Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-14T21:02:52.379Z Has data issue: false hasContentIssue false

49 - Photoelectrochemistry and hybrid solar conversion

from Part 6 - Energy storage, high-penetration renewables, and grid stabilization

Published online by Cambridge University Press:  05 June 2012

Stuart Licht
Affiliation:
Department of Chemistry, George Washington University, Washington, DC, USA
David S. Ginley
Affiliation:
National Renewable Energy Laboratory, Colorado
David Cahen
Affiliation:
Weizmann Institute of Science, Israel
Get access

Summary

Focus

Photoelectrochemistry studies photo-driven electrochemical processes (light-driven processes which interconvert electrical and chemical energy). As with photovoltaics, photoelectrochemical processes can directly convert sunlight into electricity, but have the additional capabilities of being able to store energy, as in solar batteries, or to directly convert solar energy to chemical energy, as in the production of hydrogen fuel or disinfectants. The challenges involved, which have impeded the development of photoelectrochemical devices, can include corrosion, lower solar-energy-conversion efficiency, and packaging vulnerabilities of liquid systems. (i) Dye-sensitized solar cells, (ii) STEP energetic chemical generation and (iii) photoelectrochemical waste treatment are technologies that address many of these challenges.

Synopsis

Society's electrical needs are largely continuous. However, clouds and darkness dictate that photovoltaic (PV) solar cells have an intermittent output. A photoelectrochemical solar cell (PEC) can generate not only electrical but also electrochemical energy, thereby providing the basis for a system with an energy-storage component. Sufficiently energetic insolation incident on semiconductors can drive electrochemical oxidation/reduction and generate chemical, electrical, or electrochemical energy. Aspects include efficient dye-sensitized or direct solar-to-electrical energy conversion, solar electrochemical synthesis (electrolysis), including the splitting of water to form hydrogen, the generation of solar fuels, environmental cleanup, and solar-energy-storage cells. The PEC utilizes light to carry out an electrochemical reaction, converting light to both chemical and electrical energy. This fundamental difference between the PV solar cell's solid/solid interface and the PEC's solid/liquid interface has several ramifications in cell function and application. Energetic constraints imposed by single-bandgap semiconductors have limited the demonstrated values of photoelectrochemical solar-to-electrical energy-conversion efficiency for and using multiple-bandgap tandem cells can lead to significantly higher conversion efficiencies. Photoelectrochemical systems not only may facilitate solar-to-electrical energy conversion, but also have led to investigations into the solar photoelectrochemical production of fuels, photoelectrochemical detoxification of pollutants, and efficient solar thermal electrochemical production (STEP) of metals, fuels, and bleach, and carbon capture.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becquerel, E. 1839 “Mémoires sur les effets électriques produits sous l'influence des rayons,”Comptes Rendues 9 561Google Scholar
Gerischer, H. 1961 Advances in Electrochemistry and Electrochemical EngineeringNew YorkInterscience139Google Scholar
Gerischer, H. 1970 Physical Chemistry: An Advanced Treatise 9 New YorkAcademic PressGoogle Scholar
Fujishima, A.Honda, K. 1972 “Electrochemical photolysis of water at a semiconductor electrode,”Nature 238 37CrossRefGoogle Scholar
Rao, T.Tryk, D. A.Fujishima, A. 2002 “Applications of TiO2 photocatalysis,”Semiconductor Electrodes and PhotoelectrochemistryLicht, S.WeinheimWiley-VCHGoogle Scholar
Hodes, G.Manassen, J.Cahen, D. 1976 “Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes,”Nature 261 402CrossRefGoogle Scholar
Ellis, A. B.Kaiser, S. W.Wrighton, M. S. 1976 “Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes,”J. Am. Chem. Soc 98 1635CrossRefGoogle Scholar
Miller, B.Heller, A. 1976 “Semiconductor liquid junction solar cells based on anodic sulphide films,”Nature 262 680CrossRefGoogle Scholar
Nozik, A. J. 1978 “Photoelectrochemistry: applications to solar energy conversion,”Ann. Rev. Phys. Chem 29 189CrossRefGoogle Scholar
Butler, M. A.Ginley, D. S. 1980 “Principles of photoelechemical solar energy conversion,”J. Mates. Sci 15 1CrossRefGoogle Scholar
Memming, R. 1991 “Improvements in solar energy conversion,”Photochemical Conversion and Storage of Solar EnergyPelizzetti, E.Schiavello, M.DordrechtKluwer193CrossRefGoogle Scholar
Licht, S. 2002 Semiconductor Electrodes and PhotoelectrochemistryWeinheimWiley-VCH
Archer, M.Nozik, A. 2008 Nanostructured and Photochemical and Photoelectrochemical Approaches to Solar Energy ConversionLondonWorld Scientific
Rajeshwar, K.Licht, S.McConnell, R. 2008 The Solar Generation of Hydrogen: Towards a Renewable Energy FutureNew YorkWileyCrossRef
Vayssieres, L. 2010 Solar Hydrogen and NanotechnologyNew YorkWileyCrossRef
Licht, S.Hodes, G.Tenne, R.Manassen, J. 1987 “A light variation insensitive high efficiency solar cell,”Nature 326 863CrossRefGoogle Scholar
Tenne, R.Hodes, G. 1980 “Improved efficiency of CdSe photanodes by photoelectrochemical etching,”Appl. Phys. Lett 37 428CrossRefGoogle Scholar
Tenne, R.Hodes, G. 1983 “Selective photoelectrochemical etching of semiconductor surfaces,”Surf. Sci 135 453CrossRefGoogle Scholar
Licht, S. 1987 “A description of energy conversion in photoelectrochemical solar cells,”Nature 330 148CrossRefGoogle Scholar
Licht, S.Peramunage, D. 1990 “Efficient photoelectrochemical solar cells from electrolyte modification,”Nature 345 330CrossRefGoogle Scholar
Licht, S.Peramunage, D. 1992 “Rational electrolyte modification of n-CdSe/(KFe(CN)6)3−/2− photoelectrochemistry,”J. Electrochem. Soc 139 L23CrossRefGoogle Scholar
Licht, S. 2001 “Multiple bandgap semiconductor/electrolyte solar energy conversion,”J. Phys. Chem. B 105 6281CrossRefGoogle Scholar
Tributsch, H. 1972 “Reaction of excited chloroohyll molecules at electrodes and in photsynthesis,”Photochem. Photobiol 16 261CrossRefGoogle Scholar
Tsubomura, H.Matsumura, M.Nomura, Y.Amamiya, T. 1976 “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,”Nature 261 402CrossRefGoogle Scholar
O'Regan, B.Grätzel, M. 1991 “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,”Nature 353 737CrossRefGoogle Scholar
Wei, D. 2010 “Dye sensitized solar cells,”Int. J. Molec. Sci 11 1103CrossRefGoogle Scholar
Licht, S. 2002 “Efficient solar generation of hydrogen fuel – a fundamental analysis,”Electrochem. Commun 4 789CrossRefGoogle Scholar
Licht, S. 2003 “Solar water splitting to generate hydrogen fuel: photothermal electrochemical analysis,”J. Phys. Chem. B 107 4253CrossRefGoogle Scholar
Licht, S. 2003 “Electrochemical potential tuned solar water splitting,”Chem. Commun3006CrossRefGoogle Scholar
Licht, S. 2009 “STEP (solar thermal electrochemical photo) generation of energetic molecules: a solar chemical process to end anthropogenic global warming,”J. Phys. Chem. C 113 16283CrossRefGoogle Scholar
Licht, S. 2002 “Optimizing photoelectrochemical solar energy conversion: multiple bandgap and solution phase phenomenon,”Semiconductor Electrodes and PhotoelectrochemistryLicht, S.WeinheimWiley-VCHGoogle Scholar
Licht, S.Hodes, G. 2008 “Photoelectrochemical storage cells,”Nanostructured and Photochemical and Photoelectrochemical Approaches to Solar Energy ConversionArcher, M.Nozik, A.LondonWorld ScientificGoogle Scholar
Licht, S.Wang, B.Soga, T.Umeno, M. 1999 “Light invariant, efficient, multiple bandgap AlGaAs/Si/metal hydride solar cell,”Appl. Phys. Lett 74 4055CrossRefGoogle Scholar
Wang, B.Licht, S.Soga, T.Umeno, M. 2000 “Stable cycling behavior of the light invariant AlGaAs/Si/metal hydride solar cell,”Solar Energy Mater. Solar Cells 64 311CrossRefGoogle Scholar
Snaith, H.Moule, A.Klein, C. 2007 “Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture,”Nano Lett 7 3372CrossRefGoogle Scholar
Naseeruddin, M. K.Grätzel, M. 2002 “Dye-sensitized regenerative solar cells,”Semiconductor Electrodes and PhotoelectrochemistryLicht, S.WeinheimWiley-VCHGoogle Scholar
Nelson, J.“Charge transport in dye-sensitized systems,”Semiconductor Electrodes and PhotoelectrochemistryLicht, S.WeinheimWiley-VCH
Uzaki, K.Nishimura, T.Usagawa, J. 2010 “Dye-sensitized solar cells consisting of 3D-electrodes – a review: aiming at high efficiency from the view point of light harvesting and charge collection,”J. Solar Energy Eng. Trans. ASME 132CrossRefGoogle Scholar
Wu, J. H.Lan, Z.Hao, S. C. 2008 “Progress on the electrolytes for dye-sensitized solar cells,”Pure Appl. Chem 80 2241CrossRefGoogle Scholar
Hamann, T. W.Jensen, R. A.Martinson, A. B. F. 2008 “Advancing beyond current generation dye-sensitized solar cells,”Energy Environmental Sci 1 66CrossRefGoogle Scholar
Miller, B.Licht, S.Orazem, M. E.Searson, P. C. 1994 “Photoelectrochemical systems,”Crit. Rev. Surf. Chem 3 29Google Scholar
Henry, C. H. 1980 “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,”J. Appl. Phys 51 4494CrossRefGoogle Scholar
Friedman, D. J.Kurtz, S. R.Bertness, K. 1995 “30.2% Efficient GaInP/GaAs monolithic two-terminal Ptandem concentrator cell,”Progr. Photovolt 3 47CrossRefGoogle Scholar
Benner, J. P.Olson, J. M.Coutts, T. J. 1992 “Recent advances in high-efficiency solar cells,”Advances in Solar EnergyBoer, K. W.Boulder, COAmerican Solar Energy Society, Inc125Google Scholar
Green, M. A.Emery, K.Bücher, K.King, D. L.Igari, S. 1996 “Solar cell efficiency tables (version 8),”Progr. Photovolt 4 3213.0.CO;2-5>CrossRefGoogle Scholar
Soga, T.Kato, T.Yang, M.Umeno, M.Jimbo, T. 1995 J. Appl. Phys 78 4196CrossRef
King, R. R.Law, D. C.Edmondson, K. M. 2007 “40% Efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,”Appl. Phys. Lett183516CrossRefGoogle Scholar
2010
Licht, S. 2001 “Multiple bandgap semiconductor/electrolyte solar energy conversion,”J. Phys. Chem. B 105 6281CrossRefGoogle Scholar
Licht, S.Wang, B.Ghosh, S. 2010 “A new solar carbon capture process: solar thermal electrochemical photo (STEP) free production of iron,”J. Phys. Chem. Lett 1 2363CrossRefGoogle Scholar
Licht, S.Wang, B. 2010 “High solubility pathway to the carbon dioxide free production of iron,”Chem. Commun 46 7004CrossRefGoogle Scholar
Licht, S.Wu, H.Zhang, Z.Ayub, H. 2011 “Chemical mechanism of the high solubility pathway for the carbon dioxide free production of iron,”Chem. Commun 47 3081CrossRef
Zou, Z.Ye, J.Sayama, K.Arakawa, H. 2001 “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,”Nature 414 625CrossRefGoogle Scholar
Licht, S.Wang, B.Mukerji, S. 1998 “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,”Int. J. Hydrogen Energy 280 425Google Scholar
Licht, S.Chitayat, O.Bergmann, H. 2010 “Efficient STEP (solar thermal electrochemical photo) production of hydrogen – an economic assessment,”Int. J. Hydrogen Energy 35 10867CrossRefGoogle Scholar
Ng, J.Zhang, X.Zhang, T.“Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water,”J. Chem. Technol. Biotechnol 85 1061CrossRef
Licht, S.Forouzan, F. 1995 “Solution modified n-GaAs/aqueous polyselenide photoelectrochemistry,”J. Electrochem. Soc 142 1539Google Scholar
Rhodes, C. P.Cisar, A.Lee, H. 2008 “Effect of temperature on the electrolysis of water in concentrated alkali hydroxide solutions,”215th Electrochemical Society MeetingSan FranciscoGoogle Scholar
Licht, S.Wang, B.Wu, H. 2011 “STEP – a solar chemical process to end anthropogenic global warming II: experimental results.”J. Phys. Chem. C 115 11 803CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×