:
Yale University, Connecticut
Elena L. Grigorenko
Affiliation:
Yale University, Connecticut
Stephen R. Latham
Affiliation:
Yale University, Connecticut
Mei Tan
Affiliation:
University of Texas, Houston
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, J., Ono, Y., & Wright, M. J. (2001). Genetic structure of spatial and verbal working memory. Behavior Genetics, 31, 615624.CrossRefGoogle ScholarPubMed
Bartels, M., Rietveld, M. J. H., Van Baal, G. C. M., & Boomsma, D. I. (2002). Genetic and environmental influences on the development of intelligence. Behavior Genetics, 32, 237249.Google Scholar
Beaujean, A. A. (2005). Heritability of cognitive abilities as measured by mental chronometric tasks: A meta-analysis. Intelligence, 33, 187201.Google Scholar
Benyamin, B., Pourcain, B., Davis, O. S., Davies, G., Hansell, N. K., Brion, M. J., et al. (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Molecular Psychiatry, 19, 253258. doi:10.1038/mp.2012.184Google Scholar
Bishop, E. G., Cherny, S. S., Corley, R., Plomin, R., DeFries, J. C., & Hewitt, J. K. (2003). Development genetic analysis of general cognitive ability from 1 to 12 years in a sample of adoptees, biological siblings, and twins. Intelligence, 31, 3149.CrossRefGoogle Scholar
Blackman, J. A., Worley, G., & Strittmatter, W. J. (2005). Apolipoprotein E and brain injury: Implications for children. Developmental Medicine & Child Neurology, 47, 6470.Google Scholar
Bouchard, T. J., Jr., & McGue, M. (2003). Genetic and environmental influences on human psychological differences. Journal of Neurobiology, 54, 445.Google Scholar
Brant, A., Haberstick, B., Corley, R., Wadsworth, S., DeFries, J. C., & Hewitt, J. K. (2009). The developmental etiology of high IQ. Behavior Genetics, 39, 393405.CrossRefGoogle ScholarPubMed
Briley, D. A., & Tucker-Drob, E. M. (2013). Explaining the increasing heritability of cognitive ability across development: A meta-analysis of longitudinal twin and adoption studies. Psychological Science, 24, 17041713. doi:10.1177/0956797613478618Google Scholar
Butcher, L. M., Kennedy, J. K., & Plomin, R. (2006). Generalist genes and cognitive neuroscience. Current Opinion in Neurobiology, 16, 145151.Google Scholar
Buttini, M., Orth, M., Bellosta, S., Akeefe, H., Pitas, R. E., Wyss-Coray, T., et al. (1999). Expression of human apolipoprotein E3 or E4 in the brains of Apoe-/- mice: Isoform-specific effects on neurodegeneration. Journal of Neuroscience, 19, 48674880.Google Scholar
Cardon, L. R., & Fulker, D. W. (1993). Genetics of specific cognitive abilities. In Plomin, R. & McClearn, G. E. (Eds.), Nature, nurture & psychology (pp. 99120). Washington, DC: American Psychological Association.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities. New York, NY: Cambridge University Press.Google Scholar
Cianciolo, A. T., & Sternberg, R. J. (2004). A brief history of intelligence. Malden, MA: Blackwell.Google Scholar
Comings, D. E., Wu, S., Rostamkhani, M., McGue, M., Iacono, W. G., Cheng, L. S., et al. (2003). Role of the cholinergic muscarinic 2 receptor (CHRM2) gene in cognition. Molecular Psychiatry, 8, 1013.CrossRefGoogle ScholarPubMed
Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., et al. (2015). Genetic contributions to variation in general cognitive function: Ameta-analysis of genome-wide association studies in the CHARGE consortium (N=53,949). Molecular Psychiatry, 20, 183192. doi:10.1038/mp.2014.188Google Scholar
Davis, O. S. P., Kovas, Y., Harlaar, N., Busfield, P., McMillan, A., Frances, J., et al. (2008). Generalist genes and the Internet generation: Etiology of learning abilities by web testing at age 10. Genes, Brain and Behavior, 7, 455462.Google Scholar
de Geus, E., Wright, M., Martin, N., & Boomsma, D. (2001). Editorial: Genetics of brain function and cognition. Behavior Genetics, 31(6), 489495.Google Scholar
Deary, I. J. (2000). Looking down on human intelligence: From psychometrics to the brain. Oxford, UK: Oxford University Press.Google Scholar
Deary, I. J., Johnson, W., & Houlihan, L. (2009). Genetic foundations of human intelligence. Human Genetics, 126, 215232.CrossRefGoogle ScholarPubMed
Deary, I. J., Spinath, F. M., & Bates, T. C. (2006). Genetics of intelligence. European Journal of Human Genetics, 14, 690700.Google Scholar
Deary, I. J., Whiteman, M. C., Pattie, A., Starr, J. M., Hayward, C., Wright, A. F., et al. (2002). Cognitive change and the APOE epsilon 4 allele. Nature, 481, 932.Google Scholar
Desrivières, S., Lourdusamy, , , A., Tao, , , C., Toro, , , R., Jia, , , T., Loth, E., et al.. (2015). Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents. Molecular Psychiatry, 20, 263274. doi:10.1038/mp.2013.197CrossRefGoogle ScholarPubMed
Devlin, B., Daniels, M., & Roeder, K. (1997). The heritability of IQ. Nature, 388, 468471.Google Scholar
Dick, D. M., Aliev, F., Kramer, J., Wang, J. C., Hinrichs, A., Bertelsen, S., et al. (2007). Association of CHRM2 with IQ: Converging evidence for a gene influencing intelligence. Behavior Genetics, 37, 265272.Google Scholar
Edmonds, C. J., Isaacs, E. B., Visscher, P. M., Rogers, M., Lanigan, J., Singhal, A., et al. (2008). Inspection time and cognitive abilities in twins aged 7 to 17 years: Age-related changes, heritability and genetic covariance. Intelligence, 36, 210225.Google Scholar
Ertl, J. P. (1971). Fourier analysis of evoked potentials and human intelligence. Nature, 230, 525526.Google Scholar
Fabiani, M., Gratton, G., & Federmeier, K. D. (2007). Event-related brain potentials: Methods, theory, and applications. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology (3rd ed., pp. 85119). New York, NY: Cambridge University Press.Google Scholar
Flint, J. (1999). The genetic basis of cognition. Brain, 122, 20152031.Google Scholar
Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172179.Google Scholar
Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology, 137, 201225.Google Scholar
Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates genetic influences on reading disability. Psychological Science, 19, 17.Google Scholar
Galton, F. (1869). Hereditary genius. An inquiry into its laws and consequences. London, UK: Macmillan.Google Scholar
Gosso, M. F., de Geus, E. J., van Belzen, M. J., Polderman, T. J., Heutink, P., Boomsma, D. I., et al. (2006). The SNAP-25 gene is associated with cognitive ability: Evidence from a family-based study in two independent Dutch cohorts. Molecular Psychiatry, 11, 878886.Google Scholar
Gosso, M. F., de Geus, E. J. C., Polderman, T. J. C., Boomsma, D. I., Heutink, P., & Posthuma, D. (2008). Common variants underlying cognitive ability: Further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes, Brain, & Behavior, 7, 355364.Google Scholar
Gosso, M. F., van Belzen, M., de Geus, E. J., Polderman, J. C., Heutink, P., Boomsma, D. I., et al. (2006). Association between the CHRM2 gene and intelligence in a sample of 304 Dutch families. Genes, Brain, and Behavior, 5, 577584.Google Scholar
Greenwood, P. M., & Parasuraman, R. (2003). Normal genetic variation, cognition, and aging. Behavioral & Cognitive Neuroscience Reviews, 2, 278306. doi:10.1177/1534582303260641Google Scholar
Hansell, N. K., Halford, G. S., Andrews, G., Shum, D. H. K., Harris, S. E., Davies, G., et al. (2015). Genetic basis of a cognitive complexity metric. PLoS One, 10, e0123886. doi:10.1371/journal.pone.0123886Google Scholar
Hansell, N. K., Wright, M. J., Geffen, G. M., Geffen, L. B., Smith, G. A., & Martin, N. G. (2001). Genetic influence on ERP slow wave measures of working memory. Behavior Genetics, 31, 603614.Google Scholar
Harden, K. P., Turkheimer, E., & Loehlin, J. C. (2007). Genotype by environment interaction in adolescent’s cognitive aptitude. Behavior Genetics, 37, 273283.Google Scholar
Hart, S. A., Petrill, S. A., Thompson, L. A., & Plomin, R. (2009). The ABCs of math: A genetic analysis of mathematics and its links with reading ability and general cognitive ability. Journal of Educational Psychology, 101, 388402.Google Scholar
Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J. C., van Beijsterveldt, C. E. M., et al. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15, 11121120. doi:10.1038/mp.2009.55Google Scholar
Ibrahim-Verbaas, C. A., Bressler, J., Debette, S., Schuur, M., Smith, A. V., Bis, J. C., et al. (2016). GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Molecular Psychiatry, 21, 189197. doi:10.1038/mp.2015.37Google Scholar
Inlow, J. K., & Restifo, L. L. (2004). Molecular and comparative genetics of mental retardation. Genetics, 166, 835881.Google Scholar
Jensen, A. R. (1998). The g factor: The science of mental ability. New York, NY: Praeger.Google Scholar
Jones, K. A., Porjesz, B., Almasy, L., Bierut, L., Goate, A., Wang, J. C., et al. (2004). Linkage and linkage disequilibrium of evoked EEG oscillations with CHRM2 receptor gene polymorphisms: Implications for human brain dynamics and cognition. International Journal of Psychophysiology, 53, 7590.Google Scholar
Katsanis, J., Iacono, W. G., McGue, M. K., & Carlson, S. R. (1997). P300 event-related potential heritability in monozygotic and dizygotic twins. Psychophysiology, 34, 4758.Google Scholar
Kremen, W. S., Jacobsen, K., Xian, H., Eisen, S. A., Eaves, L. J., Tsuang, M. T., et al. (2007). Genetics of verbal working memory processes: A twin study of middle-aged men. Neuropsychology, 21, 569580Google Scholar
Lee, J. H., Flaquer, A., Stern, Y., Tycko, B., & Mayeux, R. (2004). Genetic influences on memory performance in familial Alzheimer disease. Neurology, 62, 414421.Google Scholar
Lee, T., Henry, J. D., Trollor, J. N., & Sachdev, P. S. (2010). Genetic influences on cognitive functions in the elderly: A selective review of twin studies. Brain Research Reviews, 64, 113. doi:10.1016/j.brainresrev.2010.02.001Google Scholar
Luciano, M., Posthuma, D., Wright, M. J., de Geus, E. J. C., Smith, G. A., Geffen, G. M., et al. (2005). Perceptual speed does not cause intelligence, and intelligence does not cause perceptual speed. Biological Psychology, 70, 18.Google Scholar
Luciano, M., Wright, M. J., Geffen, G. M., Geffen, L. B., Smith, G. A., Evans, D. M., et al. (2003). A genetic two-factor model of the covariation among a subset of Multidimensional Aptitude Battery and Wechsler Adult Intelligence Scale – Revised subtests. Intelligence, 31, 589605.Google Scholar
Luciano, M., Wright, M. J., Geffen, G. M., Geffen, L. B., Smith, G. A., & Martin, N. G. (2004). A genetic investigation of the covariation among inspection time, choice reaction time, and IQ subtest scores. Behavior Genetics, 34, 4150.Google Scholar
Luciano, M., Wright, M. J., Smith, G. A., Geffen, G. M., Geffen, L. B., & Martin, N. G. (2001). Genetic covariance among measures of information processing speed, working memory, and IQ. Behavior Genetics, 31, 581592.Google Scholar
Mandelman, S. D., & Grigorenko, E. L. (2010). Intelligence: genes, environments, and everything in between. In Sternberg, R. J. & Kaufman, S. (Eds.), The Cambridge handbook of intelligence (pp. 85106). New York, NY: Cambridge University Press.Google Scholar
McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B., Little, J., Ioannidis, J. P., et al. (2008). Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nature Reviews Genetics, 9, 356369.Google Scholar
McGue, M., Bouchard, T. J. Jr., Iacono, W. G., & Lykken, D. T. (1993). Behavioral genetics of cognitive ability: A life-span perspective. In Plomin, R. & McClearn, G. E. (Eds.), Nature, nurture, & psychology (pp. 5976). Washington, DC: American Psychological Association.Google Scholar
McGue, M., & Christensen, K. (2013). Growing old but not growing apart: Twin similarity in the latter half of the lifespan. Behavior Genetics, 43, 112. doi:10.1007/s10519-012-9559-5Google Scholar
Mondadori, C. R. A., de Quervain, D. J.-F., Buchmann, A., Mustovic, H., Wollmer, M. A., Schmidt, C. F., et al. (2007). Better memory and neural efficiency in young Apolipoprotein E e4 carriers. Cerebral Cortex, 17, 19341947.Google Scholar
Naples, A. J., Chang, J. T., Katz, L., & Grigorenko, E. L. (2009). Same or different? Insights into the etiology of phonological awareness and rapid naming. Biological Psychology, 80, 226239.Google Scholar
Panizzon, M. S., Vuoksimaa, E., Spoon, K. M., Jacobson, K. C., Lyons, M. J., Franz, C. E., et al. (2014). Genetic and environmental influences of general cognitive ability: Is g a valid latent construct? Intelligence, 43, 6576. doi:10.1016/j.intell.2014.01.008Google Scholar
Patrick, C. L. (2000). Genetic and environmental influences on the development of cognitive abilities: Evidence from the field of developmental behavior genetics. Journal of School Psychology, 38, 79108.Google Scholar
Payton, A., Van den Boogerd, E., Davidson, Y., Gibbons, L., Ollier, W., Rabbitt, P., etal. (2006). Influence and interactions of cathepsin D, HLA-DRB1 and APOE on cognitive abilities in an older non-demented population. Genes, Brain & Behavior, 5, 2331.Google Scholar
Penrose, L. S. (1938). A clinical and genetic study of 1,280 cases of mental defect. London, UK: H. M. Stationery Office.Google Scholar
Petrill, S. A., Lipton, P. A., Hewitt, J. K., Plomin, R., Cherny, S. S., Corley, R., et al. (2004). Genetic and environmental contributions to general cognitive ability through the first 16 years of life. Developmental Psychology, 40, 805812. doi:10.1037/0012-1649.40.5.805Google Scholar
Piffer, D. (2015). A review of intelligence GWAS hits: Their relationship to country IQ and the issue of spatial autocorrelation. Intelligence, 53, 4350. doi:10.1016/j.intell.2015.08.008Google Scholar
Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: Five special findings. Molecular Psychiatry, 20, 98108. doi:10.1038/mp.2014.105Google Scholar
Plomin, R., & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics. Journal of Personality & Social Psychology, 86, 112129.Google Scholar
Polderman, T. J. C., Gosso, M. F., Posthuma, D., Van Beijsterveldt, T. C. E. M., Heutink, P., Verhulst, F. C., et al. (2006). A longitudinal twin study on IQ, executive functioning, and attention problems during childhood and early adolescence. Acta Neurologica Belgica, 106, 191207.Google Scholar
Polderman, T. J. C., Posthuma, D., De Sonneville, L. M. J., Stins, J. F., Verhulst, F. C., & Boomsma, D. I. (2007). Genetic analyses of the stability of executive functioning during childhood. Biological Psychology, 76, 1120.Google Scholar
Posthuma, D., Neale, M. C., Boomsma, D. I., & de Geus, E. J. C. (2001). Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation. Behavior Genetics, 31, 567579.Google Scholar
Price, T. S., Eley, T. C., Dale, P. S., Stevenson, J., Saudino, K., & Plomin, R. (2000). Genetic and environmental covariation between verbal and nonverbal cognitive development in infancy. Child Development, 71, 948959.Google Scholar
Rapoport, M., Wolf, U., Herrmann, N., Kiss, A., Shammi, P., Reis, M., et al. (2008). Traumatic brain injury, Apolipoprotein E-epsilon4, and cognition in older adults: A two-year longitudinal study. Journal of Neuropsychiatry & Clinical Neurosciences, 20, 6873.Google Scholar
Reichenberg, A., Cederlöf, M., McMillan, , , A., Trzaskowski, , , M., Kapara, , , O., Fruchter, E., et al. (2016). Discontinuity in the genetic and environmental causes of the intellectual disability spectrum. Proceedings of the National Academy of Science, 113, 10981103. doi:10.1073/pnas.1508093112Google Scholar
Reuter, M., Ott, U., Vaitl, D., & Hennig, J. (2007). Impaired executive control is associated with a variation in the promoter region of the Tryptophan Hydroxylase 2 gene. Journal of Cognitive Neuroscience, 19, 401408. doi:10.1162/jocn.2007.19.3.401Google Scholar
Reuter, M., Peters, K., Schroeter, K., Koebke, W., Lenardon, D., Bloch, B., et al. (2005). The influence of the dopaminergic system on cognitive functioning: A molecular genetic approach. Behavioural Brain Research, 164, 9399.CrossRefGoogle ScholarPubMed
Reynolds, C. A., Finkel, D., McArdle, J. J., Gatz, M., Berg, S., & Pedersen, N. L. (2005). Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Developmental Psychology, 41, 316. doi:10.1037/0012-1649.41.1.3Google Scholar
Reznick, J. S., Corley, R., & Robinson, J. A. (1997). A longitudinal twin study of intelligence in the second year. Monographs of the Society for Research in Child Development, 249, 62(1).Google Scholar
Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., Benyamin, B., et al. (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proceedings of the National Academy of Sciences, 111, 1379013794. doi:10.1073/pnas.1404623111Google Scholar
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., et al. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340, 14671471. doi:10.1126/science.1235488Google Scholar
Rietveld, M. J. H., Dolan, C. V., van Baal, G. C. M., & Boomsma, D. I. (2003). A twin study of differentiation of cognitive abilities in childhood. Behavior Genetics, 33, 367381.Google Scholar
Rijsdijk, F. V., Vernon, P. A., & Boomsma, D. I. (2002). Application of hierarchical genetic models to Raven and WAIS subtests: A Dutch twin study. Behavior Genetics, 32, 199210.Google Scholar
Risch, N. (1990). Linkage strategies for genetically complex traits. II. The power of affected relative pairs. American Journal of Human Genetics, 46(2), 229241.Google Scholar
Scarmeas, N., & Stern, Y. (2006). Imaging studies and APOE genotype in persons at risk for Alzheimer’s disease. Current Psychiatry Reports, 8, 1117.Google Scholar
Shaw, P., Lerch, J. P., Pruessner, J. C., Taylor, K. N., Rose, A. B., Greenstein, D., et al. (2007). Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: An observational study. Lancet Neurology, 6, 494500.Google Scholar
Singer, J. J., MacGregor, A. J., Cherkas, L. F., & Spector, T. D. (2006). Genetic influences on cognitive function using The Cambridge Neuropsychological Test Automated Battery. Intelligence, 34, 421428.Google Scholar
Small, B. J., Rosnick, C. B., Fratiglioni, L., & Backman, L. (2004). Apolipoprotein E and cognitive performance: A meta-analysis. Psychology & Aging, 14, 592600.Google Scholar
Smith, J. D. (2002). Apolipoprotiens and aging: Emerging mechanisms. Ageing Research Reviews, 1, 345365.Google Scholar
Spearman, C. (1904). General intelligence, objectively determined and measured. American Journal of Psychology, 15, 201292.Google Scholar
Starr, J. M., Fox, H., Harris, S. E., Deary, I. J., & Whalley, L. J. (2008). GSTz1 genotype and cognitive ability. Psychiatric Genetics, 18, 211212.Google Scholar
Sternberg, R. J. (1996). Successful intelligence. New York, NY: Simon & Schuster.Google Scholar
Sundstrom, A., Nilsson, L. G., Cruts, M., Adolfsson, R., Van Broeckhoven, C., & Nyberg, L. (2007). Fatigue before and after mild traumatic brain injury: Pre-post-injury comparisons in relation to Apolipoprotein E. Brain Injury, 21, 10491054.Google Scholar
Teasdale, G. M., Murray, G. D., & Nicoll, J. A. (2005). The association between APOE epsilon4, age and outcome after head injury: A prospective cohort study. Brain, 128, 25562561.Google Scholar
Teter, B., & Ashford, J. W. (2002). Neuroplasticity in Alzheimer’s disease. Journal of Neuroscience Research, 70, 402437.Google Scholar
Tucker-Drob, E. M., & Bates, T. C. (2016). Large cross-national differences in gene x socioeconomic status interaction on intelligence. Psychological Science, 27, 138149. doi:10.1177/0956797615612727Google Scholar
Turic, D., Fisher, P. J., Plomin, R., & Owen, M. J. (2001). No association between apolipoprotein E polymorphisms and general cognitive ability in children. Neuroscience Letters, 299, 97100.Google Scholar
van Baal, G. C. M., Boomsma, D. I., & de Geus, E. J. C. (2001). Longitudinal genetic analysis of EEG coherence in young twins. Behavior Genetics, 31, 637651.Google Scholar
van Baal, G. C. M., van Beijsterveldt, C. E. M., Molenaar, P. C. M., Boomsma, D. I., & de Geus, E. J. C. (2001). A genetic perspective on the developing brain: Electrophysiological indices of neural functioning in young and adolescent twins. European Psychologist, 6, 254263.Google Scholar
van Beijsterveldt, C. E., & Boomsma, D. I. (1994). Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): A review. Human Genetics, 94, 319330.Google Scholar
van Beijsterveldt, C. E., Molenaar, P. C., de Geus, E. J., & Boomsma, D. I. (1998a). Genetic and environmental influences on EEG coherence. Behavior Genetics, 28, 443453.Google Scholar
(1998b). Individual differences in P300 amplitude: A genetic study in adolescent twins. Biological Psychology, 47, 97120.Google Scholar
van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842861.Google Scholar
van der Sluis, S., Willemsen, G., de Geus, E. J. C., Boomsma, D. I., & Posthuma, D. (2008). Gene-environment interaction in adults’ IQ scores: Measure of past and present environment. Behavior Genetics, 38, 348360.Google Scholar
van Leeuwen, M., van den Berg, S. M., & Boomsma, D. I. (2008). A twin-family study of general IQ. Learning and Individual Differences, 18, 7688.Google Scholar
Wainwright, M. A., Wright, M. J., Geffen, G., Luciano, M., & Martin, N. (2005). The genetic basis of academic achievement on the Queensland Core Skills Test and its shared genetic variance with IQ. Behavior Genetics, 35(2), 133145.Google Scholar
Wainwright, M. A., Wright, M. J., Geffen, G. M., Geffen, L. B., Luciano, M., et al. (2004). Genetic and environmental sources of covariance between reading tests used in neuropsychological assessment and IQ subtests. Behavior Genetics, 34, 365376.Google Scholar
Walker, S. O., Petrill, S. A., Spinath, F. M., & Plomin, R. (2004). Nature, nurture and academic achievement: A twin study of teacher assessments of 7-year-olds. British Journal of Educational Psychology, 74, 323342.Google Scholar
Ward, M. E., McMahon, G., St Pourcain, B., Evans, D. M., Rietveld, C. A., Benjamin, D. J., et al. (2014). Genetic variation associated with differential educational attainment in adults has anticipated associations with school performance in children. PLoS One, 9, e100248. doi:10.1371/journal.pone.0100248Google Scholar
Watson, J. B. (1924). Behaviorism. Chicago: University of Chicago Press.Google Scholar
Winterer, G., & Goldman, D. (2003). Genetics of human prefrontal function. Brain Research Reviews, 43, 134163.Google Scholar
Wisdom, N. M., Callahan, J. L., & Hawkins, K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiology of Aging, 32, 6374. doi:10.1016/j.neurobiolaging.2009.02.003Google Scholar
Younger, W. Y. Y., Shih-Jen, T., Chen-Jee, H., Ming-Chao, C., Chih-Wei, Y., & Tai-Jui, C. (2005). Association study of a functional MAOA-uVNTR gene polymorphism and cognitive function in healthy females. Neuropsychobiology, 52, 7782.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×