Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T06:26:32.330Z Has data issue: false hasContentIssue false

12 - Quantum Gravity via Supersymmetry and Holography

from Part Four - Beyond Einstein

Published online by Cambridge University Press:  05 June 2015

Henriette Elvang
Affiliation:
University of Michigan
Gary T. Horowitz
Affiliation:
Department of Physics, UCSB
Abhay Ashtekar
Affiliation:
Pennsylvania State University
Beverly K. Berger
Affiliation:
Formerly Program Director for Gravitational Physics, National Science Foundation
James Isenberg
Affiliation:
University of Oregon
Malcolm MacCallum
Affiliation:
University of Bristol
Get access

Summary

This chapter offers a survey of ideas and results in the approach to quantum gravity based on supersymmetry, strings, and holography.

Extra spatial dimensions appear naturally in this approach, so to set the stage we begin in Section 12.1 with a discussion of general relativity in more than four spacetime dimensions. In higher dimensions, one encounters a richness of structure with no parallel in 4D. Even in vacuum gravity, this includes black hole solutions with non-spherical horizon topologies, black hole non-uniqueness, and regular multi-horizon black holes. We give an overview of such solutions and their properties, both in the context of Kaluza–Klein theory and for asymptotically flat boundary conditions.

A very interesting extension of general relativity is to include matter in such a way that the action becomes invariant under supersymmetry transformations. Supersymmetry is a remarkable symmetry that relates bosons and fermions. It is the only possible extension of the Poincaré group for a unitary theory with non-trivial scattering processes. Supersymmetry is considered a natural extension of the standard model of particle physics; the study of how supersymmetry is broken at low energies, and its possible experimental consequences, is an important active research area in particle physics. Furthermore, independently of its potential phenomenology, supersymmetry offers strong calculational control and that makes it a tremendously powerful tool for analyzing fundamental properties of quantum field theories.

When supersymmetry and general relativity are combined, the result is supergravity. The metric field is accompanied by a spin-3/2 spinor field and this gives a beautiful and enticing playground for advancing our understanding of quantum gravity. Supergravity theories exist in spacetime dimensions D ≤ 11 and they provide a natural setting for studies of charged black holes. Certain extremal limits of charged black holes in super-gravity are invariant under supersymmetry; such ‘supersymmetric black holes’ are key for understanding the statistical mechanical nature of black hole thermodynamics, specifically the microstates responsible for the Hawking–Bekenstein entropy. An example of a super- symmetric black hole is the extremal Reissner–Nordström solution.

Type
Chapter
Information
General Relativity and Gravitation
A Centennial Perspective
, pp. 612 - 666
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] F. R., Tangherlini, “Schwarzschild field in n dimensions and the dimensionality of space problem,”Nuovo Cim. 27 (1963) 636.Google Scholar
[2] M., BanadosC., Teitelboim and J., Zanelli, “The Black hole in three-dimensional space-time,”Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099].Google Scholar
[3] T., Kaluza, “On the Problem of Unity in Physics,”Sitzungsber. Preuss. Akad. Wiss. (1921) 966.Google Scholar
[4] O., Klein, “Quantum Theory and Five-Dimensional Theory of Relativity (in German and English),”Z. Phys. 37 (1926) 895 [Surveys High Energy Phys. 5 (1986) 241].Google Scholar
[5] R., Gregory and R., Laflamme, “Black strings and p-branes are unstable,”Phys. Rev. Lett. 70(1993) 2837 [hep-th/9301052].Google Scholar
[6] G. T., Horowitz and T., Wiseman, “General black holes in Kaluza-Klein theory,” in Blackholes in higher dimensions(G., Horowitz ed.), Cambridge: Cambridge University Press (2012); arXiv:1107.5563 [gr-qc].Google Scholar
[7] S. W., Hawking and G. F. R., Ellis, The large scale structure of space-time, Cambridge: Cambridge University Press, (1973).Google Scholar
[8] G. T., Horowitz and K., Maeda, “Fate of the black string instability,”Phys.Rev. Lett. 87 (2001) 131301 [hep-th/0105111].Google Scholar
[9] L., Lehner and F., Pretorius, “Final State of Gregory-Laflamme Instability,” arXiv:1106.5184 [gr-qc].Google Scholar
[10] V., Cardoso and O. J. C., Dias, “Rayleigh-Plateau and Gregory-Laflamme instabilities of black strings,”Phys. Rev. Lett. 96(2006) 181601 [hep-th/0602017].Google Scholar
[11] T., Wiseman, “Static axisymmetric vacuum solutions and nonuniform black strings,”Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051].Google Scholar
[12] H., Kudoh and T., Wiseman, “Properties of Kaluza-Klein black holes,”Prog. Theor. Phys. 111(2004) 475 [hep-th/0310104].Google Scholar
[13] B., KleihausJ., Kunz and E., Radu, “New nonuniform black string solutions,”JHEP 0606, 016 (2006) [hep-th/0603119].Google Scholar
[14] S., Deser and M., Soldate, “Gravitational Energy in Spaces With Compactified Dimensions,”Nucl. Phys. B 311 (1989) 739.Google Scholar
[15] D., Brill and H., Pfister, “States of Negative Total Energy in Kaluza-Klein Theory,”Phys. Lett. B 228 (1989) 359.Google Scholar
[16] D., Brill and G. T., Horowitz, “Negative energy in string theory,”Phys. Lett. B 262 (1991) 437.Google Scholar
[17] E., Witten, “Instability of the Kaluza-Klein Vacuum,”Nucl. Phys. B 195 (1982) 481.Google Scholar
[18] X., Dai, “A positive energy theorem for spaces with asymptotic SUSY compactification,”Commun. Math. Phys. 244 (2004) 335.Google Scholar
[19] H., Elvang and G. T., Horowitz, “When black holes meet Kaluza-Klein bubbles,”Phys. Rev. D 67 (2003) 044015 [hep-th/0210303].Google Scholar
[20] H., ElvangT., Harmark and N. A., Obers, “Sequences of bubbles and holes: New phases of Kaluza-Klein black holes,”JHEP0501 (2005) 003 [hep-th/0407050].Google Scholar
[21] R. C., Myers and M. J., Perry, “Black Holes in Higher Dimensional Space-Times,”Annals of Physics 172 (1986)304.Google Scholar
[22] R., Emparan and H. S., Reall, “A Rotating black ring solution in five-dimensions,”Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260].Google Scholar
[23] R., Emparan and H. S., Reall, “Black Rings,”Class. Quant. Grav. 23 (2006) R169 [hep-th/0608012].Google Scholar
[24] H., Elvang, “A Charged rotating black ring,”Phys. Rev. D 68 (2003) 124016 [hep-th/0305247].Google Scholar
[25] H., ElvangR., Emparan and A. Virmani, “Dynamics and stability of black rings,”JHEP 0612(2006) 074 [hep-th/0608076].Google Scholar
[26] H., ElvangR., Emparan and P., Figueras, “Phases of five-dimensional black holes,”JHEP 0705(2007) 056 [hep-th/0702111].Google Scholar
[27] A. A., Pomeransky and R. A., Sen'kov, “Black ring with two angular momenta,” hep-th/0612005.
[28] V. A., Belinsky and V. E., Zakharov, “Integration of the Einstein Equations by the Inverse Scattering Problem Technique and the Calculation of the Exact Soliton Solutions,”Sov. Phys. JETP 48 (1978) 985 [Zh. Eksp. Teor. Fiz. 75 (1978) 1953].Google Scholar
[29] V. A., Belinsky and V. E., Sakharov, “Stationary Gravitational Solitons with Axial Symmetry,”Sov. Phys. JETP 50 (1979) 1 [Zh. Eksp. Teor. Fiz. 77 (1979) 3].Google Scholar
[30] V., Belinski and E., Verdaguer, Gravitational solitons, Cambridge: Cambridge University Press (2001).Google Scholar
[31] H., Elvang and M.J., Rodriguez, “Bicycling Black Rings,”JHEP 0804 (2008) 045 [arXiv:0712. 2425 [hep-th]].Google Scholar
[32] H., Elvang and P., Figueras, “Black Saturn,”JHEP 0705 (2007) 050 [hep-th/0701035].Google Scholar
[33] P., T. Chruściel M., Eckstein and S.J., Szybka, “On smoothness of Black Saturns,”JHEP 1011 (2010) 048 [arXiv:1007.3668 [hep-th]].Google Scholar
[34] H., Iguchi and T., Mishima, “Black di-ring and infinite nonuniqueness,”Phys. Rev. D 75, 064018 (2007) [Erratum ibid.D 78, 069903 (2008] [hep-th/0701043].Google Scholar
[35] J., Evslin and C., Krishnan, “The Black Di-Ring: An Inverse Scattering Construction,”Class. Quant. Grav. 26, 125018 (2009) [arXiv:0706.1231 [hep-th]].Google Scholar
[36] K., Izumi, “Orthogonal black di-ring solution,”Prog. Theor. Phys. 119 (2008) 757 [arXiv:0712.0902 [hep-th]].Google Scholar
[37] H.S., Reall, “Higher dimensional black holes and supersymmetry,”Phys. Rev. D 68 (2003) 024024 [Erratum ibid. D 70 (2004) 089902] [hep-th/0211290].Google Scholar
[38] S., HollandsA., Ishibashi and R.M., Wald, “A Higher dimensional stationary rotating black hole must be axisymmetric,”Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106].Google Scholar
[39] V., Moncrief and J., Isenberg, “Symmetries of Higher Dimensional Black Holes,”Class. Quant. Grav. 25 (2008) 195015 [arXiv:0805.1451 [gr-qc]].Google Scholar
[40] R., EmparanT., HarmarkV., Niarchos and N.A., Obers, “New Horizons for Black Holes and Branes,”JHEP 1004 (2010) 046 [arXiv:0912.2352 [hep-th]].Google Scholar
[41] R., Emparan and R., C. Myers, “Instability of ultra-spinning black holes,”JHEP 0309 (2003) 025 [hep-th/0308056].Google Scholar
[42] R., Emparan and H., S. Reall, “Black Holes in Higher Dimensions,”LivingRev., Rel. 11 (2008) 6 [arXiv:0801.3471 [hep-th]].Google Scholar
[43] R., EmparanT., HarmarkV., NiarchosN.A., Obers and M.J., Rodriguez, “The Phase Structure of Higher-Dimensional Black Rings and Black Holes,”JHEP 0710, 110 (2007) [arXiv:0708.2181 [hep-th]].Google Scholar
[44] R., EmparanT., HarmarkV., Niarchos and N.A., Obers, “Essentials of Blackfold Dynamics,”JHEP 1003 (2010) 063 [arXiv:0910.1601 [hep-th]].Google Scholar
[45] R., EmparanT., HarmarkV., Niarchos and N.A., Obers, “World-Volume Effective Theory for Higher-Dimensional Black Holes,”Phys.Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427 [hep-th]].Google Scholar
[46] J., Camps and R., Emparan, “Derivation of the blackfold effective theory,”JHEP 1203 (2012) 038 [Erratum ibid. 1206 (2012) 155] [arXiv:1201.3506 [hep-th]].Google Scholar
[47] B., KleihausJ., Kunz and E., Radu, “Black rings in six dimensions,”Phys.Lett. B 718, 1073 (2013) [arXiv:1205.5437 [hep-th]].Google Scholar
[48] S.R., Coleman and J., Mandula, “All Possible Symmetries of the S Matrix,”Phys. Rev. 159 (1967) 1251.Google Scholar
[49] R., HaagJ., T.|Lopuszanski and M., Sohnius, “All Possible Generators of Supersymmetries of the S Matrix,”Nucl.Phys. B 88 (1975) 257.Google Scholar
[50] J., Wess and J., Bagger, Supersymmetry and supergravity, Princeton, NJ: Princeton University Press (1992).Google Scholar
[51] D.Z., Freedman and A., Van Proeyen, Supergravity, Cambridge: Cambridge University Press (2012).Google Scholar
[52] D.Z., FreedmanP., van Nieuwenhuizen and S., Ferrara, “Progress Toward a Theory of Supergravity,”Phys.Rev.|D 13 (1976) 3214.Google Scholar
[53] S., Deser and B., Zumino, “Consistent Supergravity,”Phys.Lett. B 62 (1976) 335.Google Scholar
[54] S., Ferrara and P., van Nieuwenhuizen, “Consistent Supergravity with Complex Spin 3/2 Gauge Fields,”Phys.Rev.|Lett. 37 (1976) 1669.Google Scholar
[55] E., Cremmer, “Supergravities in Five Dimensions,” in Superspace and supergravity. Proceedings, Nuffield Workshop, Cambridge, UK, June 16-July 12, 1980,” Eds. S. W., Hawking and M., Rocek, Cambridge: Cambridge University Press (1981).Google Scholar
[56] C., Fronsdal, “Massless Fields with Integer Spin,”Phys.Rev. D 18, 3624 (1978).Google Scholar
[57] E.S., Fradkin and M.A., Vasiliev, “Cubic Interaction in Extended Theories of Massless higher spin fields,”Nucl.Phys.|B 291, 141 (1987).Google Scholar
[58] M.A., Vasiliev, “Higher spin gauge theories: star product and AdS space,” in Shifman, M.A. (ed.): The many faces of the superworld, pp. 533–610 [hep-th/9910096].
[59] I.R., Klebanov and A.M., Polyakov, “AdS dual of the critical O(N) vector model,”Phys.Lett. B 550, 213 (2002) [hep-th/0210114].Google Scholar
[60] M.R., Gaberdiel and R., Gopakumar, “An AdS3 Dual for Minimal Model CFTs,”Phys.Rev. D 83, 066007 (2011) [arXiv:1011.2986 [hep-th]].Google Scholar
[61] E., CremmerB., Julia and J., Scherk, “Supergravity Theory in Eleven-Dimensions,”Phys.Lett. B 76 (1978) 409.Google Scholar
[62] M., GunaydinL.J., Romans and N.P., Warner, “Gauged N = 8 Supergravity in Five-Dimensions,”Phys.Lett. B 154 (1985) 268.Google Scholar
[63] E.B., Bogomol'nyi, “Stability of Classical Solutions,”Sov. J. Nucl. Phys. 24, 449 (1976) [Yad.|Fiz. 24, 861 (1976)].Google Scholar
[64] M.K., Prasad and C.M., Sommerfield, “An Exact Classical Solution for the't Hooft Monopole and the Julia-Zee Dyon,”Phys.Rev.|Lett. 35 (1975) 760.Google Scholar
[65] E., Witten, “A Simple Proof of the Positive Energy Theorem,”Commun.Math. Phys. 80 (1981) 381.Google Scholar
[66] G.W., Gibbons and C.M., Hull, “A Bogomol'nyi Bound for General Relativity and Solitons in N = 2 Supergravity,”Phys.Lett. B 109 (1982) 190.Google Scholar
[67] G.W., GibbonsD., KastorL.A.J., LondonP.K.|Townsend and J.H., Traschen, “Supersym-metric selfgravitating solitons,”Nucl.Phys. B 416 (1994) 850 [hep-th/9310118].Google Scholar
[68] M., Cvetic and D., Youm, “General rotating five-dimensional black holes of toroidally compactified heterotic string,”Nucl.Phys. B 476, 118 (1996) [hep-th/9603100].Google Scholar
[69] J.C., BreckenridgeR.C., MyersA.W., Peet and C., Vafa, “D-branes and spinning black holes,”Phys. Lett.B 391 (1997) 93 [hep-th/9602065].Google Scholar
[70] H., ElvangR., EmparanD., Mateos and H.S., Reall, “A Supersymmetric black ring,”Phys.Rev. Lett. 93 (2004) 211302 [hep-th/0407065].Google Scholar
[71] I., Bena and N.P., Warner, “One ring to rule them all… and in the darkness bind them?,”Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106].Google Scholar
[72] H., ElvangR., EmparanD., Mateos and H.S., Reall, “Supersymmetric black rings and three-charge supertubes,”Phys.Rev. D 71 (2005) 024033 [hep-th/0408120].Google Scholar
[73] J.P., Gauntlett and J.B., Gutowski, “General concentric black rings,”Phys.Rev. D 71 (2005) 045002 [hep-th/0408122].Google Scholar
[74] H., Elvang and Y.t., Huang, “Scattering Amplitudes,” arXiv:1308.1697 [hep-th].Google Scholar
[75] N., Arkani-HamedJ.L., BourjailyF., CachazoA.B., GoncharovA., Postnikov and J., Trnka, “Scattering Amplitudes and the Positive Grassmannian,” arXiv:1212.5605 [hep-th].Google Scholar
[76] H., KawaiD.C., Lewellen and S.H.H., Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,”Nucl.Phys. B 269, 1 (1986).Google Scholar
[77] Z., BernL.J., DixonM., Perelstein and J.S., Rozowsky, “Multileg one loop gravity amplitudes from gauge theory,”Nucl.Phys. B 546, 423 (1999) [hep-th/9811140].Google Scholar
[78] Z., Bern and A.K., Grant, “Perturbative gravity from QCD amplitudes,”Phys.Lett. B 457, 23 (1999) [hep-th/9904026].Google Scholar
[79] Z., BernL.J., DixonD.C., DunbarA.K., GrantM., Perelstein and J.S., Rozowsky, “On perturbative gravity and gauge theory,”Nucl. Phys. Proc.Suppl. 88, 194 (2000) [hep-th/0002078].Google Scholar
[80] W., Siegel, “Two vierbein formalism for string inspired axionic gravity,”Phys.Rev. D 47, 5453 (1993) [hep-th/9302036].Google Scholar
[81] Z., Bern, “Perturbative quantum gravity and its relation to gauge theory,”Living Rev. Rel. 5, 5 (2002) [gr-qc/0206071].Google Scholar
[82] Z., BernJ.J.M., Carrasco and H., Johansson, “New Relations for Gauge-Theory Amplitudes,”Phys.Rev. D 78, 085011 (2008) [arXiv:0805.3993 [hep-ph]].Google Scholar
[83] G., 't Hooft and M. J.G., Veltman, “One loop divergencies in the theory of gravitation,”Ann.Inst. Henri Poincare Phys.Theor. A 20, 69 (1974).Google Scholar
[84] M.H., Goroff and A., Sagnotti, “Quantum Gravity At Two Loops,”Phys.Lett. B 160,81 (1985).Google Scholar
[85] A. E.M., van de Ven, “Two loop quantum gravity,”Nucl.Phys. B 378, 309 (1992).Google Scholar
[86] S., Deser and P., van Nieuwenhuizen, “One Loop Divergences of Quantized Einstein-Maxwell Fields,”Phys.Rev. D 10, 401 (1974).Google Scholar
[87] M. T., GrisaruP., van Nieuwenhuizen and J.A.M., Vermaseren, “One Loop Renormalizability of Pure Supergravity and of Maxwell-Einstein Theory in Extended Supergravity,”Phys.Rev.|Lett. 37, 1662(1976).Google Scholar
[88] M.T., Grisaru, “Two Loop Renormalizability of Supergravity,”Phys.Lett. B 66, 75 (1977).Google Scholar
[89] E., Tomboulis, “On the Two Loop Divergences of Supersymmetric Gravitation,”Phys.Lett. B 67, 417 (1977).Google Scholar
[90] S., DeserJ.H., Kay and K.S., Stelle, “Renormalizability Properties of Supergravity,”Phys.Rev. Lett. 38, 527 (1977).Google Scholar
[91] Z., BernS., DaviesT., DennenA.V., Smirnov and V.A., Smirnov, “The Ultraviolet Properties of N = 4 Supergravity at Four Loops,” arXiv:1309.2498 [hep-th].Google Scholar
[92] Z., BernL.J., Dixon and R., Roiban, “Is N = 8 supergravity ultraviolet finite?,”Phys.Lett. B 644, 265 (2007) [hep-th/0611086].Google Scholar
[93] Z., BernJ. J., CarrascoL. J., DixonH., JohanssonD. A., Kosower and R., Roiban, “Three-Loop Superfiniteness of N = 8 Supergravity,”Phys.Rev. Lett. 98, 161303 (2007) [hep-th/0702112].Google Scholar
[94] Z., BernJ.J.M., CarrascoL. J., DixonH., Johansson and R., Roiban, “Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity,”Phys.Rev.D 78, 105019 (2008) [arXiv:0808.4112 [hep-th]].Google Scholar
[95] Z., BernJ. J., CarrascoL.J., DixonH., Johansson and R., Roiban, “The Ultraviolet Behavior of N = 8 Supergravity at Four Loops,”Phys.Rev.Lett. 103, 081301 (2009) [arXiv:0905.2326 [hep-th]].Google Scholar
[96] Z., BernJ.J.M., CarrascoL.J., DixonH., Johansson and R., Roiban, “The Complete Four-Loop Four-Point Amplitude in N = 4 Super-Yang-Mills Theory,”Phys.Rev. D 82, 125040 (2010) [arXiv:1008.3327 [hep-th]].Google Scholar
[97] H., ElvangD. Z., Freedman and M., Kiermaier, “A simple approach to counterterms in N = 8 supergravity,”JHEP 1011, 016 (2010) [arXiv:1003.5018 [hep-th]].Google Scholar
[98] J. M., DrummondP. J., Heslop and P.S., Howe, “A Note on N = 8 counterterms,” arXiv:1008.4939 [hep-th].Google Scholar
[99] H., Elvang and M., Kiermaier, “Stringy KLT relations, global symmetries, and E7(7) violation,”JHEP 1010, 108 (2010) [arXiv:1007.4813 [hep-th]].Google Scholar
[100] N., BeisertH., ElvangD.Z., FreedmanM., KiermaierA., Morales and S., Stieberger, “E7(7) constraints on counterterms in N = 8 supergravity,”Phys.Lett. B 694, 265 (2010) [arXiv:1009.1643 [hep-th]].Google Scholar
[101] M.B., GreenJ.G., Russo and P., Vanhove, “Modular properties of two-loop maximal supergravity and connections with string theory,”JHEP 0807, 126 (2008) [arXiv:0807.0389 [hep-th]].Google Scholar
[102] G., BossardP.S., HoweK.S., Stelle and P., Vanhove, “The vanishing volume of D = 4 superspace,”Class. Quant. Grav. 28, 215005 (2011) [arXiv:1105.6087 [hep-th]].Google Scholar
[103] B., Zwiebach, A first course in string theory, Cambridge: Cambridge University Press (2009).Google Scholar
[104] J., Polchinski, String theory. Vol. 1. An introduction to the bosonic string, Cambridge: Cambridge University Press (1998); String theory. Vol. 2. Superstring theory and beyond, Cambridge: Cambridge University Press (1998).Google Scholar
[105] K., BeckerM., Becker and J.H.Schwarz, Schwarz,String theory and M-theory: a modern introduction, Cambridge: Cambridge University Press (2007).Google Scholar
[106] F., GliozziJ., Sherk, and D., Olive, “Supersymmetry, supergravity, and the dual spinor model,”Nucl. Phys. B122 (1977) 253.Google Scholar
[107] C.G. Callan, Jr., E. J., MartinecM.J., Perry and D., Friedan, “Strings in Background Fields,”Nucl.|Phys. B 262 (1985) 593.CrossRefGoogle Scholar
[108] E., Witten, “Noncommutative Geometry and String Field Theory,”Nucl. Phys. B268 (1986) 253.Google Scholar
[109] A., Sen, “Universality of the tachyon potential,”JHEP 9912 (1999) 027 [hep-th/9911116].Google Scholar
[110] N., Moeller and W., Taylor, “Level truncation and the tachyon in open bosonic string field theory,”Nucl. Phys. B 583 (2000) 105. [hep-th/0002237].Google Scholar
[111] E., Witten, “Superstring Perturbation Theory Revisited,” arXiv:1209.5461 [hep-th].Google Scholar
[112] E., Witten, “More On Superstring Perturbation Theory,” arXiv:1304.2832 [hep-th].Google Scholar
[113] P., CandelasG.T., HorowitzA., Strominger and E., Witten, “Vacuum Configurations for Superstrings,”Nucl. Phys. B 258 (1985) 46.Google Scholar
[114] A., GiveonM., Porrati and E., Rabinovici, “Target space duality in string theory,”Phys. Rept. 244 (1994) 77 [hep-th/9401139].Google Scholar
[115] W., LercheC., Vafa and N.P.Warner, Warner,“Chiral Rings in N = 2 Superconformal Theories,”Nucl. Phys. B 324 (1989) 427.Google Scholar
[116] B.R., Greene and M.R.Plesser, Plesser,“Duality in Calabi-Yau Moduli Space,”Nucl.|Phys. B 338 (1990) 15.Google Scholar
[117] P., CandelasX. C., De La OssaP.S., Green and L., Parkes, “A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory,”Nucl.|Phys. B 359 (1991) 21.Google Scholar
[118] P. S., AspinwallB. R., Greene and D.R., Morrison, “Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory,”Nucl. Phys. B 416 (1994) 414 [hep-th/9309097].Google Scholar
[119] J.H.Schwarz, Schwarz,“Superstring Theory,”Phys. Rept. 89 (1982) 223.Google Scholar
[120] D.J., GrossJ.A., HarveyE. J., Martinec and R., Rohm, “The Heterotic String,”Phys. Rev. Lett. 54 (1985)502.Google Scholar
[121] M. B., Green and J.H., Schwarz, “Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory,”Phys. Lett. B 149 (1984) 117.Google Scholar
[122] J., Polchinski, “Dirichlet Branes and Ramond-Ramond charges,”Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017].Google Scholar
[123] S., KachruR., KalloshA.D., Linde and S.P., Trivedi, “De Sitter vacua in string theory,”Phys.|Rev. D 68 (2003) 046005 [hep-th/0301240].Google Scholar
[124] E., Witten, “String theory dynamics in various dimensions,”Nucl. Phys. B 443 (1995) 85 [hep-th/9503124].Google Scholar
[125] T., BanksW., FischlerS. H., Shenker and L., Susskind, “M theory as a matrix model: a conjecture,”Phys. Rev. D 55 (1997) 5112 [hep-th/9610043].Google Scholar
[126] L., Susskind, “Some speculations about black hole entropy in string theory,” in Teitelboim, C. (ed.): The black hole, pp. 118–131 [hep-th/9309145].
[127] G. T., Horowitz and J., Polchinski, “A correspondence principle for black holes and strings,”Phys. Rev. D 55 (1997) 6189 [hep-th/9612146].Google Scholar
[128] A., Strominger and C., Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,”Phys. Lett. B 379 (1996) 99 [hep-th/9601029].Google Scholar
[129] C. G., Callan and J.M.Maldacena, Maldacena,“D-brane approach to black hole quantum mechanics,”Nucl. Phys. B 472 (1996) 591 [hep-th/9602043].Google Scholar
[130] G. T., Horowitz and A., Strominger, “Counting states of near extremal black holes,”Phys. Rev. Lett. 77 (1996) 2368 [hep-th/9602051].Google Scholar
[131] J. M., Maldacena and A., Strominger, “Statistical entropy of four-dimensional extremal black holes,”Phys. Rev. Lett. 77 (1996) 428 [hep-th/9603060].Google Scholar
[132] C. V., JohnsonR. R., Khuri and R.C.Myers, Myers,“Entropy of 4-D extremal black holes,”Phys. Lett. B 378 (1996) 78 [hep-th/9603061].Google Scholar
[133] G. T., HorowitzD. A., Lowe and J.M.Maldacena, Maldacena,“Statistical entropy of nonextremal four-dimensional black holes and U duality,”Phys. Rev. Lett. 77 (1996) 430 [hep-th/9603195].Google Scholar
[134] J.M., Maldacena and A., Strominger, “Black hole grey body factors and d-brane spectroscopy,”Phys. Rev. D 55 (1997) 861 [hep-th/9609026].Google Scholar
[135] S.R., Das and S.D.Mathur, Mathur,“Comparing decay rates for black holes and D-branes,”Nucl. Phys. B 478 (1996) 561 [hep-th/9606185].Google Scholar
[136] M., CyrierM., GuicaD., Mateos and A., Strominger, “Microscopic entropy of the black ring,”Phys.|Rev. Lett. 94, 191601 (2005) [hep-th/0411187].Google Scholar
[137] I., Bena and P., Kraus, “Microscopic description of black rings in AdS/CFT,”JHEP 0412, 070 (2004) [hep-th/0408186].Google Scholar
[138] I., Bena and P., Kraus, “Microstates of the D1-D5-KK system,”Phys. Rev. D 72, 025007 (2005) [hep-th/0503053].Google Scholar
[139] G., 't Hooft, “Dimensional reduction in quantum gravity,” gr-qc/9310026.
[140] L., Susskind, “The World as a hologram,”J.|Math. Phys. 36 (1995) 6377 [hep-th/9409089].Google Scholar
[141] S. J., AvisC.J., Isham and D., Storey, “Quantum Field Theory in anti-De Sitter space-time,”Phys.|Rev. D 18 (1978) 3565.Google Scholar
[142] S. W., Hawking and D.N.Page, Page,“Thermodynamics of Black Holes in anti-De Sitter space,”Commun.|Math. Phys. 87 (1983) 577.Google Scholar
[143] D., Marolf, “Unitarity and Holography in Gravitational Physics,”Phys.Rev.D 79 (2009) 044010 [arXiv:0808.2842 [gr-qc]].Google Scholar
[144] J.M.Maldacena, Maldacena,“The large N limit of superconformal field theories and supergravity,”Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].Google Scholar
[145] S. S., GubserI. R., Klebanov and A.W.Peet, Peet,“Entropy and temperature of black 3-branes,”Phys. Rev. D 54 (1996) 3915 [hep-th/9602135].Google Scholar
[146] S. S., GubserI. R., Klebanov and A.M.Polyakov, Polyakov,“Gauge theory correlators from noncritical string theory,”Phys. Lett. B 428 (1998) 105 [hep-th/9802109].Google Scholar
[147] E., Witten, “Anti-de Sitter space and holography,”Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150].Google Scholar
[148] N., Drukker and D.J.Gross, Gross,“An Exact prediction of N = 4 SUSYM theory for string theory,”J. Math. Phys. 42 (2001) 2896 [hep-th/0010274].Google Scholar
[149] D. Z., FreedmanS. S., GubserK., Pilch and N.P.Warner, Warner,“Renormalization group flows from holography supersymmetry and a c theorem,”Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017].Google Scholar
[150] D. E., BerensteinJ.M., Maldacena and H.S.Nastase, Nastase,“Strings in flat space and pp waves from N = 4 superYang-Mills,”JHEP 0204 (2002) 013 [hep-th/0202021].Google Scholar
[151] H., LinO., Lunin and J.M.Maldacena, Maldacena,“Bubbling AdS space and 1/2 BPS geometries,”JHEP 0410 (2004) 025 [hep-th/0409174].Google Scholar
[152] J. M., Maldacena and A., Strominger, “AdS(3) black holes and a stringy exclusion principle,”JHEP 9812 (1998) 005 [hep-th/9804085].Google Scholar
[153] J., McGreevyL., Susskind and N., Toumbas, “Invasion of the giant gravitons from anti-de Sitter space,”JHEP 0006 (2000) 008 [hep-th/0003075].Google Scholar
[154] R.C.Myers, Myers,“Dielectric branes,”JHEP 9912 (1999) 022 [hep-th/9910053].Google Scholar
[155] O., AharonyO., BergmanD.L., Jafferis and J., Maldacena, “N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,”JHEP 0810 (2008) 091 [arXiv:0806.1218 [hep-th]].Google Scholar
[156] I. R., Klebanov and E., Witten, “Superconformal field theory on three-branes at a Calabi-Yau singularity,”Nucl. Phys. B 536 (1998) 199 [hep-th/9807080].Google Scholar
[157] D., Martelli and J., Sparks, “The gravity dual of supersymmetric gauge theories on a biaxially squashed three-sphere,”Nucl.|Phys. B 866 (2013) 72 [arXiv:1111.6930 [hep-th]].Google Scholar
[158] D. Z., Freedman and S.S., Pufu, “The Holography of F-maximization,” arXiv:1302. 7310 [hep-th].
[159] S.W.Hawking, Hawking,“Breakdown of Predictability in Gravitational Collapse,”Phys.Rev.D 14(1976) 2460.Google Scholar
[160] S.D.Mathur, Mathur,“The Information paradox: A Pedagogical introduction,”Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038 [hep-th]].Google Scholar
[161] S.D.Mathur, Mathur,“Fuzzballs and the information paradox: A Summary and conjectures,” arXiv:0810.4525 [hep-th].
[162] A., AlmheiriD., MarolfJ., Polchinski and J., Sully, “Black Holes: Complementarity or Firewalls?,”JHEP 1302 (2013) 062 [arXiv:1207.3123 [hep-th]]; S.L.|Braunstein, “Black hole entropy as entropy of entanglement, or it's curtains for the equivalence principle,” [arXiv:0907.1190v1 [quant-ph]] published as S.L., BraunsteinS., Pirandola and K., Zyczkowski, “Better late than never: information retrieval from black holes,” Phys.|Rev. Lett. 110, 101301 (2013) for a similar prediction from different assumptions.Google Scholar
[163] V., Balasubramanian and P., Kraus, “A Stress tensor for Anti-de Sitter gravity,”Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121].Google Scholar
[164] G. T., Horowitz and R.C.Myers, Myers,“The AdS/CFT correspondence and a new positive energy conjecture for general relativity,”Phys. Rev. D 59 (1998) 026005 [hep-th/9808079].Google Scholar
[165] S., de HaroS.N., Solodukhin and K., Skenderis, “Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence,”Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230].Google Scholar
[166] P., KovtunD. T., Son and A.O.Starinets, Starinets,“Viscosity in strongly interacting quantum field theories from black hole physics,”Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231].Google Scholar
[167] A., AdamsP.M., Chesler and H., Liu, “Holographic turbulence,”Phys. Rev. Lett. 112 (2014) 15, 151602 [arXiv:1307.7267 [hep-th]].Google Scholar
[168] S.S.Gubser, Gubser,“Breaking an Abelian gauge symmetry near a black hole horizon,”Phys.|Rev. D 78 (2008) 065034 [arXiv:0801.2977 [hep-th]].Google Scholar
[169] S. A., HartnollC. P., Herzog and G.T., Horowitz, “Building a Holographic Superconductor,”Phys. Rev. Lett. 101 (2008)031601 [arXiv:0803.3295 [hep-th]].Google Scholar
[170] G. T., HorowitzJ. E., Santos and D., Tong, “Optical Conductivity with Holographic Lattices,”JHEP 1207 (2012) 168 [arXiv:1204.0519 [hep-th]].Google Scholar
[171] G. T., Horowitz and J.E.Santos, Santos,“General Relativity and the Cuprates,”JHEP 1306 (2013) 087 [arXiv:1302.6586 [hep-th]].Google Scholar
[172] S., Ryu and T., Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,”Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001].Google Scholar
[173] T., NishiokaS., Ryu and T., Takayanagi, “Holographic Entanglement Entropy: An overview,”J. Phys. A 42 (2009) 504008 [arXiv: 0905.0932 [hep-th]].Google Scholar
[174] A., Lewkowycz and J., Maldacena, “Generalized gravitational entropy,”JHEP 1308 (2013) 090 [arXiv:1304.4926 [hep-th]].Google Scholar
[175] M., Van Raamsdonk, “Building up space-time with quantum entanglement,”Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429][arXiv:1005.3035[hep-th]].Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×