Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T20:15:24.277Z Has data issue: false hasContentIssue false

9 - Principles of cancer management

Published online by Cambridge University Press:  15 December 2009

A Patrick Forrest
Affiliation:
University of Edinburgh, Edinburgh; Department of surgery, Welsh National School of Medicine, UK
Andrew N. Kingsnorth
Affiliation:
Derriford Hospital, Plymouth
Aljafri A. Majid
Affiliation:
Derriford Hospital, Plymouth
Get access

Summary

THE GENETIC CODE

Little more than 50 years have passed since James Watson and Francis Crick reported the structure of deoxyribose nucleic acid (DNA) in an understated article in the journal Nature. This discovery ushered in a new era of discovery in the biological sciences that continues at an ever-increasing pace.

The growth and differentiation from a single fertilized ovum into a functional organism requires around 2000 proteins, many of which are enzymes that catalyse chemical reactions directly or via intermediates. Other proteins have structural roles, contribute to cell membranes, bind ions or act as hormones. Proteins consist of polypeptides chains, each built from unique sequences of 20 amino acids into chains of between 30 and 3000 amino acids (primary structure). The chains are folded into conformations containing active sites that allow allosteric interaction between enzyme and substrate. Enzymatic reactions require energy, which is supplied by the breakdown of food molecules coupled to the phosphorylating system. Unlike sugars, which are synthesized by repeating blocks of similar composition and therefore require a limited number of enzymes, proteins are uniquely irregular, each coded for by a template of DNA, which carries a specific genetic code.

DNA is composed of two strands, each with a deoxyribose sugar ‘backbone’ to which are attached sequences of two purine (adenine and guanine) and two pyrimidine (cytosine and thymidine) complementary nucleotides.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×