Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T09:40:51.686Z Has data issue: false hasContentIssue false

15 - β-Adrenoceptors in cardiovascular and respiratory diseases

from PART V - PHYSIOLOGICAL FUNCTIONS AND DRUG TARGETING OF GPCRS

Published online by Cambridge University Press:  05 June 2012

Michele Ciccarelli
Affiliation:
Thomas Jefferson University
J. Kurt Chuprun
Affiliation:
Thomas Jefferson University
Walter J. Koch
Affiliation:
Thomas Jefferson University
Sandra Siehler
Affiliation:
Novartis Institute for Biomedical Research
Graeme Milligan
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
G Protein-Coupled Receptors
Structure, Signaling, and Physiology
, pp. 287 - 320
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dorn, GW, 2nd. GRK mythology: G-protein receptor kinases in cardiovascular disease. Journal of molecular medicine (Berlin, Germany). May 2009;87(5):455–463.CrossRefGoogle ScholarPubMed
Dohlman, HG, Caron, MG, Lefkowitz, RJ.A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry. May 19 1987;26(10):2657–2664.CrossRefGoogle ScholarPubMed
Lefkowitz, RJ.Seven transmembrane receptors: something old, something new. Acta physiologica (Oxford, England). May 2007;190(1):9–19.CrossRefGoogle ScholarPubMed
Caron, MG, Lefkowitz, RJ.Catecholamine receptors: structure, function, and regulation. Recent progress in hormone research. 1993;48:277–290.CrossRefGoogle ScholarPubMed
McPherson, GA, Malta, E, Molenaar, P, Raper, C.The affinity and efficacy of the selective beta 1-adrenoceptor stimulant RO363 at beta 1- and beta 2-adrenoceptor sites. British journal of pharmacology. Aug 1984;82(4):897–904.CrossRefGoogle Scholar
Krstew, E, McPherson, GA, Malta, E, Molenaar, P, Raper, C.Is Ro 03–7894 an irreversible antagonist at beta-adrenoceptor sites?British journal of pharmacology. Jun 1984;82(2):501–508.CrossRefGoogle ScholarPubMed
Carswell, H, Nahorski, SR.Beta-adrenoceptor heterogeneity in guinea-pig airways: comparison of functional and receptor labelling studies. British journal of pharmacology. Aug 1983;79(4):965–971.CrossRefGoogle ScholarPubMed
Minneman, KP, Dibner, MD, Wolfe, BB, Molinoff, PB.beta1- and beta2-Adrenergic receptors in rat cerebral cortex are independently regulated. Science. May 25 1979;204(4395):866–868.CrossRefGoogle ScholarPubMed
Jensen, J, Brors, O, Dahl, HA.Different beta-adrenergic receptor density in different rat skeletal muscle fibre types. Pharmacol Toxicol. Jun 1995;76(6):380–385.CrossRefGoogle ScholarPubMed
Evans, BA, Papaioannou, M, Bonazzi, VR, Summers, RJ.Expression of beta 3-adrenoceptor mRNA in rat tissues. British journal of pharmacology. Jan 1996;117(1): 210–216.CrossRefGoogle ScholarPubMed
Guillaume, JL, Petitjean, F, Haasemann, M, Bianchi, C, Eshdat, Y, Strosberg, AD.Antibodies for the immunochemistry of the human beta 3-adrenergic receptor. Eur J Biochem. Sep 1 1994;224(2):761–770.CrossRefGoogle ScholarPubMed
Summers, RJ, Papaioannou, M, Harris, S, Evans, BA.Expression of beta 3-adrenoceptor mRNA in rat brain. British journal of pharmacology. Nov 1995;116(6):2547–2548.CrossRefGoogle ScholarPubMed
Lands, AM, Arnold, A, McAuliff, JP, Luduena, FP, Brown, TG, Jr. Differentiation of receptor systems activated by sympathomimetic amines. Nature. May 6 1967;214(5088):597–598.CrossRefGoogle ScholarPubMed
Stiles, GL, Lefkowitz, RJ.Cardiac adrenergic receptors. Annu Rev Med. 1984;35:149–164.CrossRefGoogle ScholarPubMed
Arch, JR, Kaumann, AJ. Beta 3 and atypical beta-adrenoceptors. Med Res Rev. Nov 1993;13(6):663–729.CrossRefGoogle ScholarPubMed
Strosberg, D.[Biotechnology of beta-adrenergic receptors]. Pathol Biol (Paris). Oct 1992;40(8):767–772.Google Scholar
Emorine, L, Blin, N, Strosberg, AD.The human beta 3-adrenoceptor: the search for a physiological function. Trends Pharmacol Sci. Jan 1994;15(1):3–7.CrossRefGoogle ScholarPubMed
Giacobino, JP.Beta 3-adrenoceptor: an update. Eur J Endocrinol. Apr 1995;132(4):377–385.CrossRefGoogle ScholarPubMed
Nisoli, E, Tonello, C, Landi, M, Carruba, MO.Functional studies of the first selective beta 3-adrenergic receptor antagonist SR 59230A in rat brown adipocytes. Mol Pharmacol. Jan 1996;49(1):7–14.Google ScholarPubMed
Lafontan, M, Berlan, M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res. Jul 1993;34(7):1057–1091.Google ScholarPubMed
Lefkowitz, RJ, Rajagopal, K, Whalen, EJ.New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Molecular cell. Dec 8 2006;24(5):643–652.CrossRefGoogle ScholarPubMed
Hamm, HE.The many faces of G protein signaling. The Journal of biological chemistry. Jan 9 1998;273(2):669–672.CrossRefGoogle ScholarPubMed
Bourne, HR.G proteins. The arginine finger strikes again. Nature. Oct 16 1997;389(6652):673–674.CrossRefGoogle Scholar
Wess, J.G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. Faseb J. Apr 1997;11(5):346–354.CrossRefGoogle ScholarPubMed
Lambright, DG, Sondek, J, Bohm, A, Skiba, NP, Hamm, HE, Sigler, PB.The 2.0 A crystal structure of a heterotrimeric G protein. Nature. Jan 25 1996;379(6563):311–319.CrossRefGoogle ScholarPubMed
Ford, CE, Skiba, NP, Bae, H, Daaka, Y, Reuveny, E, Shekter, LR, Rosal, R, Weng, G, Yang, CS, Iyengar, R, Miller, RJ, Jan, LY, Lefkowitz, RJ, Hamm, HE.Molecular basis for interactions of G protein betagamma subunits with effectors. Science. May 22 1998;280(5367):1271–1274.CrossRefGoogle ScholarPubMed
Clapham, , Neer, EJ.G protein beta gamma subunits. Annual review of pharmacology and toxicology. 1997;37:167–203.CrossRefGoogle ScholarPubMed
Rockman, HA, Koch, WJ, Lefkowitz, RJ.Seven-transmembrane-spanning receptors and heart function. Nature. Jan 10 2002;415(6868):206–212.CrossRefGoogle ScholarPubMed
Keys, JR, Koch, WJ.The adrenergic pathway and heart failure. Recent progress in hormone research. 2004;59:13–30.CrossRefGoogle ScholarPubMed
Kaumann, A, Bartel, S, Molenaar, P, Sanders, L, Burrell, K, Vetter, D, Hempel, P, Karczewski, P, Krause, EG.Activation of beta2-adrenergic receptors hastens relaxation and mediates phosphorylation of phospholamban, troponin I, and C-protein in ventricular myocardium from patients with terminal heart failure. Circulation. Jan 5–12 1999;99(1):65–72.CrossRefGoogle ScholarPubMed
Molenaar, P, Bartel, S, Cochrane, A, Vetter, D, Jalali, H, Pohlner, P, Burrell, K, Karczewski, P, Krause, EG, Kaumann, A.Both beta(2)- and beta(1)-adrenergic receptors mediate hastened relaxation and phosphorylation of phospholamban and troponin I in ventricular myocardium of Fallot infants, consistent with selective coupling of beta(2)-adrenergic receptors to G(s)-protein. Circulation. Oct 10 2000;102(15):1814–1821.CrossRefGoogle Scholar
Chesley, A, Lundberg, MS, Asai, T, Xiao, RP, Ohtani, S, Lakatta, EG, Crow, MT.The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase. Circulation research. Dec 8 2000;87(12):1172–1179.CrossRefGoogle Scholar
Communal, C, Singh, K, Sawyer, DB, Colucci, WS.Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation. Nov 30 1999;100(22):2210–2212.CrossRefGoogle ScholarPubMed
Zhu, WZ, Zheng, M, Koch, WJ, Lefkowitz, RJ, Kobilka, BK, Xiao, RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America. Feb 13 2001;98(4):1607–1612.CrossRefGoogle ScholarPubMed
Xiao, RP, Avdonin, P, Zhou, YY, Cheng, H, Akhter, SA, Eschenhagen, T, Lefkowitz, RJ, Koch, WJ, Lakatta, EG. Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circulation research. Jan 8–22 1999;84(1):43–52.CrossRefGoogle ScholarPubMed
Kuschel, M, Zhou, YY, Cheng, H, Zhang, SJ, Chen, Y, Lakatta, EG, Xiao, RP. G(i) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling. The Journal of biological chemistry. Jul 30 1999;274(31):22048–22052.CrossRefGoogle Scholar
Schillace, RV, Scott, JD.Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220. Curr Biol. Mar 25 1999;9(6):321–324.CrossRefGoogle ScholarPubMed
Hausdorff, WP, Caron, MG, Lefkowitz, RJ. Turning off the signal: desensitization of beta-adrenergic receptor function. Faseb J. Aug 1990;4(11):2881–2889.CrossRefGoogle ScholarPubMed
Mukherjee, C, Caron, MG, Lefkowitz, RJ.Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of beta-adrenergic receptor binding sites. Proceedings of the National Academy of Sciences of the United States of America. May 1975;72(5):1945–1949.CrossRefGoogle ScholarPubMed
Su, YF, Harden, TK, Perkins, JP.Isoproterenol-induced desensitization of adenylate cyclase in human astrocytoma cells. Relation of loss of hormonal responsiveness and decrement in beta-adrenergic receptors. The Journal of biological chemistry. Jan 10 1979;254(1):38–41.Google ScholarPubMed
Pitcher, JA, Freedman, NJ, Lefkowitz, RJ. G protein-coupled receptor kinases. Annu Rev Biochem. 1998;67:653–692.CrossRefGoogle ScholarPubMed
Inglese, J, Freedman, NJ, Koch, WJ, Lefkowitz, RJ.Structure and mechanism of the G protein-coupled receptor kinases. The Journal of biological chemistry. Nov 15 1993;268(32):23735–23738.Google ScholarPubMed
Penela, P, Ribas, C, Mayor, F, Jr. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cellular signalling. Nov 2003;15(11):973–981.CrossRefGoogle ScholarPubMed
Premont, RT, Gainetdinov, RR.Physiological roles of G protein-coupled receptor kinases and arrestins. Annual review of physiology. 2007;69:511–534.CrossRefGoogle ScholarPubMed
Lefkowitz, RJ, Shenoy, SK. Transduction of receptor signals by beta-arrestins. Science. Apr 22 2005;308(5721):512–517.CrossRefGoogle ScholarPubMed
Bristow, MR, Ginsburg, R, Umans, V, Fowler, M, Minobe, W, Rasmussen, R, Zera, P, Menlove, R, Shah, P, Jamieson, S, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circulation research. Sep 1986;59(3):297–309.CrossRefGoogle Scholar
Brodde, OE.Beta-adrenoceptors in cardiac disease. Pharmacology & therapeutics. Dec 1993;60(3):405–430.CrossRefGoogle ScholarPubMed
Angelone, T, Filice, E, Quintieri, AM, Imbrogno, S, Recchia, A, Pulera, E, Mannarino, C, Pellegrino, D, Cerra, MC. Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta physiologica (Oxford, England). Jul 2008;193(3):229–239.CrossRefGoogle ScholarPubMed
Schultz, HD. Nitric oxide regulation of autonomic function in heart failure. Curr Heart Fail Rep. Jun 2009;6(2):71–80.CrossRefGoogle ScholarPubMed
Piascik, MT, Perez, DM. Alpha1-adrenergic receptors: new insights and directions. The Journal of pharmacology and experimental therapeutics. Aug 2001;298(2):403–410.Google ScholarPubMed
Iaccarino, G, Ciccarelli, M, Sorriento, D, Cipolletta, E, Cerullo, V, Iovino, GL, Paudice, A, Elia, A, Santulli, G, Campanile, A, Arcucci, O, Pastore, L, Salvatore, F, Condorelli, G, Trimarco, B. AKT participates in endothelial dysfunction in hypertension. Circulation. Jun 1 2004;109(21):2587–2593.CrossRefGoogle ScholarPubMed
Iaccarino, G, Cipolletta, E, Fiorillo, A, Annecchiarico, M, Ciccarelli, M, Cimini, V, Koch, WJ, Trimarco, B. Beta(2)-adrenergic receptor gene delivery to the endothelium corrects impaired adrenergic vasorelaxation in hypertension. Circulation. Jul 16 2002;106(3):349–355.CrossRefGoogle ScholarPubMed
Ciccarelli, M, Cipolletta, E, Santulli, G, Campanile, A, Pumiglia, K, Cervero, P, Pastore, L, Astone, D, Trimarco, B, Iaccarino, G. Endothelial beta2 adrenergic signaling to AKT: role of Gi and SRC. Cellular signalling. Sep 2007;19(9):1949–1955.CrossRefGoogle ScholarPubMed
Mutlu, GM, Koch, WJ, Factor, P. Alveolar epithelial beta 2-adrenergic receptors: their role in regulation of alveolar active sodium transport. American journal of respiratory and critical care medicine. Dec 15 2004;170(12):1270–1275.CrossRefGoogle ScholarPubMed
Tanaka, Y, Yamashita, Y, Yamaki, F, Horinouchi, T, Shigenobu, K, Koike, K.MaxiK channel mediates beta2-adrenoceptor-activated relaxation to isoprenaline through cAMP-dependent and -independent mechanisms in guinea-pig tracheal smooth muscle. J Smooth Muscle Res. Dec 2003;39(6):205–219.CrossRefGoogle ScholarPubMed
Kume, H, Hall, IP, Washabau, RJ, Takagi, K, Kotlikoff, MI. Beta-adrenergic agonists regulate KCa channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. The Journal of clinical investigation. Jan 1994;93(1):371–379.CrossRefGoogle ScholarPubMed
Nelson, MT, Quayle, JM. Physiological roles and properties of potassium channels in arterial smooth muscle. The American journal of physiology. Apr 1995;268(4 Pt 1):C799–822.CrossRefGoogle ScholarPubMed
Berdiev, BK, Prat, AG, Cantiello, HF, Ausiello, DA, Fuller, CM, Jovov, B, Benos, DJ, Ismailov, II . Regulation of epithelial sodium channels by short actin filaments. The Journal of biological chemistry. Jul 26 1996;271(30):17704–17710.CrossRefGoogle ScholarPubMed
Minakata, Y, Suzuki, S, Grygorczyk, C, Dagenais, A, Berthiaume, Y. Impact of beta-adrenergic agonist on Na+ channel and Na+-K+-ATPase expression in alveolar type II cells. The American journal of physiology. Aug 1998;275(2 Pt 1):L414–422.Google ScholarPubMed
Bristow, MR, Shakar, SF, Linseman, JV, Lowes, BD. Inotropes and beta-blockers: is there a need for new guidelines?Journal of cardiac failure. Jun 2001;7(2 Suppl 1): 8–12.CrossRefGoogle Scholar
Hochman, JS, Tamis, JE, Thompson, TD, Weaver, WD, White, HD, Werf, F, Aylward, P, Topol, EJ, Califf, RM. Sex, clinical presentation, and outcome in patients with acute coronary syndromes. Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary Syndromes IIb Investigators. The New England journal of medicine. Jul 22 1999;341(4):226–232.CrossRefGoogle ScholarPubMed
McGhie, AI, Golstein, RA. Pathogenesis and management of acute heart failure and cardiogenic shock: role of inotropic therapy. Chest. Nov 1992;102(5 Suppl 2):626S–632S.CrossRefGoogle ScholarPubMed
Farid, I, Litaker, D, Tetzlaff, JE. Implementing ACC/AHA guidelines for the preoperative management of patients with coronary artery disease scheduled for noncardiac surgery: effect on perioperative outcome. Journal of clinical anesthesia. Mar 2002;14(2):126–128.CrossRefGoogle ScholarPubMed
Jakob, SM, Tenhunen, JJ, Heino, A, Pradl, R, Alhava, E, Takala, J. Splanchnic vasoregulation during mesenteric ischemia and reperfusion in pigs. Shock (Augusta, Ga. Aug 2002;18(2):142–147.CrossRefGoogle ScholarPubMed
Martin, C, Viviand, X, Arnaud, S, Vialet, R, Rougnon, T.Effects of norepinephrine plus dobutamine or norepinephrine alone on left ventricular performance of septic shock patients. Critical care medicine. Sep 1999;27(9):1708–1713.CrossRefGoogle ScholarPubMed
Birks, EJ, Tansley, PD, Hardy, J, George, RS, Bowles, CT, Burke, M, Banner, NR, Khaghani, A, Yacoub, MH. Left ventricular assist device and drug therapy for the reversal of heart failure. The New England journal of medicine. Nov 2 2006;355(18):1873–1884.CrossRefGoogle ScholarPubMed
Hall, JL, Birks, EJ, Grindle, S, Cullen, ME, Barton, PJ, Rider, JE, Lee, S, Harwalker, S, Mariash, A, Adhikari, N, Charles, NJ, Felkin, , Polster, S, George, RS, Miller, LW, Yacoub, MH. Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. European heart journal. Mar 2007;28(5):613–627.CrossRefGoogle ScholarPubMed
Campbell, LM. From adrenaline to formoterol: advances in beta-agonist therapy in the treatment of asthma. International journal of clinical practice. Dec 2002;56(10): 783–790.Google Scholar
Rabe, KF. State of the art in beta2-agonist therapy: a safety review of long-acting agents. International journal of clinical practice. Oct 2003;57(8):689–697.Google ScholarPubMed
Crane, J, Burgess, C, Beasley, R.Cardiovascular and hypokalaemic effects of inhaled salbutamol, fenoterol, and isoprenaline. Thorax. Feb 1989;44(2):136–140.CrossRefGoogle ScholarPubMed
Simons, FE, Clark, S, Camargo, CA, Jr. Anaphylaxis in the community: Learning from the survivors. The Journal of allergy and clinical immunology. Jun 18 2009.CrossRefGoogle ScholarPubMed
Frishman, W.Clinical pharmacology of the new beta-adrenergic blocking drugs. Part 13. The beta-adrenoceptor blocking drugs: a perspective. American heart journal. May 1980;99(5):665–670.CrossRefGoogle ScholarPubMed
Laragh, JH, Sealey, JE, Buhler, FR, Vaughan, ED, Brunner, HR, Gavras, H, Baer, L.The renin axis and vasoconstriction volume analysis for understanding and treating renovascular and renal hypertension. The American journal of medicine. Jan 1975;58(1):4–13.CrossRefGoogle ScholarPubMed
Kleinrok, Z, Ksiazek, A.The effect of beta-adrenergic receptor blocking agents on hypertensive action of noradrenaline injected into the lateral ventricle of rat brain. Polish journal of pharmacology and pharmacy. Jul-Aug 1977;29(4):405–409.Google ScholarPubMed
Tuck, ML.The sympathetic nervous system in essential hypertension. American heart journal. Oct 1986;112(4):877–886.CrossRefGoogle ScholarPubMed
Lohmeier, TE, Hildebrandt, DA, Dwyer, TM, Iliescu, R, Irwin, ED, Cates, AW, Rossing, MA. Prolonged activation of the baroreflex decreases arterial pressure even during chronic adrenergic blockade. Hypertension. May 2009;53(5):833–838.CrossRefGoogle ScholarPubMed
Ferdinand, KC, Armani, AM.The management of hypertension in African Americans. Critical pathways in cardiology. Jun 2007;6(2):67–71.CrossRefGoogle ScholarPubMed
Bangalore, S, Sawhney, S, Messerli, FH.Relation of beta-blocker-induced heart rate lowering and cardioprotection in hypertension. Journal of the American College of Cardiology. Oct 28 2008;52(18):1482–1489.CrossRefGoogle ScholarPubMed
Bangalore, S, Wild, D, Parkar, S, Kukin, M, Messerli, FH.Beta-blockers for primary prevention of heart failure in patients with hypertension insights from a meta-analysis. Journal of the American College of Cardiology. Sep 23 2008;52(13):1062–1072.CrossRefGoogle ScholarPubMed
Messerli, FH, Bangalore, S.Resting heart rate and cardiovascular disease: the beta-blocker-hypertension paradox. Journal of the American College of Cardiology. Jan 22 2008;51(3):330–331; author reply 331–332.CrossRefGoogle ScholarPubMed
Ardehali, A, Ports, TA.Myocardial oxygen supply and demand. Chest. Sep 1990;98(3):699–705.CrossRefGoogle ScholarPubMed
Parker, JD, Testa, MA, Jimenez, AH, Tofler, GH, Muller, JE, Parker, JO, Stone, PH.Morning increase in ambulatory ischemia in patients with stable coronary artery disease. Importance of physical activity and increased cardiac demand. Circulation. Feb 1994;89(2):604–614.CrossRefGoogle ScholarPubMed
Hoffman, BB, Lefkowitz, RJ. Adrenergic receptors in the heart. Annual review of physiology. 1982;44:475–484.CrossRefGoogle ScholarPubMed
Fuster, V.Mechanisms of arterial thrombosis: foundation for therapy. American heart journal. Jun 1998;135(6 Pt 3 Su):S361–366.CrossRefGoogle ScholarPubMed
Fuster, V.50th anniversary historical article. Acute coronary syndromes: the degree and morphology of coronary stenoses. Journal of the American College of Cardiology. Dec 1999;34(7):1854–1856.CrossRefGoogle ScholarPubMed
Davies, MJ. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation. Oct 15 1996;94(8):2013–2020.CrossRefGoogle Scholar
Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. The New England journal of medicine. Apr 2 1981;304(14):801–807.
Hjalmarson, A, Elmfeldt, D, Herlitz, J, Holmberg, S, Malek, I, Nyberg, G, Ryden, L, Swedberg, K, Vedin, A, Waagstein, F, Waldenstrom, A, Waldenstrom, J, Wedel, H, Wilhelmsen, L, Wilhelmsson, C. Effect on mortality of metoprolol in acute myocardial infarction. A double-blind randomised trial. Lancet. Oct 17 1981;2(8251): 823–827.CrossRefGoogle ScholarPubMed
A randomized trial of propranolol in patients with acute myocardial infarction. I. Mortality results. Jama. Mar 26 1982;247(12):1707–1714.
Randomised trial of intravenous atenolol among 16 027 cases of suspected acute myocardial infarction: ISIS-1. First International Study of Infarct Survival Collaborative Group. Lancet. Jul 12 1986;2(8498):57–66.
Metoprolol in acute myocardial infarction. Enzymatic estimation of infarct size. The MIAMI Trial Research Group. The American journal of cardiology. Nov 22 1985;56(14):27G–29G.
Metoprolol in acute myocardial infarction. Arrhythmias. The MIAMI Trial Research Group. The American journal of cardiology. Nov 22 1985;56(14):35G–38G.
Kirshenbaum, JM, Kloner, RA, Antman, EM, Braunwald, E.Use of an ultra short-acting beta-blocker in patients with acute myocardial ischemia. Circulation. Oct 1985;72(4):873–880.CrossRefGoogle ScholarPubMed
Yusuf, S, Peto, R, Lewis, J, Collins, R, Sleight, P.Beta blockade during and after myocardial infarction: an overview of the randomized trials. Progress in cardiovascular diseases. Mar-Apr 1985;27(5):335–371.CrossRefGoogle ScholarPubMed
Borzak, S, Fenton, T, Glasser, SP, Shook, TL, MacCallum, G, Young, PM, Stone, PH.Discordance between effects of anti-ischemic therapy on ambulatory ischemia, exercise performance and anginal symptoms in patients with stable angina pectoris. The Angina and Silent Ischemia Study Group (ASIS). Journal of the American College of Cardiology. Jun 1993;21(7):1605–1611.CrossRefGoogle Scholar
Packer, M.The development of positive inotropic agents for chronic heart failure: how have we gone astray?Journal of the American College of Cardiology. Oct 1993;22(4 Suppl A):119A–126A.CrossRefGoogle ScholarPubMed
Fowler, MB, Laser, JA, Hopkins, GL, Minobe, W, Bristow, MR.Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation. Dec 1986;74(6):1290–1302.CrossRefGoogle ScholarPubMed
Engelhardt, S, Hein, L, Wiesmann, F, Lohse, MJ.Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. Jun 8 1999;96(12):7059–7064.CrossRefGoogle ScholarPubMed
Vatner, SF, Vatner, , Homcy, CJ.beta-adrenergic receptor signaling: an acute compensatory adjustment-inappropriate for the chronic stress of heart failure? Insights from Gsalpha overexpression and other genetically engineered animal models. Circulation research. Mar 17 2000;86(5):502–506.CrossRefGoogle ScholarPubMed
Koch, WJ, Milano, CA, Lefkowitz, RJ. Transgenic manipulation of myocardial G protein-coupled receptors and receptor kinases. Circulation research. Apr 1996;78(4):511–516.CrossRefGoogle ScholarPubMed
Packer, M, Bristow, MR, Cohn, JN, Colucci, WS, Fowler, MB, Gilbert, EM, Shusterman, NH.The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. The New England journal of medicine. May 23 1996;334(21):1349–1355.CrossRefGoogle ScholarPubMed
Bauman, JL, Talbert, RL. Pharmacodynamics of beta-blockers in heart failure: lessons from the carvedilol or metoprolol European trial. Journal of cardiovascular pharmacology and therapeutics. Jun 2004;9(2):117–128.CrossRefGoogle ScholarPubMed
Noguchi, N, Nishino, K, Niki, E.Antioxidant action of the antihypertensive drug, carvedilol, against lipid peroxidation. Biochemical pharmacology. May 1 2000;59(9):1069–1076.CrossRefGoogle ScholarPubMed
Bristow, MR, Gilbert, EM, Abraham, WT, Adams, KF, Fowler, MB, Hershberger, RE, Kubo, SH, Narahara, KA, Ingersoll, H, Krueger, S, Young, S, Shusterman, N.Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation. Dec 1 1996;94(11):2807–2816.CrossRefGoogle ScholarPubMed
Poole-Wilson, PA, Swedberg, K, Cleland, JG, Di Lenarda, A, Hanrath, P, Komajda, M, Lubsen, J, Lutiger, B, Metra, M, Remme, WJ, Torp-Pedersen, C, Scherhag, A, Skene, A.Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet. Jul 5 2003;362(9377):7–13.CrossRefGoogle ScholarPubMed
Cleland, JG, Charlesworth, A, Lubsen, J, Swedberg, K, Remme, WJ, Erhardt, L, Di Lenarda, A, Komajda, M, Metra, M, Torp-Pedersen, C, Poole-Wilson, PA.A comparison of the effects of carvedilol and metoprolol on well-being, morbidity, and mortality (the “patient journey”) in patients with heart failure: a report from the Carvedilol Or Metoprolol European Trial (COMET). Journal of the American College of Cardiology. Apr 18 2006;47(8):1603–1611.CrossRefGoogle Scholar
Spirito, P, Seidman, CE, McKenna, WJ, Maron, BJ.The management of hypertrophic cardiomyopathy. The New England journal of medicine. Mar 13 1997;336(11): 775–785.CrossRefGoogle ScholarPubMed
Reiter, MJ, Reiffel, JA.Importance of beta blockade in the therapy of serious ventricular arrhythmias. The American journal of cardiology. Aug 20 1998;82(4A): 9I–19I.CrossRefGoogle ScholarPubMed
John, RM, Taggart, PI, Sutton, PM, Ell, PJ, Swanton, H.Direct effect of dobutamine on action potential duration in ischemic compared with normal areas in the human ventricle. Journal of the American College of Cardiology. Oct 1992;20(4):896–903.CrossRefGoogle ScholarPubMed
Luedtke, SA, Kuhn, RJ, McCaffrey FM. Pharmacologic management of supraventricular tachycardias in children. Part 2: Atrial flutter, atrial fibrillation, and junctional and atrial ectopic tachycardia. The Annals of pharmacotherapy. Nov 1997;31(11):1347–1359.CrossRefGoogle ScholarPubMed
Luedtke, SA, Kuhn, RJ, McCaffrey, FM.Pharmacologic management of supraventricular tachycardias in children. Part 1: Wolff-Parkinson-White and atrioventricular nodal reentry. The Annals of pharmacotherapy. Oct 1997;31(10):1227–1243.CrossRefGoogle ScholarPubMed
Raake, PW, Vinge, , Gao, E, Boucher, M, Rengo, G, Chen, X, DeGeorge, BR, Jr., Matkovich, S, Houser, SR, Most, P, Eckhart, AD, Dorn, GW, 2nd, Koch, WJ.G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circulation research. Aug 15 2008;103(4): 413–422.CrossRefGoogle ScholarPubMed
Rengo, G, Lymperopoulos, A, Zincarelli, C, Donniacuo, M, Soltys, S, Rabinowitz, JE, Koch, WJ.Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation. Jan 6 2009;119(1):89–98.CrossRefGoogle ScholarPubMed
Ungerer, M, Bohm, M, Elce, JS, Erdmann, E, Lohse, MJ.Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation. Feb 1993;87(2):454–463.CrossRefGoogle ScholarPubMed
Dzimiri, N, Basco, C, Moorji, A, Afrane, B, Al-Halees, Z.Characterization of lymphocyte beta 2-adrenoceptor signalling in patients with left ventricular volume overload disease. Clinical and experimental pharmacology & physiology. Mar 2002;29(3):181–188.CrossRefGoogle ScholarPubMed
Dzimiri, N, Muiya, P, Andres, E, Al-Halees, Z.Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. European journal of pharmacology. Apr 12 2004;489(3):167–177.CrossRefGoogle ScholarPubMed
Martini, JS, Raake, P, Vinge, , DeGeorge, BR, Jr., Chuprun, JK, Harris, DM, Gao, E, Eckhart, AD, Pitcher, JA, Koch, WJ. Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America. Aug 26 2008;105(34):12457–12462.CrossRefGoogle ScholarPubMed
Hata, JA, Williams, ML, Koch, WJ. Genetic manipulation of myocardial beta-adrenergic receptor activation and desensitization. Journal of molecular and cellular cardiology. Jul 2004;37(1):11–21.CrossRefGoogle ScholarPubMed
Iaccarino, G, Tomhave, ED, Lefkowitz, RJ, Koch, WJ. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation. Oct 27 1998;98(17):1783–1789.CrossRefGoogle ScholarPubMed
Hakonarson, H, Herrick, DJ, Grunstein, MM.Mechanism of impaired beta-adrenoceptor responsiveness in atopic sensitized airway smooth muscle. The American journal of physiology. Nov 1995;269(5 Pt 1):L645–652.Google ScholarPubMed
Wills-Karp, M, Gilmour, MI.Increased cholinergic antagonism underlies impaired beta-adrenergic response in ovalbumin-sensitized guinea pigs. J Appl Physiol. Jun 1993;74(6):2729–2735.CrossRefGoogle ScholarPubMed
Walker, JK, Gainetdinov, RR, Feldman, DS, McFawn, PK, Caron, MG, Lefkowitz, RJ, Premont, RT, Fisher, JT.G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. American journal of physiology. Feb 2004;286(2):L312–319.Google ScholarPubMed
Maqbool, A, Hall, AS, Ball, SG, Balmforth, AJ.Common polymorphisms of beta1-adrenoceptor: identification and rapid screening assay. Lancet. Mar 13 1999;353(9156):897.CrossRefGoogle ScholarPubMed
Mason, DA, Moore, JD, Green, SA, Liggett, SB.A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. The Journal of biological chemistry. Apr 30 1999;274(18):12670–12674.CrossRefGoogle Scholar
Tesson, F, Charron, P, Peuchmaurd, M, Nicaud, V, Cambien, F, Tiret, L, Poirier, O, Desnos, M, Jullieres, Y, Amouyel, P, Roizes, G, Dorent, R, Schwartz, K, Komajda, M.Characterization of a unique genetic variant in the beta1-adrenoceptor gene and evaluation of its role in idiopathic dilated cardiomyopathy. CARDIGENE Group. Journal of molecular and cellular cardiology. May 1999;31(5):1025–1032.CrossRefGoogle ScholarPubMed
Borjesson, M, Magnusson, Y, Hjalmarson, A, Andersson, B.A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure. European heart journal. Nov 2000;21(22): 1853–1858.CrossRefGoogle ScholarPubMed
Johnson, JA, Terra, SG.Beta-adrenergic receptor polymorphisms: cardiovascular disease associations and pharmacogenetics. Pharmaceutical research. Dec 2002;19(12):1779–1787.CrossRefGoogle ScholarPubMed
Small, KM, McGraw, DW, Liggett, SB.Pharmacology and physiology of human adrenergic receptor polymorphisms. Annual review of pharmacology and toxicology. 2003;43:381–411.CrossRefGoogle ScholarPubMed
Kirstein, SL, Insel, PA.Autonomic nervous system pharmacogenomics: a progress report. Pharmacological reviews. Mar 2004;56(1):31–52.CrossRefGoogle ScholarPubMed
Leineweber, K, Buscher, R, Bruck, H, Brodde, OE.Beta-adrenoceptor polymorphisms. Naunyn-Schmiedeberg's archives of pharmacology. Jan 2004;369(1):1–22.CrossRefGoogle ScholarPubMed
Frielle, T, Collins, S, Daniel, KW, Caron, MG, Lefkowitz, RJ, Kobilka, BK.Cloning of the cDNA for the human beta 1-adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America. Nov 1987;84(22):7920–7924.CrossRefGoogle ScholarPubMed
Levin, MC, Marullo, S, Muntaner, O, Andersson, B, Magnusson, Y.The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. The Journal of biological chemistry. Aug 23 2002;277(34):30429–30435.CrossRefGoogle ScholarPubMed
Rathz, DA, Brown, KM, Kramer, , Liggett, SB.Amino acid 49 polymorphisms of the human beta1-adrenergic receptor affect agonist-promoted trafficking. Journal of cardiovascular pharmacology. Feb 2002;39(2):155–160.CrossRefGoogle ScholarPubMed
Rathz, DA, Gregory, KN, Fang, Y, Brown, KM, Liggett, SB.Hierarchy of polymorphic variation and desensitization permutations relative to beta 1- and beta 2-adrenergic receptor signaling. The Journal of biological chemistry. Mar 21 2003;278(12): 10784–10789.CrossRefGoogle Scholar
Joseph, SS, Lynham, JA, Grace, AA, Colledge, WH, Kaumann, AJ.Markedly reduced effects of (-)-isoprenaline but not of (-)-CGP12177 and unchanged affinity of beta-blockers at Gly389-beta1-adrenoceptors compared to Arg389-beta1-adrenoceptors. British journal of pharmacology. May 2004;142(1):51–56.CrossRefGoogle ScholarPubMed
Sandilands, A, Yeo, G, Brown, MJ, O'Shaughnessy, KM.Functional responses of human beta1 adrenoceptors with defined haplotypes for the common 389R>G and 49S>G polymorphisms. Pharmacogenetics. Jun 2004;14(6):343–349.CrossRefGoogle ScholarPubMed
Xie, HG, Dishy, V, Sofowora, G, Kim, RB, Landau, R, Smiley, RM, Zhou, HH, Wood, AJ, Harris P, Stein CM.Arg389Gly beta 1-adrenoceptor polymorphism varies in frequency among different ethnic groups but does not alter response in vivo. Pharmacogenetics. Apr 2001;11(3):191–197.CrossRefGoogle Scholar
Buscher, R, Belger, H, Eilmes, KJ, Tellkamp, R, Radke, J, Dhein, S, Hoyer, PF, Michel, MC, Insel, PA, Brodde, OE.In-vivo studies do not support a major functional role for the Gly389Arg beta 1-adrenoceptor polymorphism in humans. Pharmacogenetics. Apr 2001;11(3):199–205.CrossRefGoogle ScholarPubMed
Sofowora, GG, Dishy, V, Muszkat, M, Xie, HG, Kim, RB, Harris, PA, Prasad, HC, Byrne, DW, Nair, UB, Wood, AJ, Stein, CM.A common beta1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response to beta-blockade. Clinical pharmacology and therapeutics. Apr 2003;73(4):366–371.CrossRefGoogle ScholarPubMed
Liu, J, Liu, ZQ, Tan, ZR, Chen, XP, Wang, LS, Zhou, G, Zhou, HH.Gly389Arg polymorphism of beta1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clinical pharmacology and therapeutics. Oct 2003;74(4):372–379.CrossRefGoogle ScholarPubMed
Defoor, J, Martens, K, Zielinska, D, Matthijs, G, Nerum, H, Schepers, D, Fagard, R, Vanhees, L.The CAREGENE study: polymorphisms of the beta1-adrenoceptor gene and aerobic power in coronary artery disease. European heart journal. Apr 2006;27(7):808–816.CrossRefGoogle ScholarPubMed
Nieminen, T, Lehtimaki, T, Laiho, J, Rontu, R, Niemela, K, Koobi, T, Lehtinen, R, Viik, J, Turjanmaa, V, Kahonen, M.Effects of polymorphisms in beta1-adrenoceptor and alpha-subunit of G protein on heart rate and blood pressure during exercise test. The Finnish Cardiovascular Study. J Appl Physiol. Feb 2006;100(2):507–511.CrossRefGoogle ScholarPubMed
Rosee, K, Huntgeburth, M, Rosenkranz, S, Bohm, M, Schnabel, P.The Arg389Gly beta1-adrenoceptor gene polymorphism determines contractile response to catecholamines. Pharmacogenetics. Nov 2004;14(11):711–716.Google ScholarPubMed
Bruck, H, Leineweber, K, Temme, T, Weber, M, Heusch, G, Philipp, T, Brodde, OE.The Arg389Gly beta1-adrenoceptor polymorphism and catecholamine effects on plasma-renin activity. Journal of the American College of Cardiology. Dec 6 2005;46(11):2111–2115.CrossRefGoogle ScholarPubMed
Leineweber, K, Bogedain, P, Wolf, C, Wagner, S, Weber, M, Jakob, HG, Heusch, G, Philipp, T, Brodde, OE.In patients chronically treated with metoprolol, the demand of inotropic catecholamine support after coronary artery bypass grafting is determined by the Arg389Gly-beta 1-adrenoceptor polymorphism. Naunyn-Schmiedeberg's archives of pharmacology. Jul 2007;375(5):303–309.CrossRefGoogle ScholarPubMed
Kobilka, BK, Dixon, RA, Frielle, T, Dohlman, HG, Bolanowski, MA, Sigal, IS, Yang-Feng, TL, Francke, U, Caron, MG, Lefkowitz, RJ.cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proceedings of the National Academy of Sciences of the United States of America. Jan 1987;84(1):46–50.CrossRefGoogle ScholarPubMed
Taylor, MR, Bristow, MR.The emerging pharmacogenomics of the beta-adrenergic receptors. Congestive heart failure (Greenwich, Conn. Nov-Dec 2004;10(6):281–288.CrossRefGoogle ScholarPubMed
Brodde, OE, Leineweber, K.Beta2-adrenoceptor gene polymorphisms. Pharmacogenetics and genomics. May 2005;15(5):267–275.CrossRefGoogle ScholarPubMed
Scott, MG, Swan, C, Wheatley, AP, Hall, IP.Identification of novel polymorphisms within the promoter region of the human beta2 adrenergic receptor gene. British journal of pharmacology. Feb 1999;126(4):841–844.CrossRefGoogle ScholarPubMed
McGraw, DW, Forbes, SL, Kramer, , Liggett, SB.Polymorphisms of the 5' leader cistron of the human beta2-adrenergic receptor regulate receptor expression. The Journal of clinical investigation. Dec 1 1998;102(11):1927–1932.CrossRefGoogle ScholarPubMed
Dewar, JC, Wheatley, AP, Venn, A, Morrison, JF, Britton, J, Hall, IP.Beta2-adrenoceptor polymorphisms are in linkage disequilibrium, but are not associated with asthma in an adult population. Clin Exp Allergy. Apr 1998;28(4):442–448.CrossRefGoogle ScholarPubMed
Brodde, OE, Buscher, R, Tellkamp, R, Radke, J, Dhein, S, Insel, PA.Blunted cardiac responses to receptor activation in subjects with Thr164Ile beta(2)-adrenoceptors. Circulation. Feb 27 2001;103(8):1048–1050.CrossRefGoogle ScholarPubMed
Bruck, H, Leineweber, K, Ulrich, A, Radke, J, Heusch, G, Philipp, T, Brodde, OE.Thr164Ile polymorphism of the human beta2-adrenoceptor exhibits blunted desensitization of cardiac functional responses in vivo. Am J Physiol Heart Circ Physiol. Nov 2003;285(5):H2034–2038.CrossRefGoogle ScholarPubMed
Barbato, E, Penicka, M, Delrue, L, Durme, F, Bruyne, B, Goethals, M, Wijns, W, Vanderheyden, M, Bartunek, J.Thr164Ile polymorphism of beta2-adrenergic receptor negatively modulates cardiac contractility: implications for prognosis in patients with idiopathic dilated cardiomyopathy. Heart (British Cardiac Society). Jul 2007;93(7):856–861.Google ScholarPubMed
Green, SA, Turki, J, Innis, M, Liggett, SB.Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. Aug 16 1994;33(32):9414–9419.CrossRefGoogle ScholarPubMed
Hoit, BD, Suresh, DP, Craft, L, Walsh, RA, Liggett, SB.beta2-adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist-stimulated blood pressure and peripheral blood flow in normal individuals. American heart journal. Mar 2000;139(3):537–542.Google ScholarPubMed
Bruck, H, Leineweber, K, Buscher, R, Ulrich, A, Radke, J, Insel, PA, Brodde, OE.The Gln27Glu beta2-adrenoceptor polymorphism slows the onset of desensitization of cardiac functional responses in vivo. Pharmacogenetics. Feb 2003;13(2):59–66.CrossRefGoogle ScholarPubMed
Trombetta, IC, Batalha, LT, Rondon, MU, Laterza, MC, Frazzatto, E, Alves, MJ, Santos, AC, Brum, PC, Barretto, AC, Halpern, A, Villares, SM, Negrao, CE.Gly16 + Glu27 beta2-adrenoceptor polymorphisms cause increased forearm blood flow responses to mental stress and handgrip in humans. J Appl Physiol. Mar 2005;98(3):787–794.CrossRefGoogle ScholarPubMed
Eisenach, JH, Barnes, SA, Pike, TL, Sokolnicki, , Masuki, S, Dietz, NM, Rehfeldt, KH, Turner, ST, Joyner, MJ.Arg16/Gly beta2-adrenergic receptor polymorphism alters the cardiac output response to isometric exercise. J Appl Physiol. Nov 2005;99(5):1776–1781.CrossRefGoogle ScholarPubMed
Eisenach, JH, McGuire, AM, Schwingler, RM, Turner, ST, Joyner, MJ.The Arg16/Gly beta2-adrenergic receptor polymorphism is associated with altered cardiovascular responses to isometric exercise. Physiological genomics. Feb 13 2004;16(3):323–328.CrossRefGoogle ScholarPubMed
Gratze, G, Fortin, J, Labugger, R, Binder, A, Kotanko, P, Timmermann, B, Luft, FC, Hoehe, MR, Skrabal, F.beta-2 Adrenergic receptor variants affect resting blood pressure and agonist-induced vasodilation in young adult Caucasians. Hypertension. Jun 1999;33(6):1425–1430.CrossRefGoogle ScholarPubMed
Cockcroft, JR, Gazis, AG, Cross, DJ, Wheatley, A, Dewar, J, Hall, IP, Noon, JP.Beta(2)-adrenoceptor polymorphism determines vascular reactivity in humans. Hypertension. Sep 2000;36(3):371–375.CrossRefGoogle ScholarPubMed
Garovic, VD, Joyner, MJ, Dietz, NM, Boerwinkle, E, Turner, ST.Beta(2)-adrenergic receptor polymorphism and nitric oxide-dependent forearm blood flow responses to isoproterenol in humans. The Journal of physiology. Jan 15 2003;546(Pt 2):583–589.CrossRefGoogle ScholarPubMed
Dishy, V, Landau, R, Sofowora, GG, Xie, HG, Smiley, RM, Kim, RB, Byrne, DW, Wood, AJ, Stein, CM.Beta2-adrenoceptor Thr164Ile polymorphism is associated with markedly decreased vasodilator and increased vasoconstrictor sensitivity in vivo. Pharmacogenetics. Aug 2004;14(8):517–522.CrossRefGoogle ScholarPubMed
Liggett, SB.The pharmacogenetics of beta2-adrenergic receptors: relevance to asthma. The Journal of allergy and clinical immunology. Feb 2000;105(2 Pt 2):S487–492.CrossRefGoogle Scholar
Small, KM, Wagoner, , Levin, AM, Kardia, SL, Liggett, SB.Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. The New England journal of medicine. Oct 10 2002;347(15):1135–1142.CrossRefGoogle ScholarPubMed
Magnusson, Y, Levin, MC, Eggertsen, R, Nystrom, E, Mobini, R, Schaufelberger, M, Andersson, B.Ser49Gly of beta1-adrenergic receptor is associated with effective beta-blocker dose in dilated cardiomyopathy. Clinical pharmacology and therapeutics. Sep 2005;78(3):221–231.CrossRefGoogle ScholarPubMed
Iwai, C, Akita, H, Kanazawa, K, Shiga, N, Terashima, M, Matsuda, Y, Takai, E, Miyamoto, Y, Shimizu, M, Kajiya, T, Hayashi, T, Yokoyama, M.Arg389Gly polymorphism of the human beta1-adrenergic receptor in patients with nonfatal acute myocardial infarction. American heart journal. Jul 2003;146(1):106–109.CrossRefGoogle ScholarPubMed
Covolo, L, Gelatti, U, Metra, M, Nodari, S, Picciche, A, Pezzali, N, Zani, C, Alberti, A, Donato, F, Nardi, G, Dei Cas, L.Role of beta1- and beta2-adrenoceptor polymorphisms in heart failure: a case-control study. European heart journal. Sep 2004;25(17):1534–1541.CrossRefGoogle ScholarPubMed
Nonen, S, Okamoto, H, Akino, M, Matsui, Y, Fujio, Y, Yoshiyama, M, Takemoto, Y, Yoshikawa, J, Azuma, J, Kitabatake, A.No positive association between adrenergic receptor variants of alpha2cDel322–325, beta1Ser49, beta1Arg389 and the risk for heart failure in the Japanese population. British journal of clinical pharmacology. Oct 2005;60(4):414–417.CrossRefGoogle ScholarPubMed
Metra, M, Zani, C, Covolo, L, Nodari, S, Pezzali, N, Gelatti, U, Donato, F, Nardi, G, Dei Cas, L.Role of beta1- and alpha2c-adrenergic receptor polymorphisms and their combination in heart failure: a case-control study. Eur J Heart Fail. Mar 2006;8(2):131–135.CrossRefGoogle ScholarPubMed
White, HL, Maqbool, A, McMahon, AD, Yates, L, Ball, SG, Hall, AS, Balmforth, AJ.An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals at risk of coronary events. A WOSCOPS substudy. European heart journal. Jul 2002;23(14):1087–1092.CrossRefGoogle ScholarPubMed
Kanki, H, Yang, P, Xie, HG, Kim, RB, George, AL, Jr., Roden, DM.Polymorphisms in beta-adrenergic receptor genes in the acquired long QT syndrome. Journal of cardiovascular electrophysiology. Mar 2002;13(3):252–256.CrossRefGoogle ScholarPubMed
Iwai, C, Akita, H, Shiga, N, Takai, E, Miyamoto, Y, Shimizu, M, Kawai, H, Takarada, A, Kajiya, T, Yokoyama, M.Suppressive effect of the Gly389 allele of the beta1-adrenergic receptor gene on the occurrence of ventricular tachycardia in dilated cardiomyopathy. Circ J. Aug 2002;66(8):723–728.CrossRefGoogle ScholarPubMed
Groote, P, Lamblin, N, Helbecque, N, Mouquet, F, Mc Fadden, E, Hermant, X, Amouyel, P, Dallongeville, J, Bauters, C.The impact of beta-adrenoreceptor gene polymorphisms on survival in patients with congestive heart failure. Eur J Heart Fail. Oct 2005;7(6):966–973.CrossRefGoogle ScholarPubMed
Forleo, C, Resta, N, Sorrentino, S, Guida, P, Manghisi, A, Luca, V, Romito, R, Iacoviello, M, Tommasi, E, Troisi, F, Rizzon, B, Guanti, G, Rizzon, P, Pitzalis, MV.Association of beta-adrenergic receptor polymorphisms and progression to heart failure in patients with idiopathic dilated cardiomyopathy. The American journal of medicine. Oct 1 2004;117(7):451–458.CrossRefGoogle ScholarPubMed
Shin, J, Lobmeyer, MT, Gong, Y, Zineh, I, Langaee, TY, Yarandi, H, Schofield, RS, Aranda, JM, Jr., Hill, JA, Pauly, DF, Johnson, JA.Relation of beta(2)-adrenoceptor haplotype to risk of death and heart transplantation in patients with heart failure. The American journal of cardiology. Jan 15 2007;99(2):250–255.CrossRefGoogle ScholarPubMed
Canham, RM, Das, SR, Leonard, D, Abdullah, SM, Mehta, SK, Chung, AK, Li, JL, Victor, RG, Auchus, RJ, Drazner, MH.Alpha2cDel322–325 and beta1Arg389 adrenergic polymorphisms are not associated with reduced left ventricular ejection fraction or increased left ventricular volume. Journal of the American College of Cardiology. Jan 16 2007;49(2):274–276.CrossRefGoogle ScholarPubMed
Wagoner, , Craft, LL, Zengel, P, McGuire, N, Rathz, DA, Dorn, GW, 2nd, Liggett SB. Polymorphisms of the beta1-adrenergic receptor predict exercise capacity in heart failure. American heart journal. Nov 2002;144(5):840–846.CrossRefGoogle ScholarPubMed
Taylor, DR, Drazen, JM, Herbison, GP, Yandava, CN, Hancox, RJ, Town, GI.Asthma exacerbations during long term beta agonist use: influence of beta(2) adrenoceptor polymorphism. Thorax. Sep 2000;55(9):762–767.CrossRefGoogle ScholarPubMed
Israel, E, Chinchilli, VM, Ford, JG, Boushey, HA, Cherniack, R, Craig, TJ, Deykin, A, Fagan, JK, Fahy, JV, Fish, J, Kraft, M, Kunselman, SJ, Lazarus, SC, Lemanske, RF, Jr., Liggett, SB, Martin, RJ, Mitra, N, Peters, SP, Silverman, E, Sorkness, CA, Szefler, SJ, Wechsler, ME, Weiss, ST, Drazen, JM.Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet. Oct 23–29 2004;364(9444):1505–1512.CrossRefGoogle ScholarPubMed
Israel, E, Drazen, JM, Liggett, SB, Boushey, HA, Cherniack, RM, Chinchilli, VM, Cooper, DM, Fahy, JV, Fish, JE, Ford, JG, Kraft, M, Kunselman, S, Lazarus, SC, Lemanske, RF, Martin, RJ, McLean, , Peters, SP, Silverman, EK, Sorkness, CA, Szefler, SJ, Weiss, ST, Yandava, CN.The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. American journal of respiratory and critical care medicine. Jul 2000;162(1):75–80.CrossRefGoogle ScholarPubMed
Palmer, CN, Lipworth, BJ, Lee, S, Ismail, T, Macgregor, DF, Mukhopadhyay, S.Arginine-16 beta2 adrenoceptor genotype predisposes to exacerbations in young asthmatics taking regular salmeterol. Thorax. Nov 2006;61(11):940–944.CrossRefGoogle ScholarPubMed
Wechsler, ME, Lehman, E, Lazarus, SC, Lemanske, RF, Jr., Boushey, HA, Deykin, A, Fahy, JV, Sorkness, CA, Chinchilli, VM, Craig, TJ, DiMango, E, Kraft, M, Leone, F, Martin, RJ, Peters, SP, Szefler, SJ, Liu, W, Israel, E.beta-Adrenergic receptor polymorphisms and response to salmeterol. American journal of respiratory and critical care medicine. Mar 1 2006;173(5):519–526.CrossRefGoogle ScholarPubMed
Iaccarino, G, Lanni, F, Cipolletta, E, Trimarco, V, Izzo, R, Iovino, GL, Luca, N, Trimarco, B.The Glu27 allele of the beta2 adrenergic receptor increases the risk of cardiac hypertrophy in hypertension. Journal of hypertension. Nov 2004;22(11):2117–2122.CrossRefGoogle ScholarPubMed
Iaccarino, G, Izzo, R, Trimarco, V, Cipolletta, E, Lanni, F, Sorriento, D, Iovino, GL, Rozza, F, Luca, N, Priante, O, Di Renzo, G, Trimarco, B.Beta2-adrenergic receptor polymorphisms and treatment-induced regression of left ventricular hypertrophy in hypertension. Clinical pharmacology and therapeutics. Dec 2006;80(6):633–645.CrossRefGoogle ScholarPubMed
Piscione, F, Iaccarino, G, Galasso, G, Cipolletta, E, Rao, MA, Brevetti, G, Piccolo, R, Trimarco, B, Chiariello, M.Effects of Ile164 polymorphism of beta2-adrenergic receptor gene on coronary artery disease. Journal of the American College of Cardiology. Oct 21 2008;52(17):1381–1388.CrossRefGoogle ScholarPubMed
Hunt, SA, Baker, DW, Chin, MH, Cinquegrani, MP, Feldman, AM, Francis, GS, Ganiats, TG, Goldstein, S, Gregoratos, G, Jessup, ML, Noble, RJ, Packer, M, Silver, MA, Stevenson, LW, Gibbons, RJ, Antman, EM, Alpert, JS, Faxon, DP, Fuster, V, Jacobs, AK, Hiratzka, LF, Russell, RO, Smith, SC, Jr. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines for the Evaluation and Management of Heart Failure). Journal of the American College of Cardiology. Dec 2001;38(7):2101–2113.CrossRefGoogle Scholar
Chen, L, Meyers, D, Javorsky, G, Burstow, D, Lolekha, P, Lucas, M, Semmler, AB, Savarimuthu, SM, Fong, KM, Yang, IA, Atherton, J, Galbraith, AJ, Parsonage, WA, Molenaar, P.Arg389Gly-beta1-adrenergic receptors determine improvement in left ventricular systolic function in nonischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol. Pharmacogenetics and genomics. Nov 2007;17(11):941–949.CrossRefGoogle ScholarPubMed
Terra, SG, Hamilton, KK, Pauly, DF, Lee, CR, Patterson, JH, Adams, KF, Schofield, RS, Belgado, BS, Hill, JA, Aranda, JM, Yarandi, HN, Johnson, JA.Beta1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenetics and genomics. Apr 2005;15(4):227–234.CrossRefGoogle ScholarPubMed
White, HL, Boer, RA, Maqbool, A, Greenwood, D, Veldhuisen, DJ, Cuthbert, R, Ball, SG, Hall, AS, Balmforth, AJ.An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail. Aug 2003;5(4):463–468.Google ScholarPubMed
Liggett, SB, Mialet-Perez, J, Thaneemit-Chen, S, Weber, SA, Greene, SM, Hodne, D, Nelson, B, Morrison, J, Domanski, MJ, Wagoner, , Abraham, WT, Anderson, JL, Carlquist, JF, Krause-Steinrauf, HJ, Lazzeroni, LC, Port, JD, Lavori, PW, Bristow, MR.A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proceedings of the National Academy of Sciences of the United States of America. Jul 25 2006;103(30):11288–11293.CrossRefGoogle ScholarPubMed
Choudhry, S, Ung, N, Avila, PC, Ziv, E, Nazario, S, Casal, J, Torres, A, Gorman, JD, Salari, K, Rodriguez-Santana, JR, Toscano, M, Sylvia, JS, Alioto, M, Castro, RA, Salazar, M, Gomez, I, Fagan, JK, Salas, J, Clark, S, Lilly, C, Matallana, H, Selman, M, Chapela, R, Sheppard, D, Weiss, ST, Ford, JG, Boushey, HA, Drazen, JM, Rodriguez-Cintron, W, Silverman, EK, Burchard, EG.Pharmacogenetic differences in response to albuterol between Puerto Ricans and Mexicans with asthma. American journal of respiratory and critical care medicine. Mar 15 2005;171(6):563–570.CrossRefGoogle ScholarPubMed
Martinez, FD, Graves, PE, Baldini, M, Solomon, S, Erickson, R.Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. The Journal of clinical investigation. Dec 15 1997;100(12):3184–3188.CrossRefGoogle ScholarPubMed
Green, SA, Cole, G, Jacinto, M, Innis, M, Liggett, SB.A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. The Journal of biological chemistry. Nov 5 1993;268(31):23116–23121.Google ScholarPubMed
Lee, DK, Currie, GP, Hall, IP, Lima, JJ, Lipworth, BJ.The arginine-16 beta2-adrenoceptor polymorphism predisposes to bronchoprotective subsensitivity in patients treated with formoterol and salmeterol. British journal of clinical pharmacology. Jan 2004;57(1):68–75.CrossRefGoogle ScholarPubMed
Hizawa, N, Makita, H, Nasuhara, Y, Betsuyaku, T, Itoh, Y, Nagai, K, Hasegawa, M, Nishimura, M.Beta2-adrenergic receptor genetic polymorphisms and short-term bronchodilator responses in patients with COPD. Chest. Nov 2007;132(5):1485–1492.CrossRefGoogle ScholarPubMed
Bleecker, ER, Postma, DS, Lawrance, RM, Meyers, DA, Ambrose, HJ, Goldman, M. Effect of ADRB2 polymorphisms on response to longacting beta2-agonist therapy: a pharmacogenetic analysis of two randomised studies. Lancet. Dec 22 2007;370(9605):2118–2125.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×