Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-08-05T03:24:45.148Z Has data issue: false hasContentIssue false

5 - Mineral transformations and biogeochemical cycles: a geomycological perspective

from II - Functional ecology of saprotrophic fungi

Published online by Cambridge University Press:  03 November 2009

Geoffrey M. Gadd
Affiliation:
School of Life Sciences, University of Dundee
Euan P. Burford
Affiliation:
School of Life Sciences, University of Dundee
Marina Fomina
Affiliation:
School of Life Sciences, University of Dundee
Karrie Melville
Affiliation:
School of Life Sciences, University of Dundee
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

Introduction

Rocks and minerals represent a vast reservoir of elements, many of them are essential to life. Bulk biological metals, such as Na, K, Mg and Ca, are among the eight most abundant elements in the Earth's crust and together make up 11.06% of crustal rock (Fraústo da Silva & Williams, 1993; Gadd, 2004). Rocks and minerals also include essential metals (e.g. Mn, Mo, Fe, Co, Ni, Cu, Zn) and, crucial for microbial and plant growth, phosphorus. Many elements have essential functional potential for the synthesis of biological macromolecules and energy capture (e.g. C, N, H, O, P, S), for the transmission of information (e.g. Na, K, Ca), for catalysis (e.g. Fe, Cu, Zn, Mo), for transfer of electrons (e.g. Fe), and for building solid structures (e.g. Ca, P, Si) (Fraústo da Silva & Williams, 1993). All these elements must be released into bioavailable forms that can be assimilated by the biota. Their release occurs via weathering of rock substrates and their mineral constituents through physical (mechanical), chemical and biological processes (Burford et al., 2003). Near-surface weathering of rocks and minerals (sub-aerial and sub-soil environments) often involves an interaction between all three types (White et al., 1992). In addition to mobilization of essential nutrients during lithospheric weathering, non-essential toxic metals (e.g. Cs, Al, Cd, Hg, Pb) may also be mobilized (Gadd, 1993, 2001a, b).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriaensen, K., Lelie, D., Laere, A., Vangrosveld, J. & Colpaert, J. V. (2003). A zinc-adapted fungus protects pines from zinc stress. New Phytologist 161, 549–55.CrossRefGoogle Scholar
Ahonen-Jonnarth, U., Hees, P. A. W., Lundstrom, U. S. & Finlay, R. D. (2000). Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytologist 146, 557–67.CrossRefGoogle Scholar
Albertano, P. & Urzi, C. (1999). Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman Hypogea. Microbial Ecology 38, 244–52.CrossRefGoogle ScholarPubMed
Amann, R. I., Wolfgang, L. & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59, 143–69.Google ScholarPubMed
Anderson, I. C. & Cairney, J. W. G. (2004). Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology 6, 769–79.CrossRefGoogle ScholarPubMed
Anderson, I. C., Campbell, C. D. & Prosser, J. I. (2003). Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environmental Microbiology 5, 36–47.CrossRefGoogle ScholarPubMed
Arnott, H. J. (1995). Calcium oxalate in fungi. In Calcium Oxalate in Biological Systems, ed. Khan, S. R., pp. 73–111. Boca Raton, FL: CRC Press.Google Scholar
Arvieu, J. C., Leprince, F. & Plassard, C. (2003). Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Annals of Forest Science 60, 815–21.CrossRefGoogle Scholar
Baldrian, P. (2003). Interaction of heavy metals with white-rot fungi. Enzyme and Microbial Technology 32, 78–91.CrossRefGoogle Scholar
Banfield, J. P., Barker, W. W., Welch, S. A. & Taunton, A. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the USA 96, 3404–11.CrossRefGoogle ScholarPubMed
Barker, W. W., Welch, S. A. & Banfield, J. F. (1997). Biogeochemical weathering of silicate minerals. In Geomicrobiology: interactions between Microbes and Minerals, Reviews in Mineralogy, vol. 35, ed. Banfield, J. F. & Nealson, K. H., pp. 391–428. Chelsea, MI:. Mineralogical Society of America.Google Scholar
Blazquez, F., Garcia-Vallez, M., Krumbein, W. E., Sterflinger, K. & Vendrell-Saz, M. (1997). Microstromatolithic deposits on granitic monuments: development and decay. European Journal of Mineralogy 9, 899–901.CrossRefGoogle Scholar
Borneman, J. & Triplett, E. W. (1997). Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Applied and Environmental Microbiology 63, 2647–53.Google ScholarPubMed
Braissant, O., Cailleau, G., Aragno, M. & Verrecchia, E. P. (2004). Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology 2, 59–66.CrossRefGoogle Scholar
Brandl, H. (2001). Heterotrophic leaching. In Fungi in Bioremediation, ed. Gadd, G. M., pp. 383–423. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Breemen, N., Lundström, U. S. & Jongmans, A. G. (2000). Do plants drive podzolization via rock-eating mycorrhizal fungi?Geoderma 94, 163–71.CrossRefGoogle Scholar
Bronick, C. J. & Lal, R. (2005). Soil structure and management: a review. Geoderma 124, 3–22.CrossRefGoogle Scholar
Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A. & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environmental Quality 33, 522–31.CrossRefGoogle ScholarPubMed
Bruand, A. & Duval, O. (1999). Calcified fungal filaments in the petrocalcic horizon of Eutrochrepts in Beauce, France. Soil Science Society of America Journal 63, 164–9.CrossRefGoogle Scholar
Buchan, A., Newell, S. Y., Moreta, J. I. & Moran, M. A. (2002). Molecular characterization of bacterial and fungal decomposer communities in a Southeastern U. S. salt marsh. Microbial Ecology 43, 329–40.CrossRefGoogle Scholar
Buchan, A., Newell, S. Y., Butler, M., Biers, E. J., Hollibaugh, J. T. & Moran, M. A. (2003). Dynamics of bacterial and fungal communities on decaying salt marsh grass. Applied and Environmental Microbiology 69, 6676–87.CrossRefGoogle ScholarPubMed
Burford, E. P., Fomina, M. & Gadd, G. M. (2003). Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine 67, 1127–55.CrossRefGoogle Scholar
Burgstaller, W. & Schinner, F. (1993). Leaching of metals with fungi. Journal of Biotechnology 27, 91–116.CrossRefGoogle Scholar
Burke, D. J., Martin, K. J., Rygiewicz, P. T. & Topa, M. A. (2005). Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Biology and Biochemistry 37, 1683–94.CrossRefGoogle Scholar
Buscot, F., Munch, J. C., Charcosset, J. Y., Gardes, M., Nehls, U. & Hampp, R. (2000). Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiology Reviews 24, 601–14.CrossRefGoogle ScholarPubMed
Callot, G., Maurette, M., Pottier, L. & Dubois, A. (1987). Biogenic etching of microfractures in amorphous and crystalline silicates. Nature 328, 147–9.CrossRefGoogle Scholar
Callot, G., Mousain, D. & Plassard, C. (1985). Concentrations de carbonate de calcium sur les parois des hyphes mycéliens. Agronomie 5, 143–50.CrossRefGoogle Scholar
Casarin, V., Plassard, C., Souche, G. & Arvieu, J.-C. (2003). Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie 23, 461–9.CrossRefGoogle Scholar
Castro, I. M., Fietto, J. L. R., Vieira, R. X., Gutiérrez-Corona, F. G., Loza-Tavera, H., Carlos, J., Torres-Guzmán, J. C. & Moreno-Sánchez, R. (2000). Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 57, 39–49.CrossRefGoogle Scholar
Cervantes, C., Campos-Garcia, J., Devars, S.Gutiérrez-Corona, F. G., Loza-Tavera, H., Carlos, J., Torres-Guzmán, J. C. & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews 25, 335–47.CrossRefGoogle ScholarPubMed
Chen, X.-B., Wright, J. V., Conca, J. L. & Peurrung, L. M. (1997). Evaluation of heavy metal remediation using mineral apatite. Water, Air and Soil Pollution 98, 57–78.CrossRefGoogle Scholar
Christie, P., Li, X. L. & Chen, B. D. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil 261, 209–17.CrossRefGoogle Scholar
Clausen, C. A. & Green, F. (2003). Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. International Biodeterioration and Biodegradation 51, 139–44.CrossRefGoogle Scholar
Colpaert, J. V. & Assche, J. A. (1992). Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant and Soil 143, 201–11.CrossRefGoogle Scholar
Colpaert, J. V., Muller, L. A. H., Lambaerts, M., Adriaensen, K. & Vangronsveld, J. (2004). Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytologist 162, 549–59.CrossRefGoogle Scholar
Conca, J. L. (1997). Phosphate-induced metal stabilization (PIMS). Final report to the U.S. Environmental Protection Agency 68D60023, Res. Triangle Park, NC.
Crosby, L. D. & Criddle, C. S. (2003). Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. BioTechniques 34, 790–802.Google ScholarPubMed
Cullings, K., Raleigh, C., New, M. H. & Henson, J. (2005). Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest. Applied and Environmental Microbiology 71, 1996–2000.CrossRefGoogle ScholarPubMed
Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W. (2001). Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiology Ecology 36, 203–9.CrossRefGoogle Scholar
Los Ríos, A., Wierzchos, J., Sancho, L. G. & Ascaso, C. (2004). Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiology Ecology 50, 143–52.CrossRefGoogle Scholar
Devevre, O., Garbaye, J. & Botton, B. (1996). Release of complexing organic acids by rhizosphere fungi as a factor in Norway spruce yellowing in acidic soils. Mycological Research 100, 1367–74.CrossRefGoogle Scholar
Diercks, M., Sand, W. & Bock, E. (1991). Microbial corrosion of concrete. Experientia 47, 514–16.CrossRefGoogle Scholar
Eckhardt, F. E. W. (1985). Solubilisation, transport, and deposition of mineral cations by microorganisms-efficient rock-weathering agents. In The Chemistry of Weathering, ed. Drever, J., pp. 161–73. Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
Egert, M. & Friedrich, M. W. (2003). Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Applied and Environmental Microbiology 69, 2555–62.CrossRefGoogle ScholarPubMed
Ehrlich, H. L. (1998). Geomicrobiology: its significance for geology. Earth-Science Reviews 45, 45–60.CrossRefGoogle Scholar
Ehrlich, H. L. (2002). Geomicrobiology. New York: Marcel Dekker.Google Scholar
Etienne, S. & Dupont, J. (2002). Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observations. Earth Surface Processes and Landforms 27, 737–48.CrossRefGoogle Scholar
Ferris, F. G., Wiese, R. G. & Fyfe, W. S. (1994). Precipitation of carbonate minerals by microorganisms: implications for silicate weathering and the global carbon dioxide budget. Geomicrobiology Journal 12, 1–13.CrossRefGoogle Scholar
Filion, M., Hamelin, R. C., Bernier, L. & St-Arnaud, M. (2004). Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Applied and Environmental Microbiology 70, 3541–51.CrossRefGoogle Scholar
Fisher, M. M. & Triplett, E. W. (1999). Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology 65, 4630–6.Google ScholarPubMed
Fomina, M. & Gadd, G. M. (2002). Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. Journal of Chemical Technology and Biotechnology 78, 23–34.CrossRefGoogle Scholar
Fomina, M., Ritz, K. & Gadd, G. M. (2003). Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycological Research 107, 861–71.CrossRefGoogle ScholarPubMed
Fomina, M. A., Alexander, I. J., Hillier, S. & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiology Journal 21, 351–66.CrossRefGoogle Scholar
Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander, I. J. & Gadd, G. M. (2005a). Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica. Applied and Environmental Microbiology 71, 371–81.CrossRefGoogle Scholar
Fomina, M. A., Alexander, I. J., Colpaert, J. V. & Gadd, G. M. (2005b). Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry 37, 851–66.CrossRefGoogle Scholar
Fomina, M. A., Olishevska, S. V., Kadoshnikov, V. M., Zlobenko, B. P. & Podgorsky, V. S. (2005c). Concrete colonization and destruction by mitosporic fungi in model experiment, Mikrobiologichny Zhurnal 67, 97–106 (in Russian with English summary).Google Scholar
Fraústo da Silva, J. J. R. & Williams, R. J. P. (1993). The Biological Chemistry of the Elements. Oxford: Oxford University Press.Google Scholar
Gabor, E. M., Vries, E. J. & Janssen, D. B. (2003). Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiology Ecology 44, 153–63.CrossRefGoogle ScholarPubMed
Gadd, G. M. (1990). Fungi and yeasts for metal accumulation. In Microbial Mineral Recovery, ed. Ehrlich, H. L. & Brierley, C., pp. 249–75. New York: McGraw-Hill.Google Scholar
Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist 124, 25–60.CrossRefGoogle Scholar
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology 41, 47–92.CrossRefGoogle ScholarPubMed
Gadd, G. M. (2000). Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology 11, 271–9.CrossRefGoogle ScholarPubMed
Gadd, G. M. (ed.) (2001a). Fungi in Bioremediation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gadd, G. M. (2001b). Accumulation and transformation of metals by microorganisms. In Biotechnology, a Multi-volume Comprehensive Treatise, vol. 10, Special Processes, ed. Rehm, H.-J., Reed, G., Puhler, A. & Stadler, P., pp. 225–64. Weinheim, Germany: Wiley-VCH Verlag GmbH.Google Scholar
Gadd, G. M. (2002). Interactions between microorganisms and metals/radionuclides: the basis of bioremediation. In Interactions of Microorganisms with Radionuclides, ed. Keith-Roach, M. J. & Livens, F. R., pp. 179–203. Amsterdam: Elsevier.Google Scholar
Gadd, G. M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist 18, 60–70.CrossRefGoogle Scholar
Gadd, G. M. (ed.) (2006). Fungi in Biogeochemical Cycles. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gadd, G. M., Fomina, M. & Burford, E. P. (2006). Fungal roles in rock, mineral and soil transformations. In Micro-organisms and Earth Systems – Advances in Geomicrobiology, ed. Gadd, G. M., Semple, K. T. & Lappin-Scott, H. M., pp. 201–31. Cambridge: Cambridge University Press.Google Scholar
Gaylarde, C. C. & Morton, L. H. G. (1999). Deteriogenic biofilms on buildings and their control: a review. Biofouling 14, 59–74.CrossRefGoogle Scholar
Gharieb, M. M., Kierans, M. & Gadd, G. M. (1999). Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycological Research 103, 299–305.CrossRefGoogle Scholar
Gleeson, D. B., Clipson, N., Melville, K., Gadd, G. M. & McDermott, F. P. (2005). Characterization of fungal community structure on a weathered pegmatitic granite. Microbial Ecology 50, 360–8.CrossRefGoogle ScholarPubMed
Gleeson, D. B., Kennedy, N. M., Clipson, N., Melville, K., Gadd, G. M. & McDermott, F. P. (2006). Characterization of bacterial community structure on a weathered pegmatitic granite. Microbial Ecology 51, 526–34.CrossRefGoogle ScholarPubMed
Glowa, K. R., Arocena, J. M. & Massicotte, H. B. (2003). Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiology Journal 20, 99–111.CrossRefGoogle Scholar
Gomes, N. C. M., Fagbola, O., Costa, R., Rumjanek, N. G., Buchner, A., Mendona-Hagler, L. & Smalla, K. (2003). Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Applied and Environmental Microbiology 69, 3758–66.CrossRefGoogle ScholarPubMed
Gomez-Alarcon, G., Munoz, M. L. & Flores, M. (1994). Excretion of organic acids by fungal strains isolated from decayed limestone. International Biodeterioration and Biodegradation 34, 169–80.CrossRefGoogle Scholar
Gorbushina, A. A. & Krumbein, W. E. (2000). Subaerial microbial mats and their effects on soil and rock. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M., pp. 161–9. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Gorbushina, A. A., Krumbein, W. E., Hamann, R., Panina, L., Soucharjevsky, S. & Wollenzien, U. (1993). On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiology Journal 11, 205–21.CrossRefGoogle Scholar
Gorbushina, A. A., Boettcher, M., Brumsack, H. J., Krumbein, W. E. & Vendrell-Saz, M. (2001). Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (tepuis) of Venezuela. Geomicrobiology Journal 18, 117–32.Google Scholar
Gorbushina, A. A., Whitehead, K., Dornieden, T., Niesse, A., Schulte, A. & Hedges, J. I. (2003). Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Canadian Journal of Botany 81, 131–8.CrossRefGoogle Scholar
Goudie, A. S. (1996). Organic agency in calcrete development. Journal of Arid Environments 32, 103–10.CrossRefGoogle Scholar
Grote, G. & Krumbein, W. E. (1992). Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiology Journal 10, 49–57.CrossRefGoogle Scholar
Gu, J. D., Ford, T. E., Berke, N. S. & Mitchell, R. (1998). Biodeterioration of concrete by the fungus Fusarium. International Biodeterioration and Biodegradation 41, 101–9.CrossRefGoogle Scholar
Haack, S. K., Fogarty, L. R., West, T. G., Alm, E. W., McGuire, J. T., Long, D. T., Hyndman, D. W. & Forney, L. J. (2004). Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environmental Microbiology 6, 438–48.CrossRefGoogle Scholar
Haas, J. R. & Purvis, O. W. (2006). Lichen biogeochemistry. In Fungi in Biogeochemical Cycles, ed. Gadd, G. M., pp. 344–76. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hammes, F. & Verstraete, W. (2002). Key roles of pH, and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology 1, 3–7.CrossRefGoogle Scholar
Hansgate, A. M., Schloss, P. D., Hay, A. G. & Walker, L. P. (2005). Molecular characterization of fungal community dynamics in the initial stages of composting. FEMS Microbiology Ecology 51, 209–14.CrossRefGoogle ScholarPubMed
Hartley-Whitaker, J, Cairney, J. W. G. & Maharg, A. A. (2000). Sensitivity to Cd and Zn of host and symbiont of ectomicorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant and Soil 218, 31–42.CrossRefGoogle Scholar
Hartmann, M., Frey, R., Kölliker, R. & Widmer, F. (2005). Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. Journal of Microbiological Methods 61, 349–60.CrossRefGoogle ScholarPubMed
Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research 105, 1422–32.CrossRefGoogle Scholar
Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L. & Hedges, S. B., (2001). Molecular evidence for the early colonisation of land by fungi and plants. Science 293, 1129–33.CrossRefGoogle Scholar
Hernesmaa, A., Björklöf, K., Kiikkilä, O., Fritze, H., Haahtela, K. & Romantschuk, M. (2005). Structure and function of microbial communities in the rhizosphere of Scots pine after tree-felling. Soil Biology and Biochemistry 37, 777–85.CrossRefGoogle Scholar
Hibbet, D. S. (1992). Ribosomal RNA and fungal systematics. Transactions of the Mycological Society of Japan 33, 533–56.Google Scholar
Hirsch, P., Eckhardt, F. E. W. & Palmer, R. J. Jr. (1995). Fungi active in weathering rock and stone monuments. Canadian Journal of Botany 73, 1384–90.CrossRefGoogle Scholar
Hochella, M. F. (2002). Sustaining Earth: thoughts on the present and future roles in mineralogy in environmental science. Mineralogical Magazine 66, 627–52.CrossRefGoogle Scholar
Hodge, A. (2000). Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiology Ecology 32, 91–6.CrossRefGoogle ScholarPubMed
Hoffland, E., Giesler, R., Jongmans, T. & Breemen, N. (2002). Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence. Ecosystems 5, 11–22.CrossRefGoogle Scholar
Horton, T. R. & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10, 1855–71.CrossRefGoogle ScholarPubMed
Howlett, N. G. & Avery, S. V. (1997). Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 48, 539–45.CrossRefGoogle ScholarPubMed
Hugenholtz, P. & Pace, N. R. (1996). Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends in Biotechnology 14, 190–7.CrossRefGoogle ScholarPubMed
Hughes, K. A. & Lawley, B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. Environmental Microbiology 5, 555–65.CrossRefGoogle ScholarPubMed
Hunt, J., Boddy, L., Randerson, P. F. & Rogers, H. L. (2004). An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils. Microbial Ecology 47, 385–95.CrossRefGoogle Scholar
Jentschke, G. & Godbold, D. L. (2000). Metal toxicity and ectomycorrhizas. Physiologia Plantarum 109, 107–16.CrossRefGoogle Scholar
Kahle, C. F. (1977). Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmicristisation. Sedimentology 24, 413–35.CrossRefGoogle Scholar
Kennedy, N., Conolly, J. & Clipson, N. (2005). Impact of lime, nitrogen and plant species on fungal community structure in grassland microcosms. Environmental Microbiology 7, 780–8.CrossRefGoogle ScholarPubMed
Kerr, R. A. (1997). Life goes to extremes in the deep Earth – and elsewhere?Science 276, 703–4.CrossRefGoogle ScholarPubMed
Kikuchi, Y. & Sreekumari, K. R. (2002). Microbially influenced corrosion and biodeterioration of structural metals. Journal of the Iron and Steel Institute of Japan 88, 620–8.CrossRefGoogle Scholar
Knorre, Hv. & Krumbein, W. E. (2000). Bacterial calcification. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M., pp. 25–39. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Krumbein, W. E., Urzi, C. & Gehrmann, C. (1991). On the biocorrosion and biodeterioration of antique and medieval glass. Geomicrobiology Journal 9, 139–60.CrossRefGoogle Scholar
Krupa, P. & Kozdroj, J. (2004). Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World Journal of Microbiology and Biotechnology 20, 427–30.CrossRefGoogle Scholar
Kumar, R. & Kumar, A. V. (1999). Biodeterioration of Stone in Tropical Environments: an Overview. Madison, WI: The J. Paul Getty Trust.Google Scholar
Lapeyrie, F., Picatto, C., Gerard, J. & Dexheimer, J. (1990). TEM study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9, 163–6.Google Scholar
Lapeyrie, F., Ranger, J. & Vairelles, D. (1991). Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Canadian Journal of Botany 69, 342–6.CrossRefGoogle Scholar
Leerdam, D. M., Williams, , , P. A. & Cairney, J. W. G. (2001). Phosphate-solubilizing abilities of ericoid mycorrhizal endophytes of Woollsia pungens (Epacridaceae). Australian Journal of Botany 49, 75–80.CrossRefGoogle Scholar
Leyval, C. & Joner, E. J. (2001). Bioavailability of heavy metals in the mycorrhizosphere. In Trace Elements in the Rhizosphere, ed. Gobran, G. R., Wenzel, W. W. & Lombi, E., pp. 165–85. Boca Raton, FL: CRC Press.Google Scholar
Lindahl, B. D. & Olsson, S. (2004). Fungal translocation – creating and responding to environmental heterogeneity. Mycologist 18, 79–88.CrossRefGoogle Scholar
Liu, W. T., Marsh, T. L., Cheng, H. & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16SyrRNA. Applied and Environmental Microbiology 63, 4516–22.Google Scholar
Lundstrom, U. S., Breemen, N. & Bain, D. (2000). The podzolization process. A review. Geoderma 94, 91–107.CrossRefGoogle Scholar
Magyarosy, A., Laidlaw, R. D., Kilaas, R., Echer, C., Clark, D. S. & Keasling, J. D. (2002). Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Applied Microbiology and Biotechnology 59, 382–8.Google ScholarPubMed
Manley, E. & Evans, L. (1986). Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Science 141, 106–12.CrossRefGoogle Scholar
Manoli, F., Koutsopoulos, E. & Dalas, E. (1997). Crystallization of calcite on chitin. Journal of Crystal Growth 182, 116–24.CrossRefGoogle Scholar
Martino, E., Perotto, S., Parsons, R. & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry 35, 133–41.CrossRefGoogle Scholar
Maurice, P. A., McKnight, D. M., Leff, L., Fulghum, J. E. & Gooseff, M. (2002). Direct observations of aluminosilicate weathering in the hyporheic zone of an Antarctic Dry Valley stream. Geochemica et Cosmochimica Acta 66, 1335–47.CrossRefGoogle Scholar
May, E. (2003). Microbes on building stone for good or bad?Culture 24, 4–8.Google Scholar
Meharg, A. A. (2003). The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research 107, 1253–65.CrossRefGoogle ScholarPubMed
Meharg, A. A. & Cairney, J. W. G. (2000). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research 30, 69–112.CrossRefGoogle Scholar
Mehta, A. P., Torma, A. E. & Murr, L. E. (1979). Effect of environmental parameters on the efficiency of biodegradation of basalt rock by fungi. Biotechnology and Bioengineering 21, 875–85.CrossRefGoogle Scholar
Mironenko, N. V., Alekhina, I. A., Zhdanova, N. N. & Bulat, S. A. (2000). Intraspecific variation in gamma-radiation resistance and genomic structure in the filamentous fungus Alternaria alternata: a case study of strains inhabiting Chernobyl Reactor No. 4. Ecotoxicology and Environmental Safety 45, 177–87.CrossRefGoogle ScholarPubMed
Money, N. P. (2004). The fungal dining habit – a biomechanical perspective. Mycologist 18, 71–6.CrossRefGoogle Scholar
Monger, C. H. & Adams, H. P. (1996). Micromorphology of calcite-silica deposits, Yucca Mountain, Nevada. Soil Science Society of America Journal 60, 519–30.CrossRefGoogle Scholar
Morris, C. E., Bardin, M., Berge, O., Frey-Klett, P., Fromin, N., Girardin, H., Guinebretière, Leboron P., Thièry, J. M. & Troussellier, M. (2002). Microbial diversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiology and Molecular Biology Reviews 66, 592–616.CrossRefGoogle ScholarPubMed
Muller, B., Burgstaller, W., Strasser, H., Zanella, A. & Schinner, F. (1995). Leaching of zinc from an industrial filter dust with Penicillium, Pseudomonas and Corynebacterium: citric acid is the leaching agent rather than amino acids. Journal of Industrial Microbiology 14, 208–12.CrossRefGoogle Scholar
Muyzer, G., Waal, E. C. & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59, 695–700.Google ScholarPubMed
Nannipieri, P., Ascher, M. T., Ceccherini, M. T., Landi, L., Pietramellara, G. & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science 54, 655–70.CrossRefGoogle Scholar
Nara, K., Nakaya, H., Wu, B., Zhou, Z. & Hogetsu, T. (2003). Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytologist 159, 743–56.CrossRefGoogle Scholar
Nica, D., Davis, J. L., Kirby, L., Zuo, G. & Roberts, D. J. (2000). Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. International Biodeterioration and Biodegradation 46, 61–8.CrossRefGoogle Scholar
Nikolcheva, L. G., Cockshutt, A. M. & Bärlocher, F. (2003). Determining diversity and freshwater fungi in decaying leaves: comparison of traditional and molecular approaches. Applied and Environmental Microbiology 69, 2548–54.CrossRefGoogle ScholarPubMed
Nikolcheva, L. G., Bourque, T. & Bärlocher, F. (2005). Fungal diversity during initial stages of leaf decomposition in a stream. Mycological Research 109, 246–53.CrossRefGoogle Scholar
Olsson, P. A. & Wallander, H. (1998). Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiology Ecology 27, 195–205.CrossRefGoogle Scholar
Osborn, A. M., Moore, E. R. B. & Timmis, K. N. (2000). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology 2, 9–50.CrossRefGoogle Scholar
Perfettini, J. V., Revertegat, E. & Langomazino, N. (1991). Evaluation of cement degradation by the metabolic activities of two fungal strains. Experientia 47, 527–33.CrossRefGoogle Scholar
Prosser, J. I. (2002). Molecular and functional diversity in soil-microorganisms. Plant and Soil 244, 9–17.CrossRefGoogle Scholar
Purvis, O. W. (1996). Interactions of lichens with metals. Science Progress 79, 283–309.Google Scholar
Purvis, O. W. & Halls, C. (1996). A review of lichens in metal-enriched environments. Lichenologist 28, 571–601.CrossRefGoogle Scholar
Putnis, A. (2002). Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine 66, 689–708.CrossRefGoogle Scholar
Ranjard, L., Poly, F., Lata, J.-C., Mougel, C., Thioulouse, J. & Nazaret, S. (2001). Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Applied and Environmental Microbiology 67, 4479–87.CrossRefGoogle ScholarPubMed
Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47, 179–214.CrossRefGoogle Scholar
Rivadeneyra, M. A., Delgado, R., Delgado, G., Del Moral, A., Ferrer, M. R. & Ramos-Cormenzana, A. (1993). Precipitation of carbonates by Bacillus sp. isolated from saline soils. Geomicrobiology Journal 11, 175–84.CrossRefGoogle Scholar
Roberts, D. J., Nica, D., Zuo, G. & Davis, J. L. (2002). Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration and Biodegradation 49, 227–34.CrossRefGoogle Scholar
Rosling, A., Lindahl, B. D., Taylor, A. F. S. & Finlay, R. D. (2004a). Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiology Ecology 47, 31–7.CrossRefGoogle Scholar
Rosling, A., Lindahl, B. D. & Finlay, R. D. (2004b). Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytologist 162, 795–802.CrossRefGoogle Scholar
Rossi, G. (1979). Potassium recovery through leucite bioleaching: possibilities and limitations. In Metallurgical Applications of Bacterial Leaching and Related Phenomena, ed. Murr, L. E., Torma, A. E. & Brierley, J. E., pp. 279–319. New York: Academic Press.Google Scholar
Sand, W. & Bock, E. (1991). Biodeterioration of mineral materials by microorganisms – Biogenic sulphuric and nitric-acid corrosion of concrete and natural stone. Geomicrobiology Journal 9, 129–38.CrossRefGoogle Scholar
Sanderson, M. J. & Shaffer, H. B. (2002). Troubleshooting molecular phylogenetic analysis. Annual Reviews of Ecology and Systematics 33, 49–72.CrossRefGoogle Scholar
Sayer, J. A., Raggett, S. L. & Gadd, G. M. (1995). Solubilization of insoluble compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycological Research 99, 987–93.CrossRefGoogle Scholar
Sayer, J. A., Cotter-Howells, J. D., Watson, C., Hillier, S. & Gadd, G. M. (1999). Lead mineral transformation by fungi. Current Biology 9, 691–4.CrossRefGoogle ScholarPubMed
Scheublin, T. R., Ridgway, K. P., Young, J. P. W. & Heijden, M. G. A. (2004). Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology 70, 6240–6.CrossRefGoogle ScholarPubMed
Setala, H., Rissanen, J. & Markkola, A. M. (1997). Conditional outcomes in the relationship between pine and ectomycorrhizal fungi in relation to biotic and abiotic environment. Oikos 80, 112–22.CrossRefGoogle Scholar
Sigler, W. V., Bachofen, R. & Zeyer, J. (2003). Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environmental Microbiology 5, 618–27.CrossRefGoogle ScholarPubMed
Smit, E., Leeflang, P., Glandorf, B., Elsas, J. D. & Wernars, K. (1999). Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Applied and Environmental Microbiology 65, 2614–21.Google ScholarPubMed
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. London: Academic Press.Google Scholar
Smits, M. M., Hoffland, E., Jongmans, A. G. & Breemen, N. (2005). Contribution of mineral tunneling to total feldspar weathering. Geoderma 125, 59–69.CrossRefGoogle Scholar
Staley, J. T., Palmer, F. & Adams, J. B. (1982). Microcolonial fungi: common inhabitants on desert rocks. Science 215, 1093–5.CrossRefGoogle ScholarPubMed
Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal 17, 97–124.CrossRefGoogle Scholar
Sterflinger, K., Krumbein, W. E. & Schwiertz, A. (1998). PCR in-situ hybridisation of hyphomycetes. International Microbiology 1, 217–20.Google Scholar
Thorn, R. G., Reddy, C. A., Harris, D. & Paul, E. A. (1996). Isolation of saprophytic Basidiomycetes from soil. Applied and Environmental Microbiology 62, 4288–92.Google ScholarPubMed
Tichelen, K. K., Colpaert, J. V. & Vangronsveld, J. (2001). Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist 150, 203–13.CrossRefGoogle Scholar
Torre, J. R., Goebel, B. M., Friedmann, E. I. & Pace, N. R. (2003). Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology 69, 3858–67.CrossRefGoogle ScholarPubMed
Torsvik, V., Øverås, L. & Thingstad, T. F. (2002). Prokaryotic diversity–magnitude, dynamics and controlling factors. Science 296, 1064–6.CrossRefGoogle Scholar
Urzi, C., Garcia-Valles, M. T., Vendrell, M. & Pernice, A. (1999). Biomineralization processes of the rock surfaces observed in field and in laboratory. Geomicrobiology Journal 16, 39–54.Google Scholar
Verrecchia, E. P. (2000). Fungi and sediments. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M., pp. 69–75. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Verrecchia, E. P., Dumont, J. L. & Rolko, K. E. (1990). Do fungi building limestones exist in semi-arid regions?Naturwissenschaften 77, 584–6.CrossRefGoogle Scholar
Volkmann, M., Whitehead, K., Rutters, H., Rullkotter, J. & Gorbushina, A. A. (2003). Mycosporine-glutamicol-glucoside: a natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Communications in Mass Spectrometry 17, 897–902.CrossRefGoogle ScholarPubMed
Wainwright, M., Tasnee, A. A. & Barakah, F. (1993). A review of the role of oligotrophic microorganisms in biodeterioration. International Biodeterioration and Biodegradation 31, 1–13.CrossRefGoogle Scholar
Wallander, H., Wickman, T. & Jacks, G. (1997). Apatite as a source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant and Soil 196, 123–31.CrossRefGoogle Scholar
Wallander, H., Mahmood, S., Hagerberg, D., Johansson, L. & Pallon, J. (2003). Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology 44, 57–65.Google ScholarPubMed
Warren, L. A., Maurice, P. A., Parmer, N. & Ferris, F. G. (2001). Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal 18, 93–115.Google Scholar
Warscheid, T. & Krumbein, W. E. (1994). Biodeterioration processes on inorganic materials and means of countermeasures. Materials and Corrosion 45, 105–13.CrossRefGoogle Scholar
Watts, H. J., Very, A. A., Perera, T. H. S., Davies, J. M. & Gow, N. A. R. (1998). Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology 144, 689–95.CrossRefGoogle ScholarPubMed
White, I. D., Mottershead, D. N. & Harrison, S. J. (1992). Environmental Systems: An Introductory Text. London: Chapman and Hall.Google Scholar
Whitelaw, M. A. (2000). Growth promotion of plants inoculated with phosphate- solubilizing fungi. Advances in Agronomy 69, 99–151.CrossRefGoogle Scholar
Wierzchos, J., Los Ríos, A., Sancho, L. G. & Ascaso, C. (2004). Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. Journal of Microscopy 216, 57–61.CrossRefGoogle ScholarPubMed
Wierzchos, J., Sancho, L. G. & Ascaso, C. (2005). Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection. Environmental Microbiology 7, 566–75.CrossRefGoogle ScholarPubMed
Wintzingerode, F., Gobel, U. B. & Stackebrandt, E. (1997). Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews 21, 213–29.CrossRefGoogle Scholar
Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya, L. T. (2000). Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research 104, 1421–6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×