Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T00:43:42.130Z Has data issue: false hasContentIssue false

1 - Technique of microarrays: microarray platforms

Published online by Cambridge University Press:  05 September 2009

Sven de Vos
Affiliation:
UCLA Medical Center, Los Angeles, CA, USA
Wolf-Karsten Hofmann
Affiliation:
Charite-University Hospital Benjamin Franklin, Berlin
Get access

Summary

Introduction

Within a few years of their inception, microarrays have become a widely used tool to study global gene expression of cells in culture or complex tissues in many different organisms. The major technical advance lies in the high throughput capability covering the RNA expression of whole genomes on a single chip, thereby transforming the classical paradigm of studying “one gene at a time.” With only modest efforts, an immense amount of raw data can be produced, which has created unique challenges for the analyses and interpretations of microarray experiments when attempting to distil meaningful conclusions from these large data sets. On the experimental side, quality problems of the sample materials, on the hardware side problems with probe sets, quality controls, and protocol standardization, and on the analysis side questions of the most suitable statistical analysis techniques soon surfaced. Stringent experimental planning and controlling is necessary to extract meaningful data from microarray experiments. In order to create reliable and comparable data sets, the minimal information about a microarray experiment (MIAME) [1] has been published and adherence to these guidelines increasingly is required by scientific journals. The landscape of high-throughput gene expression has continued to evolve and most recently has witnessed an onslaught of new and improved microarray platforms.

The basic protocol starts with the hybridization of complementary strands of labeled DNA or RNA from cells or tissues with representations of known genes or expressed sequence tags (ESTs) spotted onto a solid support, usually glass or nylon.

Type
Chapter
Information
Gene Expression Profiling by Microarrays
Clinical Implications
, pp. 8 - 26
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brazma, A., Hingamp, P., Quackenbush, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 2001; 29(4): 365–71.CrossRefGoogle ScholarPubMed
Marton, M. J., Derisi, J. L., Bennett, H. A.et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat. Med. 1998; 4(11): 1293–301.CrossRefGoogle ScholarPubMed
Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., and Church, G. M.Systematic determination of genetic network architecture. Nat. Genet. 1999; 22(3): 281–5.CrossRefGoogle ScholarPubMed
Iyer, V. R., Eisen, M. B., Ross, D. T.et al. The transcriptional program in the response of human fibroblasts to serum. Science 1999; 283(5398): 83–7.CrossRefGoogle Scholar
DeRisi, J. L., Iyer, V. R., and Brown, P. O.Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997; 278(5338): 680–6.CrossRefGoogle ScholarPubMed
Hughes, T. R., Marton, M. J., Jones, A. R.et al. Functional discovery via a compendium of expression profiles. Cell 2000; 102(1): 109–26.CrossRefGoogle Scholar
Pomeroy, S. L., Tamayo, P., Gaasenbeek, M.et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415(6870): 436–42.CrossRefGoogle ScholarPubMed
van't Veer, L. J., Dai, H., Vijver, M. J.et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871): 530–6.CrossRefGoogle Scholar
Schena, M., Shalon, D., Davis, R. W., and Brown, P. O.Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270(5235): 467–70.CrossRefGoogle ScholarPubMed
Stafford, P. and Liu, P.Microarray technology comparison, statistical analysis, and experimental design. In Microarray Methods and Applications – Nuts and Bolts. DNA Press., 2003: 3273–324.Google Scholar
Lockhart, D. J., Dong, H., Byrne, M. C.et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 1996; 14(13): 1675–80.CrossRefGoogle ScholarPubMed
Shalon, D., Smith, S. J., and Brown, P. O.A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996; 6(7): 639–45.CrossRefGoogle ScholarPubMed
Cheung, V. G., Morley, M., Aguilar, F.et al. Making and reading microarrays. Nat. Genet. 1999; 21(1 Suppl): 15–19.CrossRefGoogle ScholarPubMed
Bowtell, D. D.Options available – from start to finish – for obtaining expression data by microarray. Nat. Genet. 1999; 21(1 Suppl): 25–32.CrossRefGoogle ScholarPubMed
Hardiman, G.Microarray technologies 2003 – an overview. Pharmacogenomics 2003; 4(3): 251–6.CrossRefGoogle ScholarPubMed
Knight, J.When the chips are down. Nature 2001; 410(6831): 860–1.CrossRefGoogle ScholarPubMed
Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J.High density synthetic oligonucleotide arrays. Nat. Genet. 1999; 21(1 Suppl): 20–4.CrossRefGoogle ScholarPubMed
Hughes, T. R., Mao, M., Jones, A. R.et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 2001; 19(4): 342–7.CrossRefGoogle ScholarPubMed
Xiang, C. C. and Chen, Y.cDNA microarray technology and its applications. Biotechnol. Adv. 2000; 18(1): 35–46.CrossRefGoogle ScholarPubMed
Chee, M., Yang, R., Hubbell, E.et al. Accessing genetic information with high-density DNA arrays. Science 1996; 274(5287): 610–14.CrossRefGoogle ScholarPubMed
Southern, E., Mir, K., and Shchepinov, M.Molecular interactions on microarrays. Nat. Genet. 1999; 21(1 Suppl): 5–9.CrossRefGoogle ScholarPubMed
Shchepinov, M. S., Case-Green, S. C., and Southern, E. M.Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucl. Acids Res. 1997; 25(6): 1155–61.CrossRefGoogle ScholarPubMed
Ramakrishnan, R., Dorris, D., Lublinsky, A.et al. An assessment of Motorola CodeLink microarray performance for gene expression profiling applications. Nucl. Acids Res. 2002; 30(7): e30.CrossRefGoogle ScholarPubMed
Nuwaysir, E. F., Huang, W., Albert, T. J.et al. Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res. 2002; 12(11): 1749–55.CrossRefGoogle ScholarPubMed
Puskas, L. G., Zvara, A., Hackler, L. Jr., Micsik, T., and Hummelen, P.Production of bulk amounts of universal RNA for DNA microarrays. Biotechniques 2002; 33(4): 898–900, 902, 904.Google ScholarPubMed
Yang, Y. H., Dudoit, S., Luu, P.et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucl. Acids Res. 2002; 30(4): e15.CrossRefGoogle ScholarPubMed
Dudley, A. M., Aach, J., Steffen, M. A., and Church, G. M.Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc. Natl Acad. Sci. USA 2002; 99(11): 7554–9.CrossRefGoogle ScholarPubMed
Stears, R. L., Getts, R. C., and Gullans, S. R.A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol. Genomics 2000; 3(2): 93–9.CrossRefGoogle ScholarPubMed
Gelder, R. N., Zastrow, M. E., Yool, A.et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl Acad. Sci. USA 1990; 87(5): 1663–7.CrossRefGoogle ScholarPubMed
Eberwine, J., Belt, B., Kacharmina, J. E., and Miyashiro, K.Analysis of subcellularly localized mRNAs using in situ hybridization, mRNA amplification, and expression profiling. Neurochem. Res. 2002; 27(10): 1065–77.CrossRefGoogle ScholarPubMed
Chen, Y., Kamat, V., Dougherty, E. R.et al. Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 2002; 18(9): 1207–15.CrossRefGoogle ScholarPubMed
Churchill, G. A.Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 2002; 32 Suppl: 490–5.CrossRefGoogle ScholarPubMed
Quackenbush, J.Microarray data normalization and transformation. Nat. Genet. 2002; 32 Suppl: 496–501.CrossRefGoogle Scholar
Diehl, F., Grahlmann, S., Beier, M., and Moheisel, J. D.Manufacturing DNA microarrays of high spot homogeneity and reduced background signal. Nucl. Acids Res. 2001; 29(7): E38.CrossRefGoogle ScholarPubMed
Ramdas, L., Coombes, K. R., Baggerly, K.et al. Sources of nonlinearity in cDNA microarray expression measurements. Genome Biol. 2001; 2(11): RESEARCH0047.CrossRefGoogle ScholarPubMed
Chuaqui, R. F., Bonner, R. F., Best, C. J.et al. Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 2002; 32 Suppl: 509–14.CrossRefGoogle ScholarPubMed
Fare, T. L., Coffey, E. M., Dai, H.et al. Effects of atmospheric ozone on microarray data quality. Anal. Chem. 2003; 75(17): 4672–5.CrossRefGoogle ScholarPubMed
Martinez, M. J., Aragon, A. D., Rodriguez, A. L.et al. Identification and removal of contaminating fluorescence from commercial and in-house printed DNA microarrays. Nucl. Acids Res. 2003; 31(4): e18.CrossRefGoogle ScholarPubMed
t Hoen, P. A., Kort, F., Ommen, G. F., and Dunnen, J. T.Fluorescent labelling of cRNA for microarray applications. Nucl. Acids Res. 2003; 31(5): e20.CrossRefGoogle Scholar
Lyng, H., Badiee, A., Svendsrud, D. H.et al. Profound influence of microarray scanner characteristics on gene expression ratios: analysis and procedure for correction. BMC Genomics 2004; 5(1): 10.CrossRefGoogle ScholarPubMed
Mecham, B. H., Wetmore, D. Z., Szallasi, Z.et al. Increased measurement accuracy for sequence-verified microarray probes. Physiol. Genomics 2004; 18(3): 308–15.CrossRefGoogle ScholarPubMed
Cho, R. J., Campbell, M. J., Winzeler, E. A.et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 1998; 2(1): 65–73.CrossRefGoogle ScholarPubMed
Spellman, P. T., Sherlock, G., Zhang, M. Q.et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 1998; 9(12): 3273–97.CrossRefGoogle ScholarPubMed
Ross, D. T., Scherf, U., Eisen, M. B.et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 2000; 24(3): 227–35.CrossRefGoogle ScholarPubMed
Tan, P. K., Downey, T. J., Spitznagel, E. L. Jr.et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucl. Acids Res. 2003; 31(19): 5676–84.CrossRefGoogle ScholarPubMed
Marshall, E.Getting the noise out of gene arrays. Science 2004; 306(5696): 630–1.CrossRefGoogle ScholarPubMed
Yauk, C. L., Berndt, M. L., Williams, A., and Douglas, G. R.Comprehensive comparison of six microarray technologies. Nucl. Acids Res. 2004; 32(15): e124.CrossRefGoogle ScholarPubMed
Bakel, H. and Holstege, F. C.In control: systematic assessment of microarray performance. EMBO Rep. 2004; 5(10): 964–9.CrossRefGoogle ScholarPubMed
Larkin, J. E., Frank, B. C., Gavras, H., Sultana, R., and Quackenbush, J.Independence and reproducibility across microarray platforms. Nat. Methods 2005; 2(5): 337–44.CrossRefGoogle ScholarPubMed
Irizarry, R. A., Warren, D., Spencer, F.et al. Multiple-laboratory comparison of microarray platforms. Nat. Methods 2005; 2(5): 345–50.CrossRefGoogle ScholarPubMed
Bammler, T., Beyer, R. P., Bhattacharya, S.et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat. Methods 2005; 2(5): 351–6.CrossRefGoogle ScholarPubMed
Sherlock, G.Of fish and chips. Nat. Methods 2005; 2(5): 329–30.CrossRefGoogle ScholarPubMed
Hardiman, G.Microarray platforms – comparisons and contrasts. Pharmacogenomics 2004; 5(5): 487–502.CrossRefGoogle ScholarPubMed
Maniatis, T. and Tasic, B.Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 2002; 418(6894): 236–43.CrossRefGoogle ScholarPubMed
Garcia-Blanco, M. A., Baraniak, A. P., and Lasda, E. L.Alternative splicing in disease and therapy. Nat. Biotechnol. 2004; 22(5): 535–46.CrossRefGoogle ScholarPubMed
Liu, C. G., Calin, G. A., Meloon, B.et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA 2004; 101(26): 9740–4.CrossRefGoogle ScholarPubMed
Miska, E. A., Alvarez-Saavedra, E., Townsend, M.et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 2004; 5(9): R68.CrossRefGoogle ScholarPubMed
Thomson, J. M., Parker, J., Perou, C. M., and Hammond, S. M.A custom microarray platform for analysis of microRNA gene expression. Nat. Methods 2004; 1(1): 47–53.CrossRefGoogle ScholarPubMed
Nelson, P. T., Baldwin, D. A., Scearce, L. M.et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 2004; 1(2): 155–61.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×